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COMPOSITION FOLLOWED BY DIFFERENTIATION
BETWEEN BERGMAN AND HARDY SPACES

R.A. HIBSCHWEILER AND N. PORTNOY

ABSTRACT. Let Φ be an analytic self-map of the disc,
and let Hp denote the Hardy space. The operator DCΦ is
defined for functions analytic in the disc by DCΦ(f) = (f◦Φ)′.
We show that compactness and boundedness of the map
DCΦ : Hp → Hq , p, q ≥ 1, are equivalent to the conditions
Φ′ ∈ Hq and ||Φ||∞ < 1. For α > −1 and p ≥ 1, Ap

α denotes
the weighted Bergman space. In the case 1 ≤ p ≤ q, DCΦ :
Ap

α → Aq
β

is bounded if and only if a related measure obeys

a Carleson-type condition. Compactness is characterized by
the analogous little-oh condition. For 1 ≤ q < p, Khinchine’s
inequality is used to show that boundedness and compactness
are equivalent to an integrability condition on a weighted
integral.

1. The Hardy space Hp, p ≥ 1, is the Banach space of functions
analytic in U = {z : |z| < 1} satisfying

‖f‖Hp = sup
0<r<1

{
1
2π

∫ 2π

0

|f(reiθ)|p dθ

}1/p

< ∞.

References for the Hardy spaces include [2] and [3].

Let Φ be a nonconstant self-map of U , and let CΦ(f) = f ◦ Φ for
functions f analytic in the disc. Many authors [1, 6, 7, 10] have
studied boundedness and compactness of CΦ on the Hardy spaces. It
is known [12] that if CΦ is compact on Hp for some p ≥ 1, then CΦ

is compact on all the Hardy spaces. Shapiro [11] characterized the
self-maps Φ for which CΦ is compact on H2.
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The focus of this note is to characterize maps Φ for which the
operator DCΦ(f) = (f ◦ Φ)′ is bounded or compact on the Hardy and
Bergman spaces. In his unpublished dissertation [8, Theorem 3.0.9],
the second author used a result of MacCluer to prove that, for p, q ≥ 1,
DCΦ : Hp → Hq is bounded if and only if it is compact if and only
if Φ′ ∈ Hq and ||Φ||∞ < 1. We present the proof here and extend
the result to the setting of the weighted Bergman spaces, where the
solution is more subtle.

Note that if DCΦ : Hp → Hq is bounded, then Φ′ ∈ H1. It follows
that Φ extends continuously to U [2, Theorem 3.11]. Thus in this
section we may assume that Φ is analytic in the disc and continuous
on the closed disc.

The proof of Theorem 1 requires the notion of Carleson sets. For
|ζ| = 1 and 0 < δ < 1,

S(ζ, δ) =
{
z ∈ U : |z − ζ| < δ

}
.

In the rest of this work, C will denote a positive constant, the exact
value of which may differ from one appearance to the next.

Theorem 1. Let p ≥ 1, and let Φ be an analytic self-map of the disc
with Φ′ ∈ H1. The following are equivalent.

(1) DCΦ : Hp → H1 is bounded.

(2) DCΦ : Hp → H1 is compact.

(3) ||Φ||∞ < 1.

Proof. It is clear that (3) ⇒ (2) ⇒ (1). Thus it will suffice to prove
that (1) ⇒ (3).

Suppose that ||Φ||∞ = 1 and Φ′ ∈ H1. It follows that Φ extends to
a continuous function on U and Φ is absolutely continuous on ∂U [2,
Theorem 3.11]. Let σ denote normalized Lebesgue measure on ∂U , and
define a finite measure ν on Borel subsets of the circle by

ν(E) =
∫

E

|Φ′| dσ.
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As part of the proof of [6, Theorem 2.3], MacCluer showed that for
such Φ and ν,

(1) sup
|ζ|=1

ν(Φ−1S(ζ, δ) ∩ ∂U) 	= o(δ) as δ → 0.

We give a brief outline of her argument. Without loss of generality,
suppose that Φ(1) = 1, and let Aδ = Φ−1(S(1, δ)) ∩ ∂U . The integral

∫
Aδ

|Φ′| dσ

gives the arc length of the image of Aδ under Φ. Since 1 ∈ Aδ, and
since Φ(1) = 1 the continuity of Φ implies that the arc length must be
at least 2δ, and thus (1) holds.

