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THE REPRESENTATIONS OF D1

MANOUCHEHR MISAGHIAN

ABSTRACT. In this paper we construct explicitly all irre-
ducible representations of the norm one elements group in the
quaternion division algebra over a local p-field where p is an
odd prime number.

1. Introduction and notation. In this paper we will construct
explicitly all irreducible representations of D1, the norm one elements
group of D, where D is the quaternion division algebra over a local
p-field for an odd prime number p. Our motivation for finding repre-
sentations of D1, in addition to its own interest, is that they are needed
to construct the representations of U (2), the nonsplit unitary group in
two variables, in relation to the reductive dual pair (U (1) , U (2)) in
the symplectic group Sp (4). Some authors have studied the represen-
tations of division algebras in general [1]. Here we will be using the
method used by Manderscheid [10] to construct the representations
of SL (2), to parametrize explicitly the representations of D1. This
method was briefly outlined, without details or proofs in [11]. We pro-
vide here the details and the proofs, getting the explicit inducing data
in [11]. Although influenced by [1], this data does not follow from [1].

This paper consists of three sections. The first section is devoted to
the basic results about the structure of D1, its normal subgroups and
their characters. In the second section we find all representations of D1

whose dimensions are bigger than one. Finally in the last section after
constructing all one-dimensional representations of D1 we state and
prove Theorem 3.5 which formalizes all the results obtained in Sections
2 and 3.

Let F be a non-Archimedean local p-field where p is an odd prime.
Let O = OF be the ring of integers of F , and let � be a generator of
the maximal ideal P = PF in O = OF . Let k = kF denote the residual
class field O�P , and let q be the cardinality of k.
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Let D be the quaternion division algebra over F with the involution
x → x̄, x ∈ D. Let Tr = TrD/F denote the reduced trace map from
D to F , and let ν = νD/F denote the reduced norm map from D
to F defined by ν (x) = xx̄ and Tr (x) = x + x̄, x ∈ D. Also let
OD denote the ring of integers in D, PD the maximal ideal in OD,
and let k = kD = OD �PD denote the residual class field of D. We
will denote by vD (x) the order of x in D, and we will normalize the
absolute value | |D on D so that | x |D= q−2vD(x). Let π be the prime
element in OD generating PD and π2 = �. For any integer r, P r

D

is defined as P r
D = {x ∈ D | x = aπr , for some a ∈ OD}. P r in F is

defined in the same manner. Let D◦ denote trace zero elements in D,
and let OD◦ denote trace zero elements in OD. Let χ be a nontrivial
character of F+ of conductor O. The conductor of a character of F+

is the smallest integer n for which the character is trivial on Pn. Let
D1 = {x ∈ D | ν (x) = 1}. Then D1 is a multiplicative group and we
will call it the norm one elements group of D. For any positive integer
r, set

D1
r =

{
x ∈ D1 | x = 1 + aπr, for some a ∈ OD

}
.

Then one can check that, for any positive integer r, D1
r is a normal

subgroup of D1.

Lemma 1.1. Let PD◦ = OD◦ ∩ PD. Then we have |OD◦�PD◦ | = q.

Proof. Define f : k → OD◦�PD◦ by f (a+ PD) = a − ā + PD◦ . As
one can check, f is well defined, f is onto by Hilbert’s 90, and its kernel
is k, so

k�k ∼= OD◦�PD◦ ,

which implies that

|OD◦�PD◦ | = |k�k|

=
q2

q

= q.
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Lemma 1.2. Let a be a unit in OD and r a positive integer. Then
there exists a unit in OD, b say, such that ν (b) = 1 and b ≡ a

(mod P r
D) if and only if ν (a) ≡ 1 (mod P [(r+1)/2]

F ), where [ ] is the
greatest integer part.

Proof. Let ν (a) ≡ 1 (mod P [(r+1)/2]
F ). Then since ν (1 + P r

D) =
1 + P

[(r+1)/2]
F , there exists g ∈ 1 + P r

D such that ν (g) = ν (a).
Now set b = ag−1. Then one can show that b is what we are
looking for. Conversely, let there be an element b with the above
mentioned properties. Thus a−1b ≡ 1 (mod P r

D), and ν
(
a−1b

) ≡ 1
(mod P [(r+1)/2]

F ). From

ν
(
a−1

)
= ν

(
a−1

)
ν (b)

= ν
(
a−1b

)
≡ 1 (mod P [(r+1)/2]

F )

we get the result ν (a) ≡ 1 (mod P [(r+1)/2]
F ).

Lemma 1.3. Let all notation be as before. Then we have:

1. If r is even, then
∣∣D1

r�D
1
r+1

∣∣ = q.

2. If r is odd, then
∣∣D1

r�D
1
r+1

∣∣ = q2.

Proof. 1. Define f : D1
r → k = OD�PD by:

f (1 + aπr) = a+ PD.

Then one can check that f is a homomorphism. Obviously ker f =
D1

r+1. Now let a ∈ OD, then 1 + aπr is a unit, so by Lemma 1.2 there
exists b ∈ OD such that ν (b) = 1 and b ≡ (1 + aπr) (mod P r+1

D ) if
and only if ν (1 + aπr) ≡ 1 (mod P [(r+1)/2]

F ). But this condition is the
same as:

ν (1 + aπr) = (1 + aπr) (1 + āπr)

= 1 + Tr (a)�r/2 + ν (a)�r

= 1 + λ�[(r+1)/2], for some λ ∈ OD.
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This equality implies that � must divide Tr (a), i.e., Im f = OD◦�PD

which is isomorphic to OD◦�PD◦ . Thus

D1
r�D

1
r+1

∼= OD◦�PD◦ .

