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TRANSCENDENTAL LIMIT CYCLES VIA THE
STRUCTURE OF ARBITRARY DEGREE
INVARIANT ALGEBRAIC CURVES OF

POLYNOMIAL PLANAR VECTOR FIELDS

ISAAC A. GARCÍA

ABSTRACT. In this paper we consider planar polynomial
vector fields and we show certain structure that their invariant
algebraic curves should have. This approach allows to obtain
results on the nonexistence of those algebraic curves for arbi-
trary degree. As an application of this algorithmic method we
easily prove that the van der Pol oscillator cannot have any
algebraic solution and in particular neither is his limit cycle
algebraic. In addition we show that a limit cycle studied by
Dolov is not algebraic.

1. Introduction. Let us consider a planar polynomial differential
system of the form

(1)

dx

dt
= ẋ = P (x, y) =

m∑
k=0

Pk(x, y) ,

dy

dt
= ẏ = Q(x, y) =

m∑
k=0

Qk(x, y) ,

in which P , Q ∈ R[x, y] are relative prime polynomials in the variables
x and y and Pk and Qk are homogeneous polynomials of degree k.
Throughout this paper we will denote by m = max{deg P, deg Q} the
degree of system (1).

One interesting question to ask is whether some solution of system
(1) is algebraic, i.e., can be described implicitly by f(x, y) = 0 where
f is a polynomial. In general, the answer is not easy but it is very
interesting because it is known that the existence of algebraic solutions
can be used to prove topological properties of system (1) as we will
explain.
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In short, algebraic solutions and integrability have a narrow relation-
ship for planar polynomial systems as is clearly shown in the Darboux
theory. Darboux showed in his famous paper [11] how first integrals
of polynomial systems possessing sufficient algebraic solutions are con-
structed. In particular, he proved that if a polynomial system of degree
m has at least [m(m+1)/2]+1 invariant algebraic curves, then it has a
first integral. Darboux’s first idea consists in searching a first integral
for system (1) as a function of the form

∏q
i=1 fλi

i (x, y), for suitable
λi ∈ C not all zero and fi(x, y) = 0 being invariant algebraic curves of
system (1). The above first integral is called Darboux first integral.

These last years, several interesting results linking invariant algebraic
curves and Liapunov constants have been published. For instance,
Cozma and Şubă in [10] have proved that a weak focus of a polynomial
system (1) of degree m ≥ 3 having the first Liapunov constant zero
and m(m + 1)/2 − 2 invariant algebraic curves has a Darboux first
integral or a Darboux integrating factor. Related with this result,
Chavarriga, Giacomini and Giné [6] show that if a polynomial system
(1) of degree m with an arbitrary linear part has a center and admits
m(m + 1)/2 − [(m + 1)/2] algebraic solutions, then this system has a
Darboux integrating factor. Here [.] denotes as usual the integer part.

On the other hand, the study of limit cycles has also been an
important topic in the theory of polynomial system (1) since Poincaré
first treated it. A limit cycle is a periodic solution which has an annulus-
like neighborhood in the phase plane xy free of other periodic solutions.

There is a relationship between the theory of limit cycles and alge-
braic solutions for planar polynomial differential equations as was sug-
gested by Hilbert in the statement of his famous 16th problem, see [18],
into two parts: (a) about the topology of real algebraic curves, (b) on
the maximum number of limit cycles for system (1). This problem has
proved to be one of the most difficult of Hilbert’s entire collection; in-
deed, it remains unsolved even for quadratic systems, i.e., system (1)
with m = 2.

It is interesting to note that the knowledge of algebraic solutions
allows us to understand better the behavior of limit cycles. See for
example the classical proof of the fact that a quadratic system with
two invariant straight lines does not have limit cycles due to Bautin in
[1] by using the well known Bendixson-Dulac Criterion to ensure the
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nonexistence of limit cycles for planar differential systems. In addition a
quadratic system with an invariant ellipse, hyperbola or pair of straight
lines can have no limit cycles except, perhaps, for the ellipse itself [9].