In what follows we view Φ as a function defined on ∂U , that is,
Φ : ∂U → U . Relation (1) implies that there is a sequence (ζn) ⊂ ∂U ,
a sequence (δn) of positive numbers with δn → 0 and a positive constant
β such that

νΦ−1(S(ζn, δn)) ≥ βδn, n = 1, 2, . . . .

Let an = (1 − δn)ζn, and let fn(z) = (1 − |an|2)1/p(1 − ānz)−2/p. A
calculation shows that ‖fn‖Hp = 1 for n = 1, 2, . . . . Note that

‖DCΦ(fn)‖H1 =
∫

∂U

|f ′
n ◦ Φ| |Φ′| dσ

=
∫

∂U

|f ′
n ◦ Φ| dν

=
∫

U

|f ′
n| d(νΦ−1)

≥
∫

S(ζn,δn)

|f ′
n| d(νΦ−1).

By a calculation, |f ′
n(z)| ≥ Cδ

−(1+p)/p
n for z ∈ S(ζn, δn). It follows that

‖DCΦ(fn)‖H1 ≥ δ−(1+p)/p
n νΦ−1(S(ζn, δn)) ≥ Cβδ−1/p

n .

Thus DCΦ : Hp → H1 is unbounded if ||Φ||∞ = 1. This completes the
proof.
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Theorem 1 has the following corollary.

Corollary 1. Let p, q ≥ 1, and let Φ′ ∈ Hq. The following are
equivalent.

(1) DCΦ : Hp → Hq is bounded.

(2) DCΦ : Hp → Hq is compact.

(3) ||Φ||∞ < 1.

Proof. It suffices to prove that (1) ⇒ (3). Since the inclusion
I : Hq → H1 is bounded, the first assertion implies that the map
DCΦ : Hp → H1 is bounded. By Theorem 1, ||Φ||∞ < 1.

Let α > −1, p ≥ 1, and let A denote normalized area measure on the
disc. The weighted Bergman space Ap

α is the Banach space of functions
analytic in U with

‖f‖p
Ap

α
=

∫
U

|f(z)|p(log(1/|z|))α dA(z) < ∞.

It will be convenient to let dAα = (log(1/|z|))α dA(z). Note that dAα

can be replaced by the measure (1 − |z|2)α dA(z). This results in the
same space of functions with an equivalent norm.

Smith [13, p. 2336] noted that the appropriate definition for Ap
−1 is

the Hardy space Hp. Theorem 1 will be extended from the setting of
the Hardy spaces to the spaces Ap

α, α > −1.

Theorem 2. Let p ≥ 1, and let α > −1. Let Φ be a self-map of U
with Φ′ ∈ H1. The following are equivalent.

(1) DCΦ : Ap
α → H1 is bounded.

(2) DCΦ : Ap
α → H1 is compact.

(3) ||Φ||∞ < 1.

Proof. It is enough to show that (1) ⇒ (3). Thus suppose that
Φ′ ∈ H1 and ||Φ||∞ = 1. Let (ζn), (δn) and (an) be sequences as
described in the proof of Theorem 1, and define

fn(z) = (1 − |an|2)(α+2)/p(1 − anz)−2(α+2)/p.
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Then ‖fn‖Ap
α
≈ C [13, p. 2340]. An argument as in the previous proof

yields
‖(DCΦ)(fn)‖H1 −→ ∞ as n → ∞.

Thus DCΦ : Ap
α → H1 is not bounded if ||Φ||∞ = 1. This completes

the proof.

The proof of Corollary 2 is omitted, since it is similar to the proof of
Corollary 1.

Corollary 2. Let p, q ≥ 1, and let α > −1. Suppose that Φ′ ∈ Hq.
The following are equivalent.

(1) DCΦ : Ap
α → Hq is bounded.

(2) DCΦ : Ap
α → Hq is compact.

(3) ||Φ||∞ < 1.

2. In this section we will characterize Φ for which DCΦ : Ap
α → Aq

β,
α, β > −1, is bounded or compact. This will be done in terms of
more general theorems that characterize measures µ for which the
differentiation operator D : Ap

α → Lq(µ) is bounded.