Now apply Lemma 1.1.

2. Define f : D1
r → k = OD�PD by:

f (1 + aπr) = a+ PD.

By part 1, f is a homomorphism with ker f = D1
r+1. Now we will show

that f is onto. Let a ∈ OD. Then 1 + aπr is a unit and because r is
odd we have

ν (1 + aπr) ≡ 1 (mod P [(r+1)/2]
F )

≡ 1 (mod P [(r+2)/2]
F ).

Thus by Lemma 1.2 there exists b ∈ OD such that ν (b) = 1 and
b ≡ (1 + aπr) (mod P r+1

D ). From here we get f (b) = a+PD, i.e., f is
onto, and

D1
r�D

1
r+1

∼= k = OD�PD.

Thus
∣∣D1

r�D
1
r+1

∣∣ = |k| = q2.

Lemma 1.4. Let h and h′ ∈ D1, and let n be any positive integer.
Then h ≡ h′ (mod D1

n) if and only if h− h′ ∈ Pn
D.

Proof. Let h ≡ h′ (mod D1
n), so h = h′ (1 + δπn) for some δ ∈ OD.

From here we get h − h′ = δπn ∈ Pn
D. Conversely let h − h′ ∈ Pn

D, so
h− h′ = δπn, for some δ ∈ OD. From here we get

h = h′ + δπn = h′
(
1 + (h′)−1

δπn
)
.

Since h and h′ have norm one so does 1+(h′)−1
δπn i.e.,

(
1+(h′)−1

δπn
)

∈ D1
n.

Lemma 1.5. Let n and r be two positive integers with n/2 ≤ r < n,
and set P r

D◦ = OD◦ ∩P r
D. Then we have:

P r
D◦�Pn

D◦ ∼= D1
r�D

1
n.
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Proof. Let aπr ∈ P r
D◦ . Define Cayley transformation C : P r

D◦ →
D1

r�D
1
n as follows:

C (aπr) =
1 − aπr

1 + aπr
D1

n.

Then C is a homomorphism because by expanding (1−aπr)/(1+aπr)D1
n

and using Lemma 1.4 we get

C (aπr) = 1 − 2aπr (mod Pn
D).

From here we have

C (aπr + bπr) = C ((a+ b) πr)
= 1 − 2 (a+ b) πr (mod Pn

D)

=
1 − (a+ b) πr

1 + (a+ b) πr
D1

n

and

C (aπr)C (bπr) = (1 − aπr) (1 − bπr) (mod Pn
D)

= 1 − (a+ b)πr (mod Pn
D)

= C ((a+ b)πr)

=
1 − (a+ b)πr

1 + (a+ b)πr
D1

n,

i.e., C (aπr + bπr) = C (aπr)C (bπr). To show that C is onto, let
y = 1 + bπr ∈ D1

r and take x = −(b/2)πr (mod Pn
D). Then one can

check that C (x) = y and, further,

Tr (x) = − b
2
πr + − b

2
πr

= 0 (mod Pn
D)

because, since ν (y) = ν (1 + bπr) = 1 + Tr (bπr) + ν (bπr) = 1, we
deduce that (Tr (bπr) + ν (bπr)) /2 = 0 and ν (bπr) ∈ Pn

D. Therefore
the result is obtained.

For any positive integer, r say, set P−r
D = {aπ−r | a ∈ OD} and

P−r
D◦ = P−r

D ∩OD◦ .
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Lemma 1.6. For any positive integer, r say, we have:

1. P−2r
D◦ �P−2r+1

D◦ ∼= OD◦�PD◦ .

2. P−(2r+1)
D◦ �P−2r

D◦ ∼= OD�PD.

Proof. 1. Define f : P−2r
D◦ → OD◦�PD◦ as follows:

f
(
aπ−2r

)
= a+ PD◦

f is well-defined because aπ−2r is traceless so a must be traceless, too.
And one can check that:

ker f =
{
aπ−2r | a ∈ PD◦

}
= P−2r+1

D◦ .

f is onto because for any a ∈ OD◦ , aπ−2r is also traceless and is in
P−2r

D◦ with f
(
aπ−2r

)
= a+ PD◦ .

2. Define f : P−(2r+1)
D◦ → OD�PD as follows:

f
(
aπ−(2r+1)

)
= a+ PD

one can show ker f = P−2r
D◦ . f is onto because for a ∈ OD, we can write

a = a◦ + a1π, for some a◦ and a1 in the maximal unramified quadratic
extension of F contained in D. Then one can check that Tr (a◦π) = 0
and f

(
a◦π−(2r+1)

)
= a◦ + PD = a+ PD.

Definition 1.1. Let r be a positive integer, and let ϕ be a character
of D1

r . The conductor of ϕ is the smallest integer, l say, for which ϕ is
trivial on D1

l .

Lemma 1.7. Let α ∈ D◦, with υ (α) = −( n+1) where n is a positive
integer. Let r be an integer with (n/2) ≤ r < n. Define χα : D1

r → C×

by
χα (h) = χ (Tr (α (h− 1))) , h ∈ D1

r .

Then χα is a character of D1
r , with conductor equal to n.