A form of weakening the hypotheses of Hilbert’s 16th problem is
studying the algebraic limit cycles; i.e., algebraic curves f(x, y) = 0
which are particular solutions of (1) containing a real closed oval which
is a limit cycle of (1). For quadratic systems, the existence of algebraic
limit cycles have been studied by Qin Yuan-Xun [22] when the invariant
curve is of second degree and by Yablonskii [24], Filiptsov [17], Shen
Boqian [23] and Chavarriga [4] when the invariant curve is of degree
four.

On the other hand, Evdokimenko [14, 15] and [16] has demonstrated
the nonexistence of a cubic invariant algebraic curve as a limit cycle
for quadratic systems.

The existence of invariant algebraic curves of differential systems is
considered by several authors. Druzhkova [13] formulate in terms of the
coefficients of the quadratic system necessary and sufficient conditions
for the existence and uniqueness of an algebraic curve of second degree.
Moreover, in [7] the authors obtain a complete affine classification of all
quadratic systems having a third degree irreducible algebraic solution.

Obviously, if the vector field has a rational first integral then all
their solutions are algebraic. However, only a few mathematicians have
worked with nonalgebraicity. In this sense it is interesting to note the
proof due to Odani [20] about the nonalgebraicity of the famous van
der Pol limit cycle and the generalization into a family of polynomial
Liénard systems. After this work, Zo�la̧dek in [27] almost completely
solves the problem of algebraic invariant curves and algebraic limit
cycles for polynomial Liénard systems of arbitrary degree. In general,
to show the nonalgebraicity of all solutions of some system (1) is a very
hard problem. For instance Jouanolou in [19] devotes a large section to
showing that one particular system has no algebraic solutions. Other
explicit examples of polynomial systems (1) without algebraic solutions
are presented by Zo�la̧dek in [26].

In this context a natural question, due originally to Poincaré [21], is
the following: For a fixed degree m ≥ 2, prove the existence of an upper
bound N(m) for the degrees of the irreducible algebraic solutions of all
polynomial systems (1) of degree m which do not have a rational first
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integral. Related partial results exist to this question. For instance:
Cerveau and Lins [3] have proved that if an algebraic solution only
possesses singularities of nodal type, i.e., ordinary double points, then
N(m) ≤ m + 2; Carnicer [2] showing that if the system does not
possesses dicritical singularities then N(m) ≤ m + 2. Recall that a
critical point is called dicritical if there are infinitely many invariant
curves of the system passing through it. Finally, Chavarriga and Llibre
[5] have proved that if the algebraic solution is not singular, i.e., it does
not have multiple points, then in the generic case we have N(m) ≤ m.
Moreover they prove that in the maximal case for which deg f = m+ 1
then the nonlinear polynomial system has a rational first integral of the
form H(x, y) = f(x, y)/Ldeg f (x, y) where L(x, y) = 0 is an invariant
straight line.

But recently Christhopher and Llibre [8] have demonstrated that
in general N(m) does not exist. In short they have given a family
of quadratic systems with irreducible invariant algebraic curves of
arbitrarily high degree without rational first integral. This result really
shows the difficulty of the problem.

The paper is organized as follows: In the second section we give the
main algorithmic result of the article referring to the intrinsic structure
of the arbitrary degree algebraic solutions of generic planar vector fields,
see Theorem 3. In the third and fourth sections we apply the ideas of
the above method to analyze in this context some examples such as the
van der Pol limit cycle and a limit cycle studied by Dolov. In short we
prove the nonalgebraicity of its solutions.

2. The main result. Let us suppose that system (1) has a
trajectory (not a singular point) whose path in the phase plane is
described implicitly by an algebraic curve f(x, y) = 0. It is clear that
the derivative of f with respect to time, along the orbits of system (1),
should be annulled on the algebraic curve f(x, y) = 0. On the other
hand, since this derivative is expressed as a polynomial in the variables
x and y, we are led directly to the following definition.