While the Carleson sets S(ζ, δ) were useful in Section 1, it will be
more convenient here to use pseudohyperbolic discs. Recall that the
pseudohyperbolic metric ρ is defined by

ρ (z, w) =
∣∣∣∣ z − w

1 − z̄w

∣∣∣∣ (z, w ∈ U).

In what follows, D(a) denotes the pseudohyperbolic disc {z : ρ(a, z) <
1/8}.

Luecking characterized positive measures µ with the property
‖f (n)‖Lq(µ) ≤ C‖f‖Ap

α
. Theorem 3 gives Luecking’s result [5, The-

orem 2.2] for n = 1 in case 1 ≤ p ≤ q.

Theorem 3 (Luecking). Let 1 ≤ p ≤ q, and let α > −1. Let µ ≥ 0
be a finite measure on U . The following are equivalent.

(1) ‖f ′‖Lq(µ) ≤ C‖f‖Ap
α

for all f ∈ Ap
α.
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(2) µ(D(a)) = O((1 − |a|2)q(α+2+p)/p) as |a| → 1.

For the case 1 ≤ q < p, Luecking used Khinchine’s inequality and
other estimates to obtain a version of Theorem 4 for f (n), where f ∈ Ap

0

[4, Theorem 1]. We are interested in the case n = 1 and f ∈ Ap
α.

Theorem 4 is a slight modification of Luecking’s result, so the proof is
not given here.

Theorem 4 (Luecking). Let 1 ≤ q < p, and let α > −1. Let µ ≥ 0
be a finite measure on U . Let L(z) = (1 − |z|2)−(α+2+q)µ(D(z)). The
following are equivalent.

(1) ‖f ′‖Lq(µ) ≤ C‖f‖Ap
α

for all f ∈ Ap
α.

(2) L ∈ Lp/(p−q)(Aα).

Let |λ| < 1, and let wλ(z) = (λ− z)/(1− λ̄z). Since Cwλ
: Ap

α → Ap
α

is bounded, we may assume that Φ(0) = 0 in the rest of this work.

Theorems 3 and 4 will now be applied to the operator DCΦ. To do
so, we need a relative of the Nevanlinna counting function, which will
participate in the change of variable.

Definition 1. Let Φ be a self-map of U with Φ(0) = 0. Let q ≥ 1,
and let β > −1. For w ∈ U , w 	= 0,

τq,β(w) =
∑

|Φ′(z)|q−2(log(1/|z|))β.

The sum extends over all solutions of Φ(z) = w.

Corollary 3. Let 1 ≤ p ≤ q, and let α, β > −1. Let Φ be
an analytic self-map of the disc with Φ(0) = 0 and Φ′ ∈ Aq

β. Let
dµ(w) = τq,β(w) dA(w). The following are equivalent.

(1) DCΦ : Ap
α → Aq

β is bounded.

(2) µ(D(a)) = 0((1 − |a|2)q(α+2+p)/p) as |a| → 1.

Furthermore, the operator is compact if and only if the analogous little-
oh condition is satisfied.
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Proof. Since Φ′ ∈ Aq
β, a change of variable [1, Theorem 2.32] implies

that µ is a finite measure. Thus Theorem 3 applies. Note that

‖(f ◦ Φ)′‖q
Aq

β

=
∫

U

|f ′(Φ(z))|q|Φ′(z)|q(log(1/|z|))β dA(z)

=
∫

U

|f ′(w)|qτq,β(w) dA(w)

=
∫

U

|f ′(w)|q dµ(w) = ‖f ′‖q
Lq(µ).

If DCΦ : Ap
α → Aq

β is bounded, then

‖f ′‖Lq(µ) = ‖(DCΦ)(f)‖Aq
β
≤ C‖f‖Ap

α
for all f ∈ Ap

α.

Theorem 3 implies that

(2) µ(D(a)) = O((1 − |a|2))q(α+2+p)/p as |a| → 1.

For the converse, suppose that assertion (2) holds. Theorem 3 implies
that

‖(DCΦ)(f)‖Aq
β

= ‖f ′‖Lq(µ) ≤ C‖f‖Ap
α
,

and thus DCΦ : Ap
α → Aq

β is bounded.

Next suppose that DCΦ : Ap
α → Aq

β is compact. Let a ∈ U , and let

fa(z) = (1 − |a|2)(α+2)/p(1 − āz)−2(α+2)/p.