Proof. Let h1 = 1 + a1π
r and h2 = 1 + a2π

r, then

h1h2 = 1 + (a1 + a2)πr + a1π
ra2π

r.
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Now since r ≥ (n/2) a1π
ra2π

r is in Pn
D. Thus Tr (a1π

ra2π
r) ∈ OD

and

χα (h1h2) = χ (Tr (α (a1 + a2)πr))
= χ (Tr (αa1π

r))χ (Tr (αa2π
r))

= χα (h1)χα (h2) .

To show that the conductor is n, note that one can show that h is in
the conductor if and only if Tr (α (h− 1)) ∈ O. Since ramification of
D is 2, this condition is the same as α (h− 1) ∈ P−1

D [16]. From here
we get h− 1 ∈ Pn

D. Thus h ∈ (1 + Pn
D) ∩D1

r = D1
n.

Lemma 1.8. Notation is as in Lemma 1.7. The character χα is
trivial on D1

r if and only if χ (Tr (αy)) = 1, for any y ∈ P r
D.

Proof. If χ (Tr (αy)) = 1, for any y ∈ P r
D, then it is clear that χα is

trivial on D1
r . Now suppose conversely that χα is trivial on D1

r , and
let y ∈ P r

D. Then (1 + y)/(1 + ȳ) ∈ D1
r , and one can show that there

exists z ∈ P 2r
D such that

1 + y

1 + ȳ
= 1 + y − ȳ + z.

From here we get

(1)
1 = χα

(
1 + y

1 + ȳ

)
= χ (Tr (α (y − ȳ))) .

On the other hand, since y + ȳ ∈ F and Tr (α) = 0, we have

(2) χ (Tr (α (y + ȳ))) = 1.

From (1) and (2) we will get χ (Tr (2αy)) = 1. Now since 2 is a unit,
we have the result.

Proposition 1.9. Let n be a given positive integer and let r =
[(n+ 1)/2], where [ ] denote the greatest integer part function. Any
character of D1

r is in the form χα for some α ∈ D◦.
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Proof. Define Λ : P−(n+1)
D◦ → (

D1
r�D

1
n

)∧ by Λ (α) = χα where ( )∧

denote the Pontryagin dual. One can show that Λ is a homomorphism.
Using Lemma 1.8 we get:

ker Λ =
{
α ∈ D◦ | χα (h) = 1, ∀h ∈ D1

r

}
= {α ∈ D◦ | χ (Tr (αy)) = 1, ∀ y ∈ P r

D}
= P−1−r

D .

Now since D1
r�D

1
n is finite abelian; thus, the cardinality of

(
D1

r�D
1
n

)∧,∣∣∣(D1
r�D

1
n

)∧∣∣∣, is equal to
∣∣D1

r�D
1
n

∣∣. Now Lemmas 1.3, 1.5 and 1.6
complete the proof.

Lemma 1.10. Let α ∈ D◦, and let E = F (α). Set

E′ = {x ∈ D | Tr (xy) = 0, ∀ y ∈ E} .

Then OD = OE ⊕O′
E where O′

E = OD ∩E′.

Proof. Let x ∈ OE ∩ O′
E. Then Tr (x) = Tr

(
x2

)
= 0. From

here we deduce that x = 0. Now let x ∈ OD, and set: x1 =
Tr (x) /2 + (Tr (xα) /2)α−1, and x2 = x − x1. Then one can check
that x1 ∈ OE , x2 ∈ O′

E , and x = x1 + x2.

Remark 1.1. The following result for GL(n) can be found in [5]. We
state and prove it here in our notation and our case (division algebra).

Lemma 1.11. Let β ∈ D◦, β 
= 0, with β = επm, where ε is a unit
and m is an integer. Let E = F (β). Set

O′
Eπ

m = {xπm | x ∈ O′
E} .

Define adβ : O′
E → O′

Eπ
m as follows:

adβ (x) = βx− xβ, x ∈ O′
E .

Then adβ is onto.
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Proof. Since βx − xβ =
(
βxβ−1 − x

)
β ∈ O′

Eπ
m if and only if(

βxβ−1 − x
) ∈ O′

E, it is enough to show that γ : O′
E → O′

E , defined
by γ (x) = βxβ−1 − x is onto. Let Γ : E′ → E′ be defined by
Γ (x) = βxβ−1 − x. It is easy to show that Γ is an E-linear map.
Since E = F (β) is a quadratic extension, we may realize D as the
cyclic algebra (E, σ, α) where α is an element in F× which is not in
the image of the norm map νE/F from E to F and σ is the nontrivial
element of the Galois group G (E/F ), see, e.g., [16]. In particular, there
exist δ ∈ D× such that

δβδ−1 = σ (β) = β̄ = −β
and δ2 = α, and {1, δ} is a basis for D over E. From here, we have

γ (δ) = −2δ.

So the eigenvalues of Γ and its determinant are units. Thus Γ and γ
are onto as desired.

Proposition 1.12. Let α ∈ D◦ with υ (α) = − (n+ 1), where n is a
positive integer, and let r be a positive integer with n/2 ≤ r < n. Let
χα be a character of D1

r defined as in Lemma 1.7. Let D1 act on
(
D1

r

)∧
by conjugation. Then the stabilizer of χα in D1 is E1D1

n−r where E1

is the norm one elements group of E = F (α).