Definition 1. An invariant algebraic curve of system (1) is a set of
points in C

2 satisfying an equation f(x, y) = 0 where f is a polynomial
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in x and y and such that

(2) P
∂f

∂x
+ Q

∂f

∂y
= Kf ,

for some polynomial K(x, y) of degree less than or equal to m−1, called
cofactor.

Definition 2. Polynomial system (1) is degenerate at infinity if it
verifies xQm(x, y) − yPm(x, y) ≡ 0.

The name degenerate infinity is due to the fact that in the Poincaré
compactification of (1) all the equator of S2, i.e., the infinity, is filled
up of critical points. In other words, the line at infinity ceases to be
invariant for the foliation of the projective plane into phase curves.

Now we state the main theorem of this work.

Theorem 3. Assume that polynomial system (1) without degenerate
infinity possesses an invariant algebraic curve f(x, y) = 0 of degree
n with associated cofactor K(x, y) such that f(x, y) =

∑n
k=0 fk(x, y)

and K(x, y) =
∑m−1

k=0 Kk(x, y) are its developments in homogeneous
components. Then the polynomial sequence {f̃i(u)} with i = n, n −
1, . . . , 0, defined by f̃i(u) := fi(1, u), is recursively obtained from

(3) f̃i(u) =

∫
Λm−1+i(u)/Γ(u) exp

[∫
Γi(u)/Γ(u) du

]
du + Ci

exp
[∫

Γi(u)/Γ(u) du
] ,

where Ci are arbitrary real constants with Cn �= 0 and

(4) Γ(u) := Qm(1, u)−uPm(1, u), Γi(u) := iPm(1, u)−Km−1(1, u) ,

and

Λm−1+n(u) ≡ 0 ,(5)

Λm−1+i(u) :=
n−1−i∑

k=0

′
([

uPm+i−n+k(1, u) − Qm+i−n+k(1, u)
] df̃n−k(u)

du

(6)

+
[
Km−1+i−n+k(1, u) − (n−k)Pm+i−n+k(1, u)

]
f̃n−k(u)

)
,
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where the dash in the previous sum should be understood in the following
way: if the index of some term does not make sense then we take null
that term.

Proof. Since system (1) admits the invariant algebraic curve f(x, y) =
0 with cofactor K(x, y), from Definition 1 the following equation is
verified

ḟ =
( m∑

k=0

Pk(x, y)
)

∂

∂x

( n∑
k=0

fk(x, y)
)

+
( m∑

k=0

Qk(x, y)
)

∂

∂y

( n∑
k=0

fk(x, y)
)

=
( m−1∑

k=0

Kk(x, y)
)( n∑

k=0

fk(x, y)
)

,

where Pk, Qk, fk and Kk are homogeneous polynomials of degree k.

Equaling the homogeneous polynomials of same degree in both mem-
bers of the previous equation we have a sequence of linear partial dif-
ferential equations for the homogeneous components fi(x, y) of the in-
variant algebraic curve f = 0. More concretely this procedure gives,
for i = n, n − 1, . . . , 0, the next sequence of linear partial differential
equations

(7) Pm(x, y)
∂fi

∂x
+ Qm(x, y)

∂fi

∂y
− Km−1(x, y)fi = Λm−1+i(x, y) ,

where the independent terms Λm−1+i(x, y) are homogeneous polyno-
mials of degree m − 1 + i given by Λm−1+n ≡ 0 and

Λm−1+i =
n−1−i∑

k=0

′
(

Km−1+i−n+kfn−k − Pm+i−n+k
∂fn−k

∂x

− Qm+i−n+k
∂fn−k

∂y

)

for i = n − 1, n − 2, . . . , 0. Here the dash in the previous sum should
be understood as in the statement of the theorem.