Then ‖fa‖Ap
α
≈ C [13, p. 2340] and fa → 0 uniformly on compact sets

as |a| → 1. The standard compactness criterion implies that, given
ε > 0, there exists 0 < r < 1 such that ‖(DCΦ)(fa)‖q

Aq
β

< ε for |a| > r.

Thus
ε >

∫
U

|f ′
a(w)|q dµ(w) ≥

∫
D(a)

|f ′
a|q dµ for |a| > r.

An estimate on |f ′
a| for z ∈ D(a) yields

(3) µ(D(a)) < ε(1 − |a|2)q(α+2+p)/p for all a with |a| > r.
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Finally assume that relation (3) holds, and let (fn) be a bounded
sequence in Ap

α with fn → 0 uniformly on compact sets. To show that
DCΦ : Ap

α → Aq
β is compact, it will suffice to show that

In = ‖(DCΦ)(fn)‖q
Aq

β

= ‖f ′
n‖q

Lq(µ) −→ 0 as n → ∞.

By a standard estimate [4, p. 338],

In ≤ C

∫
U

1
(1 − |z|2)2+q

∫
D(z)

|fn(w)|q dA(w) dµ(z).

Note that χD(z)(w) = χD(w)(z) and 1 − |w|2 ≈ 1 − |z|2 for z ∈ D(w).
Fubini’s theorem now yields

In ≤ C

∫
U

|fn(w)|q µ(D(w))
(1 − |w|2)2+q

dA(w).

Smith [13, Lemma 2.5] showed that, for f ∈ Ap
α and w ∈ U ,

|f(w)| ≤ C‖f‖Ap
α
(1 − |w|2)−(α+2)/p.

Let Γ = (αq + 2q + qp − αp)/p. Since ‖fn‖Ap
α
∼= C, Smith’s estimate

yields

In ≤ C

∫
U

|fn(w)|p µ(D(w))
(1 − |w|2)Γ dA(w).

Relation (3) implies that, for a given ε > 0, there exists 0 < r < 1 such
that

(4)
∫
|w|>r

|fn(w)|p µ(D(w))
(1 − |w|2)Γ dA(w) < ε‖fn‖p

Ap
α
≤ Cε.

Since fn → 0 uniformly on compact subsets,

(5)

∫
|w|≤r

|fn(w)|p µ(D(w))
(1 − |w|2)Γ dA(w) ≤ Cε

∫
U

µ(U) dA(w)

= Cε for large n.

Relations (4) and (5) yield In → 0, as required. The proof is complete.
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Corollary 4. Let 1 ≤ q < p, and let α, β > −1. Let dµ(w) =
τq,β(w) dA(w), and let Φ′ ∈ Aq

β. Let L(z) = (1−|z|2)−(α+q+2)µ(D(z)).
The following are equivalent.

(1) DCΦ : Ap
α → Aq

β is bounded.

(2) DCΦ : Ap
α → Aq

β is compact.

(3) L ∈ Lp/(p−q)(Aα).

Proof. After a change of variable as in Corollary 3, Theorem 4 gives
the equivalence of (1) and (3).

It is clear that (2) implies (1).

It remains to verify that (3) implies (2). Assume that ‖fn‖Ap
α
≤ C

and fn → 0 uniformly on compact sets. It will suffice to show that

(6) In = ‖DCΦ(fn)‖q
Aq

β

=
∫

U

|f ′
n(w)|q dµ(w) −→ 0 as n → ∞.

By estimates as in the previous proof,

In ≤
∫

U

1
(1 − |w|2)2+q

∫
D(w)

|fn(z)|q dA(z) dµ(w)

≤ C

∫
U

|fn(z)|qL(z) dAα(z).

Let ε > 0. The hypothesis on L implies that there exists r, 0 < r < 1,
with the property

∫
|z|>r

L(z)p/(p−q) dAα(z) < εp/(p−q).

It follows by Hölder’s inequality that

(7)
∫
|z|>r

|fn(z)|qL(z) dAα(z)

≤
( ∫

U

|fn|p dAα

)q/p( ∫
|z|>r

Lp/(p−q) dAα

)(p−q)/p

≤ ε‖fn‖q
Ap

α
≤ Cε.
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Since fn → 0 uniformly on compact subsets,∫
|z|≤r

|fn(z)|qL(z) dAα(z) ≤ ε

∫
|z|≤r

L(z) dAα(z) for large n.