Proof. Let h ∈ D1 be in the stabilizer of χα in D1. Write h = 1 + y
and h−1 = 1+ z, for some y, and z ∈ OD. Here h−1 denote the inverse
of h. Then for any hr = (1 + x) ∈ D1

r we must have:

χα

(
h−1hrh

)
= χα (hr) ,

which is the same as:

χ
(
Tr

(
α

(
h−1hrh− 1

)))
= χ (Tr (α (hr − 1)))

or

χ
(
Tr

(
αh−1xh

))
= χ (Tr (αx))

= χ
(
Tr

(
αxhh−1

))
= χ

(
Tr

(
h−1αxh

))
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and this is the same as:

χ
(
Tr

((
αh−1 − h−1α

)
xh

))
= 1

or
χ

(
Tr

(
h

(
αh−1 − h−1α

)
x
))

= 1.

Now since h is a unit and Tr induces a nondegenerate bilinear form we
must have: (

αh−1 − h−1α
)
x ≡ 0 (mod P−1

D ) ∀x ∈ P r
D,

which is the same as:(
αh−1 − h−1α

) ≡ 0 (mod P−1−r
D ).

Now note that
(
αh−1 − h−1α

)
= αz − zα = 0 if and only if z ∈ E.

Using Lemma 1.10, we can write z = z1 + z2, for some z1 ∈ OE , and
z2 ∈ O′

E . Then we have:(
αh−1 − h−1α

)
= αz − zα

= αz2 − z2α.

Now by Lemma 1.11 there exists z3 ∈ O′
E , such that αz2−z2α = αz3−

z3α. On the other hand, since αz2−z2α ∈ P−1−r
D and υ (α) = −(1+n),

thus υ (z3) = n− r. Now we have:

αz2 − z2α = αz3 − z3α,

which is the same as:

α (z2 − z3) = (z2 − z3)α.

This gives us (z2 − z3) ∈ OE . But we know that (z2 − z3) ∈ O′
E , hence

(z2 − z3) = 0, i.e. z2 = z3 ∈ Pn−r
D . From here we get:

h−1 = 1 + z

= 1 + z1 + z2

= (1 + z1)
(
1 + (1 + z1)

−1 z2

)
,
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which is an element in E1D1
n−r. Now since E1D1

n−r obviously is
contained in the stabilizer, we have the result.

Lemma 1.13. Let E�F be an unramified quadratic extension of F .
Let n and r be two positive integers with n/2 ≤ r < n. If r is even,
then: (

E1D1
r

)
�D1

n =
(
E1D1

r+1

)
�D1

n.

Proof. Let k′ denote the residual class field of E. Then, since E�F is
unramified, k′ = k. Now let h = (1 − aπr)/(1 + aπr)D1

n be an element
of D1

r�D
1
n. Write a = a◦ + a1π where a◦, a1 ∈ OE . Now we have:

h =
1 − aπr

1 + aπr
D1

n =
1 − (a◦ + a1π)πr

1 + (a◦ + a1π)πr
D1

n

=
1 − (a◦ + a1π)πr

1 + (a◦ + a1π)πr
· 1 + (a◦ + a1π)πr

1 − (a◦ + a1π)πr

× 1 + (a◦ + a1π)πr + a◦a1π
2r+1

1 − (a◦ + a1π)πr + a◦a1π2r+1
D1

n

=
1 − a◦πr

1 + a◦πr
· 1 − a1π

r+1

1 + a1πr+1
D1

n.

Since a◦πr ∈ E from the last equality we get:

E1h = E1 1 − a◦πr

1 + a◦πr
· 1 − a1π

r+1

1 + a1πr+1
D1

n

= E1 1 − a1π
r+1

1 + a1πr+1
D1

n.

Thus (
E1D1

r

)
�D1

n ⊂ (
E1D1

r+1

)
�D1

n.

Since we always have(
E1D1

r+1

)
�D1

n ⊂ (
E1D1

r

)
�D1

n;

thus, the result.

Lemma 1.14. For any character χα of D1
r there is a character ϕα

of E1D1
r such that ϕα|D1

r
= χα.
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Proof. χα|E1∩D1
r

is a character of E1∩D1
r as a subgroup of E1. Thus

there exists ϕ ∈ (
E1

)∧ such that χα|E1∩D1
r

= ϕ|E1∩D1
r
. Now define

ϕα : E1D1
r → C×

by
ϕα (eh) = ϕ (e)χα (h) , e ∈ E1, h ∈ D1

r .

Then one can check that ϕα is a well-defined character and that
ϕα|D1

r
= χα.

Remark 1.2. Since ϕ in above lemma is not unique, we set:

Φ (α) =
{
ϕ ∈ (

E1
)∧ | ϕ = χα on E1 ∩D1

r

}
.

Thus for any ϕ ∈ Φ (α) we have a character ϕα of E1D1
r such that

ϕα|D1
r

= χα.

Lemma 1.15. Let n be a positive odd integer such that r = (n+ 1)/2
is even. Set:

Hr−1 =
{
x ∈ D1

r−1 �D1
n | x =

1 − aπr−1

1 + aπr−1
D1

n, a ∈ O = OF

}
.

Then Hr−1 is a subgroup of D1
r−1 �D1

n.

Proof. Let h, h′ ∈ Hr−1. By Lemma 1.4 we can write:

(3) h =
1 − aπr−1

1 + aπr−1
D1

n ≡ 1 − 2aπr−1 + 2a2π2(r−1) (mod Pn
D)

and

h′ =
1 − a′πr−1

1 + a′πr−1
D1

n ≡ 1 − 2a′πr−1 + 2a′2π2(r−1) (mod Pn
D)

for some a and a′ ∈ O. Then we have

hh′ ≡ 1 − 2 (a+ a′)πr−1 + 2 (a+ a′)2 π2(r−1) (mod Pn
D)

=
1 − (a+ a′) πr−1

1 + (a+ a′) πr−1
D1

n.
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Thus hh′ ∈ Hr−1.