Now, we make the change (x, y) → (w, u) where w = x and u = y/x
into equations (7). Taking into account the homogeneity of the involved
polynomials in such equations we have Pm(w, uw) = wmPm(1, u),
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Qm(w, uw) = wmQm(1, u), Km−1(w, uw) = wm−1Km−1(1, u) and
Λm−1+i(w, uw) = wm−1+iΛm−1+i(1, u). We define for sake of sim-
plicity the function Λm−1+i(u) := Λm−1+i(1, u). On the other hand,
by the chain rule we have that ∂/∂x = ∂/∂w − u/w∂/∂u and ∂/∂y =
1/w∂/∂u. Hence in the new variables (w, u), partial differential equa-
tions (7) become

wPm(1, u)
∂f∗

i

∂w
+ [Qm(1, u) − uPm(1, u)]

∂f∗
i

∂u
− Km−1(1, u)f∗

i

= wiΛm−1+i(u) ,

where f∗
i (w, u) := fi(w, uw) = wifi(1, u) = wif̃i(u). In consequence

∂f∗
i /∂w = iwi−1f̃i(u), ∂f∗

i /∂u = widf̃i(u)/du and the above partial
differential equations reduce to the following first order linear ordinary
differential equations

(8) Γ(u)
df̃i(u)

du
+ Γi(u)f̃i(u) = Λm−1+i(u) ,

where the coefficients Γ(u) and Γi(u) for i = n, n − 1, . . . , 0 are given
by (4) and the independent terms Λm−1+i(u) by (5) and (6).

Provided that Γ(u) �≡ 0, i.e., if system (1) does not have degenerate
infinity, the general solution of equation (8) adopts the form (3) where
Ci is an arbitrary real constant obtained due to the made quadrature.

Let us notice that in the case i = n, since Λm−1+n(u) ≡ 0 we
have f̃n(u) = Cn exp

(− ∫
Γn(u)/Γ(u) du

)
. Therefore Cn �= 0 because

f̃n(u) �≡ 0 and the theorem is proved.

In the proof of Theorem 3 the blow-up (x, y) → (x, u) is used where
u = y/x. Once we have determined the sequence {f̃i(u)}n

i=1 then
f(x, y) =

∑n
k=0 xkf̃k(y/x).

Remark 1. An interesting case arises when system (1) verifies Γ(u) ≡
0 or equivalently when it is degenerate infinity. Except for the Liénard
polynomial vector fields of [27], as far as we know in the literature,
nonlinear polynomial differential systems without algebraic solutions
are only known for degenerate infinity systems, see [19] and [26]. This
is just the opposite situation in which Theorem 3 can be applied in
order to show polynomial vector fields without any algebraic solution.
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Remark 2. Another special case in which we cannot obtain any
nonalgebraic condition for system (1) is when Γ(u) is a constant and
Γi(u) ≡ 0 for all i. This is the case for instance of the open problem
proposed by Zo�la̧dek in [27] related to the existence of algebraic limit
cycles in Liénard polynomial systems ẋ = y, ẏ = −f(x)y − g(x) with
deg f = 1 and deg g = 3.

Remark 3. Let us notice that we have not made any hypothesis
about the irreducibility of the polynomial f . Due to the fact that if
a polynomial system (1) has an invariant algebraic curve f = 0, then
f l = 0 is also an invariant algebraic curve for all natural numbers
l, we remark that the degrees of all invariant algebraic curves of a
given polynomial system (1) are not bounded. But, in particular, if
some expression f̃k(u) of (3) is not a polynomial, then we cannot only
conclude that the system does not have any algebraic solution of degree
greater than or equal to k but rather we can say that such a system
does not have any algebraic solution of degree j with j a divisor of k.