Since Φ′ ∈ Aq
β, µ(U) < ∞ and thus∫
|z|≤r

L(z) dAα(z) ≤ C

∫
U

µ(U) dAα(z) = C.

Thus

(8)
∫
|z|≤r

|fn(z)|qL(z) dAα(z) ≤ C ε for large n.

The two inequalities (7) and (8) imply that the expression at (6)
tends to 0 as n → ∞. This completes the proof that (3) ⇒ (2) and
completes the proof of the corollary.

We close this section with a question and with examples to show that
the conditions in Corollaries 3 and 4 do not require ||Φ||∞ < 1. In the
examples it will be shown that DCΦ : Ap

α → A2
1 is bounded, for certain

polygonal maps Φ with ||Φ||∞ = 1.

Note that in the case q = 2, β = 1, the function τq,β simplifies to
the Nevanlinna counting function N1(w). Smith [13, p. 2347] obtained
estimates on N1(w) for polygonal maps.

Let P ⊂ U be a polygon with P∩∂U = {1} and with angular aperture
π/η at w = 1 (η > 1). Let Φ be a Riemann map of U onto the interior
of P . Smith showed that, for such a polygonal map,

N1(w) = O((1 − |w|)η) as |w| → 1.

Since 1 − |w| ≈ 1 − |a| for w ∈ D(a), it follows that

(9)
∫

D(a)

N1(w) dA(w) ≤ C(1 − |a|)η+2 as |a| → 1.

By an easy calculation, Φ′ ∈ A2
1. Thus Corollaries 3 and 4 apply.

First suppose that 1 ≤ p ≤ 2 and α > −1. Let η = (2α + 4)/p. Then
η > 1. A calculation using (9) yields∫

D(a)

N1(w) dA(w) = O((1 − |a|2)2(α+2+p)/p) as |a| → 1.
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By Corollary 3, DCΦ : Ap
α → A2

1 is bounded.

Next let p > 2 and α > −1. Let η > (p + 2α + 2)/p. Then η > 1 and
(9) implies that

L(a) =

∫
D(a)

N1(w) dA(w)

(1 − |a|)α+4
≤ C(1 − |a|)η−α−2 as |a| → 1.

A calculation shows that L ∈ Lp/(p−2)(Aα), and thus DCΦ : Ap
α → A2

1

is bounded and compact for p and α as described.

Finally recall from Section 1 that if DCΦ : Ap
α → Ap

−1 is bounded,
then ||Φ||∞ < 1. Is this the case when −1 < β < 0 and DCΦ : Ap

α → Ap
β

is bounded?

3. The methods in Section 2 can be used to study the operator CΦD.
A brief discussion is given here.

Theorem 5. Let 1 ≤ p ≤ q, and let α, β > −1. Let Φ be an analytic
self-map of the disc with Φ ∈ Aq

β. The following are equivalent.

(1) CΦD : Ap
α → Aq

β is bounded.

(2) AβΦ−1(D(a)) = O((1 − |a|2)q(α+2+p)/p) as |a| → 1.

Furthermore, CΦD : Ap
α → Aq

β is compact if and only if the analogous
little-oh condition holds.

Proof. First suppose that CΦD : Ap
α → Aq

β is bounded. An argument
using the test functions in Corollary 3 yields

C ≥
∫

D(a)

|f ′
a(w)|q d(AβΦ−1)(w).

An estimate on |f ′
a| gives the required result.

Next let f ∈ Ap
α and apply estimates as in Corollary 3 to show

that if the measure AβΦ−1 obeys the given big-oh condition, then
‖f ′ ◦ Φ‖Aq

β
< ∞ for every f ∈ Ap

α.

The proof of the statement about compactness is omitted.
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The last theorem proceeds along the lines of Corollary 4. The proof
is omitted.

Theorem 6. Let 1 ≤ q < p, and let α, β > −1. Let Φ ∈ Aq
β and let

M(z) = (1 − |z|2)−(α+2+q)AβΦ−1(D(z)).

The following are equivalent.

(1) CΦD : Ap
α → Aq

β is bounded.

(2) CΦD : Ap
α → Aq

β is compact.

(3) M ∈ Lp/(p−q)(Aα).
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