Lemma 1.16. Let Hr−1 be as in Lemma 1.15. Then, for h and
h′ ∈ Hr−1, we have h = h′ if and only if a− a′ ∈ P

r/2
F .

Proof. Let:

h ≡ 1 − 2aπr−1 + 2a2π2(r−1) (mod Pn
D)

and

h′ ≡ 1 − 2a′πr−1 + 2a′2π2(r−1) (mod Pn
D).

be two elements in Hr−1. Then we have

h− h′ = −2 (a− a′)πr−1 + 2
(
a2 − a′2

)
π2(r−1) ∈ Pn

D

From here we get

−2 (a− a′) + 2
(
a2 − a′2

)
πr−1 ∈ P r

D.

Thus πr−1 | (a− a′). So (a− a′) ∈ P r−1
D ∩O = P

r/2
F .

Lemma 1.17. Let n, r, and Hr−1 be as in Lemma 1.15. Then
|Hr−1| = qr/2.

Proof. Define f : Hr−1 → O/P
r/2
F by f (h) = a + P

r/2
F for any

h = 1 − aπr−1/1 + aπr−1D1
n ∈ Hr−1. Then by Lemma 1.16, f is well

defined and, by Lemma 1.15, f is a homomorphism. Obviously f is
onto with ker f = {1}. Thus, |Hr−1| =

∣∣∣O/P r/2
F

∣∣∣ = qr/2.

Lemma 1.18. The notation is as in Lemma 1.15. Then we have(
D1

r/D
1
n

) ∩Hr−1 =
{
h =

1 − aπr−1

1 + aπr−1
D1

n | a ∈ P = PF

}
.

Proof. Let h ∈ (
D1

r/D
1
n

) ∩Hr−1. Then for some a and b ∈ O = OF

we have:

h =
1 − aπr−1

1 + aπr−1
D1

n = (1 + bπr)D1
n.
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Thus
1 − aπr−1

1 + aπr−1
≡ (1 + bπr) (mod Pn

D).

From here one can show that π | a, so a ∈ P = PF .

Lemma 1.19. The notation is as in Lemma 1.15. Set Dr−1 =(
D1

r/D
1
n

)
Hr−1. Then Dr−1 is a subgroup of D1

r−1/D
1
n.

Proof. This is true because D1
r/D

1
n and Hr−1 are subgroups of

D1
r−1/D

1
n, and D1

r/D
1
n is normal in D1

r−1/D
1
n.

Lemma 1.20.
∣∣(D1

r/D
1
n

) ∩Hr−1

∣∣ = q(r/2)−1.

Proof. The same map and argument as in Lemma 1.17 work.

If G is a group and G1 and G2 are subgroups of G, write [G : G1] for
the number of left G1-cosets in G and [G1 : G : G2] for the number of
(G1, G2)-double cosets in G.

Lemma 1.21. Notations are as above. We have[
Dr−1 : D1

r/D
1
n

]
=

[
D1

r−1/D
1
n : Dr−1

]
= q.

Proof. By definition we have

[
Dr−1 : D1

r/D
1
n

]
=

|Dr−1|
|D1

r/D
1
n|

=

∣∣D1
r/D

1
n

∣∣ · |Hr−1| /
∣∣D1

r/D
1
n ∩Hr−1

∣∣
|D1

r/D
1
n|

= q.

Similar computations work for the second part.

Lemma 1.22. Let E1
1 = F× (1 + PE)∩E1. Then, for any h ∈ Hr−1

and any λ ∈ E1
1 , we have hλh−1 ∈ (

E1
1D

1
r

)
/D1

n.
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Proof. Let:

h ≡ 1 − 2aπr−1 + 2a2π2(r−1) (mod Pn
D) ∈ Hr−1.

Since ν (h) = 1, so h−1 = h̄. Thus we have:

h−1 = h̄

≡ 1 + 2aπr−1 + 2a2π2(r−1) (mod Pn
D).

Now, for λ = f + eπ2 ∈ E1
1 , f ∈ O, e ∈ OE , we have:

hλh−1 = λ− 2aēπr+1

≡ λ
(
1 − 2aēλ̄πr+1

)
(mod Pn

D).

From here we get:

hλh−1 ∈ (
E1

1D
1
r+1

)
/D1

n ⊂ (
E1

1D
1
r

)
/D1

n.

Corollary 1.23. E1
1Dr−1 =

(
E1

1D
1
r

)
/D1

n is a subgroup of(
E1D1

r−1

)
/D1

n.

Lemma 1.24. Let α and χα be as in Lemma 1.7. Then for any
h ∈ Hr−1 ∩

(
D1

r/D
1
n

)
we have χα (h) = 1.

Proof. Let h ∈ Hr−1 ∩
(
D1

r/D
1
n

)
. Then, as a result of Lemma 1.18,

we can write

h ≡ (
1 − 2aπr+1 + 2a2π2(r+1)

)
(mod Pn

D), for some a ∈ O.

From here and by definition of χα we have

χα (h) = χ (Trα (h− 1))

= χ
(
Tr

( − 2αaπr+1
))
χ

(
Tr

(
2αa2π2(r+1)

))
= χ(0)χ(0)
= 1.
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Lemma 1.25. Let α and ϕα be as in Lemma 1.14. Define

ϕ̃α :
(
E1

1D
1
r/D

1
n

)
Hr−1 −→ C×

by
ϕ̃α (γh) = ϕα (γ) , ∀ γ ∈ (

E1
1D

1
r

)
/D1

n, ∀h ∈ Hr−1.