Remark 4. A simple corollary of Theorem 3 is the following one. Let
L(x, y) be a real or complex linear divisor of fn(x, y) with multiplicity
m1. Then L is a divisor of Γ(x, y) := xQm(x, y) − yPm(x, y) with
multiplicity m2. Moreover L is a divisor of xKm−1−nPm and yKm−1−
nQm with multiplicity m2 − 1.

3. The van der Pol’s oscillator. An important mathematical
model introduced by Lord Rayleigh in 1883 and afterwards investigated
by van der Pol more extensively when he studied the voltage in a triode
circuit is given by the cubic system

(9)
ẋ = P (x, y) = −y ,

ẏ = Q(x, y) = x − ε(x2 − 1)y .

It will be supposed that the parameter ε �= 0 because otherwise
equation (9) reduces to the harmonic oscillator being all their solutions
are algebraic, that is given by concentric circles in the phase plane. In
addition, it is well known that van der Pol equation (9) has a limit
cycle for ε �= 0.

This section is devoted to make, by using the ideas of Theorem 3, a
shorter proof of the following Odani’s result published in [20].
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Theorem 4 (Odani). The van der Pol equation with ε �= 0 does
not have any algebraic solution. In particular, its limit cycle is not
algebraic.

Proof. Assume that van der Pol equation (9) has an invariant
algebraic curve f(x, y) =

∑n
i=0 fi(x, y) = 0 of degree n with associated

cofactor K(x, y) =
∑2

i=0 Ki(x, y). Note firstly that system (9) is
invariant with respect to the central symmetry σ : (x, y) → (−x,−y).
Thus, we can assume that f = 0 is σ-invariant because otherwise we
take f · σ∗f = 0. It follows that the cofactor K is also σ-invariant, i.e.,
K = K0 + K2.

Because P3∂fn/∂x + Q3∂fn/∂y = K2fn where P3 ≡ 0 and Q3 =
−εx2y, it is clear that K2 = −kεx2 and fn = Cnxn−kyk for some
k ∈ N. We will assume Cn = 1. Introduce now the operator
L = Q3(x, y)∂/∂y − K2(x, y) = −εx2y∂/∂y + kεx2. Then we get the
recursive equations

(10) Lfj =
(

K0 + y
∂

∂x
− (x + εy)

∂

∂y

)
fj+2 .

Since both members of (10) are homogeneous polynomials of degree
j + 2 and L acts on the monomials as Lxiyj = (k− j)εxi+2yj it follows
that one necessary condition for the solvability of (10) is the vanishing
of the coefficient before xj−k+2yk in the expansion of the righthand
side of (10). In particular, for j = n − 2 we find

Lfn−2 = (K0−kε)xn−kyk + (n−k)xn−k−1yk+1 − kxn−k+1yk−1 .

Thus K0 = kε and, similar quadratures as in Theorem 3 gives fn−2 =
Cn−2x

n−2−kyk + (k − n/ε)xn−k−3yk+1 − (k/ε)xn−k−1yk−1 for a con-
stant Cn−2. At this point we see also that n ≥ 4. Next, by (10) with
j = n − 4 we obtain

Lfn−4 =
n

ε
xn−2−kyk + · · · ,

where · · · means other monomials. Hence we have a contradiction for
the solvability of fn−4 because n �= 0.
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4. Dolov’s limit cycle is not algebraic. In [12], Dolov considers
the cubic system

(11) ẋ = −y + x2(−1 + ε + y) + y2, ẏ = x(1 − x2) ,

where ε ∈ R. Notice that the phase portrait of Dolov’s system is
symmetric with respect to the y-axis. Moreover, in the semi-plane
x ≥ 0 it has for ε = 0 the following critical points: a center at (0, 0)
due to their symmetry, two saddles at (1,−1) and (0, 1) and a first
order stable weak focus at (1, 1). Taking into account the direction of
the vector field associated to (11) on the line segment that joins the
points (1,−1) and (0, 1) and by using the Dulac function

B(x, y) =
(

2y + (1 −
√

2)x2 + 1 +
√

2
)2/(

√
2−1)

exp
(

y − 1
1 −√

2

)
,

one can assert that there are no limit cycles for x > 0.