Then ϕ̃α is a character of
(
E1

1D
1
r/D

1
n

)
Hr−1.

Proof. From Lemma 1.24 one can check that ϕ̃α is well defined.
Moreover ϕ̃α is a homomorphism because for any γh and γ′h′ ∈(
E1

1D
1
r/D

1
n

)
Hr−1 by Corollary 1.23 we have

ϕ̃α (γhγ′h′) = ϕ̃α

(
γhγ′h̄hh′

)
= ϕα

(
γhγ′h̄

)
= ϕα (γ)ϕα

(
hγ′h̄

)
.

Now, since
(
E1

1D
1
r−1

)
/D1

n is in the stabilizer of χα, from Lemma 1.24
and Corollary 1.23 we get

ϕα

(
hγ′h̄

)
= ϕα (γ′) ;

so
ϕ̃α (γhγ′h′) = ϕ̃α (γh) ϕ̃α (γ′h′) .

2. Representations of D1. Let α ∈ D◦ with vD (α) = −n − 1,
n > 0. Put r = [(n+ 1)/2], and let E = F (α) be a quadratic extension
of F contained in D.

Corollary 2.1. By Proposition 1.12, we have:

1. The stabilizer of χα in D1 is E1D1
r when n is even,

2. The stabilizer of χα in D1 is E1D1
r−1 when n is odd.

Theorem 2.2. Let α ∈ D◦ with vD (α) = −n − 1, n > 0, and
r = [(n+ 1)/2]. All other notations are as before. Then:
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1. If n is even, let ϕα be a character of E1D1
r defined in Lemma 1.14

and set :
ρ (α, ϕ) = Ind

(
D1, E1D1

r , ϕα

)
.

Then ρ (α, ϕ) is an irreducible representation of D1.

2. If n and r = [(n+ 1)/2] are odd, then by Lemma 1.13 we have:(
E1D1

r−1

)
�D1

n =
(
E1D1

r

)
�D1

n.

Thus any character of
(
E1D1

r−1

)
�D1

n is a character of
(
E1D1

r

)
�D1

n

and vice versa. In this case again let ϕα be a character of E1D1
r

determined by Lemma 1.14 and set:

ρ (α, ϕ) = Ind
(
D1, E1D1

r−1, ϕα

)
.

Then ρ (α, ϕ) is an irreducible representation of D1.

3. If n is odd and r = [(n+ 1)/2] is even, then for any ϕ ∈ Φ (α) there
is a unique q-dimensional irreducible representation, τ2 (α, ϕ), say, of
E1D1

r−1 such that its restriction to E1D1
r is a direct sum of ϕα’s. Now

set:
ρ (α, ϕ) = Ind

(
D1, E1D1

r−1, τ2 (α, ϕ)
)
.

Then ρ (α, ϕ) is an irreducible representation of D1.

Proof. 1. By Corollary 2.1 the stabilizer of χα in D1 is E1D1
r . Now

apply Clifford theory and Theorem (45.2)′ in [2].

2. In this case by Corollary 2.1 the stabilizer of χα in D1 is E1D1
r−1.

Again, Clifford theory, Theorem (45.2)′ in [2] and Lemma 1.13 give the
result.

3. To prove this part we need some more results.

Proposition 2.3. Let τ (α, ϕ) = Ind
(
E1

1D
1
r−1 �D1

n, E
1
1Dr−1, ϕ̃α

)
.

Then τ (α, ϕ) is an irreducible representation of dimension q.

Proof. This result follows from Lemma 1.21 and Theorem (45.2)′ in
[2].

Lemma 2.4. If x is any element of
(
E1D1

r−1

)
�D1

n which does not lie
in

(
E1D1

r

)
�D1

n, then x−1
(
E1D1

r�D
1
n

)
x∩ (

E1D1
r

)
�D1

n = E1
1D

1
r�D

1
n.
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Proof. Since D1
r is normal in D1 it is enough to take x =

(
1 + aπr−1

)
(mod D1

n), where a is a unit. Since ν (x) = 1 (mod D1
n), we have x−1 =

x̄ =
(
1 − πr−1ā

)
(mod D1

n). Now let h = λ (1 + bπr) (mod D1
n) be

an element in
(
E1D1

r

)
�D1

n, where b is OD and λ ∈ E1 and also note
that r is even. Then we have

x̄hx =
(
1 − πr−1ā

)
λ (1 + bπr)

(
1 + aπr−1

)
(mod D1

n)

= λ
(
1 − λ̄πr−1āλ

) (
1 + aπr−1 + bπr

)
(mod D1

n)

= λ
(
1 + aπr−1 + bπr − λ̄πr−1āλ− λ̄πr−1āλaπr−1

)
(mod D1

n).

Now note that x̄hx ∈ (
E1D1

r

)
�D1

n if and only if
(
aπr−1 − λ̄πr−1āλ

) ∈
D1

r . We can write a as α + βπ where α, β are in E and α is a unit
because a is a unit. From here we get

aπr−1 − λ̄πr−1āλ = απr−1 + βπr − λ̄πr−1ᾱλ+ λ̄πr−1βπλ

= απr−1 − λ̄2απr−1 + βπr + β̄πr

= α
(
1 − λ̄2

)
πr−1 +

(
β + β̄

)
πr.

Since α is a unit we deduce that
(
1 − λ̄2

) ∈ PD ∩ E, and this forces
that λ ∈ D1

1 ∩ E1 = E1
1 .

Lemma 2.5. Let H and K be two finite subgroups of a group
G. Then, for any g ∈ G, the order of a double coset HgK is
|H| [K : g−1Hg ∩K]

.

Proof. This is easily verified if it is not well known.

Lemma 2.6. All notations are as before.

1.
[
E1 : E1

1

]
= (q + 1)/2.

2.
[
E1D1

r �D1
n : E1D1

r−1 �D1
n : E1D1

r �D1
n

]
= 2q − 1.

3.
[
E1D1

r �D1
n : E1D1

r−1 �D1
n : E1

1D
1
r�D

1
n

]
= q2.

4.
[
E1

1D
1
r �D1

n : E1D1
r−1 �D1

n : E1
1D

1
r �D1

n

]
= q2[(q + 1)/2].

Proof. 1. Let g = a + bε ∈ E1such that a2 − b2ε2 = 1. Now let
b = b◦ + b1�, where b◦ ∈ � and � is the set of representative elements
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of k in O. Then since 1+b2ε2
(
= a2

)
is a square, 1+b2◦ε2 is a square too

(Hensel’s lemma). Thus there exists a◦ ∈ � such that a2
◦ = 1 + b2◦ε

2.
One can show that a = a◦+a1� for some a1 ∈ O. Now let g1 = a◦+b◦ε.
Then g1 ∈ E1 and

g−1
1 g = (a◦ − b◦ε) (a+ bε)

= a◦a+ a◦bε− ab◦ε− b◦bε2

=
(
a◦a− b◦bε2

)
+ (a◦b− ab◦) ε.

From a2−b2ε2 = 1 = a2
◦−b2◦ε2, one can check that � | (a◦b− ab◦), i.e.,

g−1
1 g ∈ E1

1 and this implies g ∈ g1E
1
1 . It is easy to show that a◦ + b◦ε

∈ E1
1 if and only if b◦ = 0. Thus{

a◦ + b◦ε | b◦ ∈ �, and a2
◦ = 1 + b2◦ε

2
}

is a set of representatives of cosets of E1
1 in E1. Since b2◦ = (−b◦)2, so

there are only (q − 1)/2 + 1 = (q + 1)/2 distinct cosets.

2. Let m be the number of double cosets, let xi, 1 ≤ i ≤ m be the
double cosets representatives, and let xm = 1. Then we can write:

(
E1D1

r−1

)
�D1

n =
m⋃

i=1

(((
E1D1

r)�D1
n)xi

((
E1D1

r

)
�D1

n

))

=
[ m−1⋃

i=1

(((
E1D1

r

)
�D1

n

)
xi

((
E1D1

r

)
�D1

n

))]

∪ (
E1D1

r

)
�D1

n,

where xi /∈
(
E1D1

r

)
�D1

n for 1 ≤ i ≤ m − 1. Now by Lemmas 2.4 and
2.5 we get:

∣∣(E1D1
r−1

)
�D1

n

∣∣ = (m− 1) · ∣∣(E1D1
r

)
�D1

n

∣∣ q + 1
2

+
∣∣(E1D1

r

)
�D1

n

∣∣ .
Dividing both sides by

∣∣(E1D1
r

)
�D1

n

∣∣, we get

q2 = (m− 1) · q + 1
2

+ 1.
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Thus
m = 2q − 1.

3. The same argument as in part 2 and the fact that:

[(
E1

1D
1
r

)
�D1

n : x−1
((
E1D1

r

)
�D1

n

)
x
]

= 1,

for any x ∈ (
E1D1

r

)
�D1

n

yield the result.

4. The same argument as in parts 2 and 3 gives us

(
E1D1

r−1

)
�D1

n =
m⋃

i=1

(((
E1D1

r

)
�D1

n

)
xi

((
E1D1

r

)
�D1

n

))
.

From here we get∣∣(E1D1
r−1

)
�D1

n

∣∣ = m · ∣∣(E1D1
r

)
�D1

n

∣∣ .
Thus

m =

∣∣(E1D1
r−1

)
�D1

n

∣∣
|(E1D1

r)�D1
n|

= q2 ·
(
q + 1

2

)
.

Proposition 2.7. For ϕ ∈ Φ (α), let ϕ′
α be the restriction of ϕα to

E1
1D

1
r , and let

τ1 (α, ϕ) = Ind
(
E1

1D
1
r−1, E

1
1D

1
r , ϕ

′
α

)
.

Then τ1 (α, ϕ) is a direct sum of q copies of τ (α, ϕ).

Proof. Since for ϕ̃α, defined in Lemma 1.25 we have ϕ′
α = ϕ̃α on

E1
1D

1
r , so τ1 (α, ϕ) will be equivalent to

[
E1

1Dr−1 :
(
E1

1D
1
r

)
�D1

n

]
copies

of τ (α, ϕ). Now apply Lemma 2.6.

The following lemma is the key to the construction and motivated by
Lemma 2.7 in [10].

Lemma 2.8. Let ξ be the character of Ind
(
E1D1

r−1, E
1D1

r , ϕα

)
,

and let ξ1 be the character of Ind
(
E1D1

r−1, E
1
1D

1
r , ϕ

′
α

)
. Then η =
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2q−1ξ1 − ξ is the character of an irreducible representation, τ2 (α, ϕ),
say, of E1D1

r−1 whose restriction to E1
1D

1
r−1 is τ (α, ϕ).

Proof. Let 〈, 〉 denote the usual scaler product on L2
((
E1D1

r−1

)
�D1

r

)
.