If in Dolov’s system we take 0 < ε � 1 then the focus (1,
√

1 − ε)
changes its stability and hence, by a Hopf’s bifurcation, system (11)
has a unique limit cycle around (1,

√
1 − ε). We will call such a limit

cycle Dolov’s limit cycle and we have the following result.

Theorem 5. Dolov’s limit cycle (11) is not algebraic.

Proof. Let us assume that the limit cycle of (11) is contained in a
real oval of an invariant algebraic curve f(x, y) =

∑n
i=0 fi(x, y) = 0 of

degree n with associated cofactor K(x, y) =
∑2

i=0 Ki(x, y).

Let X = P (x, y)∂/∂x+Q(x, y)∂/∂y with P (x, y) = −y+x2(−1+ε+
y) + y2 and Q(x, y) = x(1 − x2) be the vector field associated to (11).
Since P (−x, y) = P (x, y) and Q(−x, y) = −Q(x, y) we observe that
Dolov’s system (11) is time-reversible, i.e., it is invariant with respect
to the change (x, y, t) → (−x, y,−t). This implies that the axis x = 0
is a symmetry axis of their phase portrait. In consequence we can
assume that the invariant curve f(x, y) = 0 is symmetric with respect
to the variable x, that is, f(−x, y) = f(x, y). Hence, from (2), the
cofactor K must be anti-symmetric with respect to x. This leads to
K(x, y) = ax+bxy. With the notation of the second section, Γ(x, y) :=
xQ3(x, y)−yP3(x, y) = −x2(x2+y2), xK2(x, y)−nP3(x, y) = (b−n)x2y



TRANSCENDENTAL LIMIT CYCLES 511

and yK2(x, y)−nQ3(x, y) = x(nx2 + by2). So by Remark 4 and taking
into account the symmetry of f we have fn(x, y) = x2k(x2 + y2)n̄

modulo a multiplicative constant and K(x, y) = ax + 2kxy. Of course
n = 2(k + n̄).

Before proving the existence results based on the ideas of Theorem 3,
we pass to the classification of invariant algebraic curves of (11) ac-
cording to their asymptotic behavior. After a suitable blowing-up of
singular points at infinity, we obtain a resolved vector field with some
new singular points and then we apply the theory of normal forms to
study phase curves near each of these points. More concretely, Dolov’s
field (11) has three singularities at infinity, namely, (0 : 1 : 0) and
(1 : ±i : 0) in the complex projective plane CP2. We will study the
point (0 : 1 : 0). Using the chart v = x/z, z = 1/y, system (11)
becomes

ż = zv(v2 − z2), v̇ = v2(1 + v2) + z(1 + (ε − 2)v2) − z2(1 + v2)
= z + v2 + · · · .

So, the point (z, v) = (0, 0) is a nilpotent singularity which needs
further resolution. To do this we perform the change z = wv2 which
gives

v̇ = v(w + 1) + · · · , ẇ = 2w(w + 1) + v3(1 + · · · ) ,

and we observe a saddle-node singularity (of codimension 2) at the
new singular point (v, w) = (0,−1). As any other saddle-node this
one has at most two analytic separatrices which are v = 0 (strong)
and w = −1 + O(v) (center, which may be only formal). In short the
separatrix we are looking for is w = z/v2 = y/x2 ≈ −1 and intersects
the line at infinity with multiplicity 2. Therefore, it is clear from this
analysis that, for system (11), at most one finite analytic separatrix can
pass through the singular point (0 : 1 : 0) and, if so, then it is of the
form x2 + y + · · · = 0 as x, y tend to infinity. This computation shows
that, the highest degree homogeneous part fn of an invariant algebraic
curve of (11) is fn(x, y) = x2k(x2 + y2)n̄ with k ∈ {0, 1}.
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Using polar coordinates x = r cos ϕ, y = r sin ϕ, we write the Dolov’s
field as follows