By Lemma 2.6 and Mackey’s theorem, we get:

〈η, η〉 = 4q−2 〈ξ1, ξ1〉 − 4q−1 〈ξ, ξ1〉 + 〈ξ, ξ〉
= 4q−2

(
q2 ·

(
q + 1

2

))
− 4q−1

(
q2

)
2q − 1

= 2 (q + 1) − 4q + 2q − 1
= 1.

Thus η is a character of an irreducible representation of E1D1
r−1. Now

since ξ1 (1) = q2 · [(q + 1)/2] and ξ (1) = q2, we get η (1) = q. Thus
η is the character of an irreducible representation of E1

1D
1
r−1 having

dimension q, call it τ2 (α, ϕ). The multiplicity of τ2 (α, ϕ) in τ (α, ϕ)
induced to E1D1

r−1 is
〈
η, q−1ξ1

〉
= 1. So, by Frobenius reciprocity, the

restriction of τ2 (α, ϕ) to E1
1D

1
r−1 is equivalent to τ (α, ϕ).

Proof of part 3 of Theorem 2.2. Since τ2 (α, ϕ) is an extension
of τ (α, ϕ) by Theorem 51.7 in [2], every irreducible summand of
Ind

(
E1D1

r−1, E
1
1D

1
r , τ (α, ϕ)

)
is equivalent to some τ2 (α, ϕ)⊗ψ where

ψ is a representation of E1, which is trivial on E1
1 . Thus by Theo-

rem 38.5 in [2] and Lemma 2.8 in this paper, it follows that:

τ2 (α, ϕ) ⊗ ψ ∼= τ2 (α, ϕψ) .

Now apply Clifford’s theorem [2].

2. Characters (one-dimensional representations) of D1. We
can obtain almost all representations ofD1 from Theorem 2.2; however,
we cannot deduce one-dimensional representations of D1 from this
theorem. We will determine these as follows.

Lemma 3.1. The commutator group of D1 is equal to D1
1 where D1

1

is
D1

1 =
{
x ∈ D1 | x− 1 ∈ PD

}
.



974 M. MISAGHIAN

Proof. See [14].

Lemma 3.2. D1�D1
1 is a cyclic group of order q + 1.

Proof. Define f : D1�D1
1 → k× by f

(
δD1

1

)
= δ + PD, δ ∈ D1. Then

one can check that f is a well-defined homomorphism. f is one-to-one
because if δ + PD = 1 then δ − 1 ∈ PD, thus δ ∈ D1

1 . It is easy to see
the image of f is equal to:

µq+1 =
{
a ∈ k× | ν̄ (a) = 1

}
,

where ν̄ is the map induced by norm map on residual field k defined
as ν̄ (a+ PD) = ν (a) + P . So D1�D1

1
∼= µq+1. This group is cyclic

because k× is a multiplicative subgroup of a finite field. The next
lemma shows that µq+1 has q + 1 elements.

Lemma 3.3. The group µq+1 in Lemma 3.2 has q + 1 elements.

Proof. Define f : k× → µq+1 by f (a) = a/ā. Hilbert’s 90 shows that
f is onto, and one can show ker f = k×. Hence k×�k× ∼= µq+1, and
from here we get |µq+1| = |k×�k×| = q2 − 1/q − 1 = q + 1.

Theorem 3.4. Any character of D1 is a character of D1�D1
1 and

vice versa.

Proof. Let ψ be a character of D1. Then since D1
1 is the commutator

group of D1, ψ will be trivial on D1
1 . Conversely let ψ̄ be a character

of D1�D1
1, then ψ (δ) = ψ̄

(
δD1

1

)
is a character of D1.

Convention. From now on an irreducible representation of D1 deter-
mined by part i, 1 ≤ i ≤ 3, in Theorem 2.2 will be called of type i, and
any one-dimensional representation of D1 will be called a character.

Theorem 3.5. Any irreducible representation of D1 is either one of
those determined in Theorem 2.2 or is a character. Further, they enjoy
the following equivalencies.
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1. A representation of the type i never is equivalent to a representa-
tion of type j, i 
= j, 1 ≤ i, j ≤ 3.

2. A representation of the type i, 1 ≤ i ≤ 3, never is equivalent to a
character.

3. Two representations ρ (α, ϕ) , ρ (α′, ϕ′) of type i, 1 ≤ i ≤ 3, are
equivalent if and only if

• they have same conductor, n say,

• there exists g ∈ D1 such that α′ − gαg−1 ∈ Pn−r
D where r =

[(n+ 1)/2],

• ϕ′ (e′) = ϕ
(
geg−1

)
, e′ ∈ E′ = F (α′), e ∈ E = F (α),

• and E′ = F (α′) = gEg−1.

Proof. Let ρ be a nontrivial irreducible representation of D1. Since
D1 is compact there exists an integer n ≥ 1 such that the restriction of
ρ to D1

n, ρ|D1
n
, is trivial. Let n be the least integer with this property.

Then, if n = 1, by Theorem 3.4, ρ is a character. If n > 1, then the
restriction of ρ to D1

r where r = [(n+ 1)/2] can be considered as a
representation χα on D1

r �D1
n so it is the direct sum of χα for some

α, because D1
r�D1

n is abelian. Thus ρ is one of those determined by
Theorem 2.2. Statements 1 and 2 are obvious. For 3, consider the
restriction of ρ (α, ϕ) and ρ (α′, ϕ′) to D1

r where r = [(n+ 1)/2] and
then apply Clifford’s theorem [2].
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