X = (1 − x2)
(

x
∂

∂y
− y

∂

∂x

)
+ [(ε − 1)x2 + y2]

∂

∂x

= (1 − x2)
∂

∂ϕ
+ (r2 + δx2)

∂

∂x
,

where δ := ε − 2. Defining the differential operator L = −x2∂/∂ϕ −
2kxy, the next homogeneous component fn−1(x, y) of f verifies the
following equation

Lfn−1 = axfn − (r2 + δx2)
∂fn

∂x
= r2(n̄+k)+1Ω(ϕ) ,

where Ω(ϕ) := −2k cos2k−1 ϕ+(a−2n̄−2kδ) cos2k+1 ϕ−2n̄δ cos2k−3 ϕ.
Since fn−1(x, y) = rn−1f̃n−1(ϕ) = r2(k+n̄)−1f̃n−1(ϕ) with f̃n−1 a
trigonometric polynomial, the above equation leads to the next linear
ordinary differential equation

df̃n−1

dϕ
+ 2k

sin ϕ

cos ϕ
f̃n−1 = − Ω(ϕ)

cos2 ϕ
,

which solution is

f̃n−1(ϕ) = cos2k ϕ

∫ [
2k

cos3 ϕ
− a − 2n̄ − 2kδ

cos ϕ
+ 2n̄δ cos ϕ

]
dϕ .

Due to the fact that d [sin ϕ/ cos2 ϕ]/dϕ = 2/ cos3 ϕ − 1/ cos ϕ and∫
1/ cos ϕ dϕ are not trigonometric, the necessary condition to get

f̃n−1(ϕ) a trigonometrical polynomial is a − 2n̄ − 2kδ = k, that is,

(12) a = 2n̄ + (2δ + 1)k .

In short we have

fn−1(x, y) = r2(n̄−1)x2(k−1)y(kr2 + 2δn̄x2) .

A new step gives that fn−2(x, y) satisfies the next equation

Lfn−2 = axfn−1 − ∂fn

∂ϕ
− (r2 + δx2)

∂fn−1

∂x

= r2(k+n̄) cos2k−3 ϕ sin ϕΨ(ϕ) ,
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where Ψ(ϕ) := A + B cos2 ϕ + C cos4 ϕ + D cos6 ϕ and A, B, C, D are
real constants. In particular, and due to (12), we have

(13) C = 4n̄δ .

Taking fn−2(x, y) = r2(k+n̄)−2f̃n−2(ϕ) with f̃n−2 a trigonometric poly-
nomial, we get that f̃n−2(ϕ) verifies the linear ordinary differential
equation of first order

df̃n−2

dϕ
+ 2k

sin ϕ

cos ϕ
f̃n−1 = − cos2k−5 ϕ sin ϕΨ(ϕ) .

The solution is given by

f̃n−2(ϕ) = − cos2k ϕ

∫
cos−5 ϕ sin ϕΨ(ϕ) dϕ

= − cos2kϕ

∫ [
A

sin ϕ

cos5 ϕ
+B

sin ϕ

cos3 ϕ
+C

sin ϕ

cos ϕ
+D sin ϕ cos ϕ

]
dϕ,

and is a trigonometric polynomial if and only if C = 0, i.e., either
n̄ = 0 or δ = 0. The latter case δ = 0 is away from the Hopf bifurcation,
2 < δ � 3, where the Dolov limit cycle is well established. Nevertheless
one easily checks that, for δ = 0, the only real singular points of (11)
lie in the symmetry axis x = 0 and so there are no limit cycles.

In the case n̄ = 0 the degree n of the invariant algebraic curve
f = 0 must be n = 2 and in addition it is a parabola of the form
f(x, y) = x2 + y + cte = 0 which of course cannot contain any limit
cycle. Hence the theorem is proved.
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