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q-TRIPLICATE INVERSE SERIES RELATIONS
WITH APPLICATIONS TO q-SERIES

YUSEN ZHANG AND WEI CHEN

ABSTRACT. q-triplicate inverse series relations are ob-
tained and used to derive terminating summation formulas of
q-series which include the generalization of Gessel and Stan-
ton’s result.

1. Introduction.

1.1 Notation and basic hypergeometric series. Here we recall
some standard notation for q-series, and basic hypergeometric series
[6].

Given a (fixed) complex number q with |q| < 1, the basic hypergeo-
metric series is defined by

r+1φr

[
a1, a2, · · · , ar+1

b1, b2, · · · , br
; q, z

]
=

∞∑
n=0

(a1; q)n · · · (ar+1; q)n

(q; q)n(b1; q)n · · · (br; q)n
zn,

where, as before, the q-shifted factorial (a; q)n is given by

(a; q)n := (1 − a)(1 − aq) · · · (1 − aqn−1), n ≥ 1, (a; q)0 := 1.

(a; q)−n := [(1 − aq−1)(1 − aq−2) · · · (1 − aq−n)]−1, n ≥ 1.

For brevity, we employ the usual notation

(a1, a2, . . . , am; q)n = (a1; q)n(a2; q)n · · · (am; q)n,

(a1, a2, . . . , am; q)∞ = (a1; q)∞(a2; q)∞ · · · (am; q)∞.

A basic hypergeometric series r+1φr is called very well-poised if
aibi = qa0 for i = 1, 2, . . . , r, and among the parameters ai occur
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both q
√

a0 and −q
√

a0. If one of the numerator parameters {ak} is
a negative integer, then the series becomes terminating. See [6, p. 25
and p. 125] for the criteria of when these series terminate, or, if not,
when they converge.

A standard reference for basic hypergeometric series is Gasper and
Rahman’s text [6]. In our computations in the subsequent sections we
frequently use some elementary identities of q-shifted factorials, listed
in [6, Appendix I].

The following very well posed 6φ5 summation, cf., [6, (II. 20)],

(1.1) 6φ5

[
a, q

√
a, −q

√
a, b, c, d√

a, −√
a, aq/b, aq/c, aq/d

; q,
aq

bcd

]

=
(aq, aq/bc, aq/bd, aq/cd; q)∞
(aq/b, aq/c, aq/d, aq/bcd; q)∞

is an important summation in the theory of basic hypergeometric series
which will be used in Section 3 to derive new summation formulae.

1.2 Inverse relations. In the following, we consider infinite up-
per triangular matrices (aij)0≤i≤j<∞ and (bij)0≤i≤j<∞ and infinite se-
quences (f(n))0≤n<∞ and (g(n))0≤n<∞.

We say that the infinite matrices (aij)0≤i≤j<∞ and (bij)0≤i≤j<∞ are
inverses of each other if and only if the following orthogonality relation
holds:

(1.2)
j∑

k=i

aikbkj = δij , i, j = 0, 1, 2 . . . .

Since inverse matrices commute, we also have

(1.3)
j∑

k=i

bikakj = δij , i, j = 0, 1, 2 . . . .

It is immediate from the orthogonality relations (1.2) and (1.3) that the
following inverse relations hold: Let (aij)0≤i≤j<∞ and (bij)0≤i≤j<∞ be
infinite matrices which are inverses of each other. Then the system of
equations

(1.4) f(n) =
n∑

k=0

akng(k), n = 0, 1, 2 . . .
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is equivalent to the system

(1.5) g(n) =
n∑

k=0

bknf(k), n = 0, 1, 2 . . . .

Inverse relations are a powerful tool for proving or deriving identities.
For instance, given an identity in the form (1.5), we can immediately
deduce (1.4), which may possibly be a new identity. After Gould and
Hsu discovered the very general matrix inversions [9] and Carlitz found
the q-analogue of Gould-Hsu inversions [9], Gessel and Stanton [7, 8]
used matrix inversion to derive a number of basic hypergeometric sum-
mations and transformations. Chu also got hundreds of hypergeometric
identities in papers [2 5]. Recently, Chu [3] presented the duplicate
form of Gould-Hsu inversions and derived several balanced hypergeo-
metric evaluations. Meanwhile, he also obtained the q-duplicate inverse
relations and multiplicate inverse relations. But he did not give any
applications. In [12, 13], we got some applications of Chu’s q-duplicate
inverse series relations on terminating basic hypergeometric series.

In this paper we establish another inverse relation, the q-triplicate
inverse series relation, which is the q-analog of the triplicate form of
Gould-Hsu inversions. After stating and proving the q-triplicate inverse
series relations in Section 2, we combine our inverse relations with some
basic hypergeometric summation formulas and transformation formulae
to derive new formulas on terminating basic hypergeometric series in
Sections 3, 4 and 5. In Section 6, we give the q-multiplicate inverse
series relations and ask for applications of it.

2. q-triplicate inverse series relations. Before we present our
main result, we define three parameters α, β, γ, which are used in
following sections by α, β, γ ∈ {0,−1,−2} and α, β, γ, are distinct.

Let
{Aij |Bij}, i = 0, 1, 2; j = 0, 1, 2, . . .

be complex sequences and define the corresponding polynomials

(2.1) φi(x; 0) ≡ 1, φi(x; n) =
n−1∏
k=0

(Aik + xBik), n = 1, 2, . . . .
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For convenience, products of the form
∏u−1

j=u are defined to be equal to
1, while for u > v − 1 a product

∏v−1
j=u by definition is equal to 0.

Then the q-triplicate inverse series relations are:

Theorem 1. With φi-polynomials defined by (2.1), the system of
equations

(2.2)

Ω(n) =
∑
k≥0

(−1)3k

[
n
3k

]
A2k + q3kB2k

φ0(qn; k)φ1(qn; k)φ2(qn; k+1)
f(k)

−
∑
k≥0

(−1)3k

[
n

1+3k

]
A1k + q3k+1B1k

φ0(qn; k)φ1(qn; k+1)φ2(qn; k+1)
g(k)

+
∑
k≥0

(−1)3k

[
n

2+3k

]
A0k + q3k+2B0k

φ0(qn; k+1)φ1(qn; k+1)φ2(qn; k+1)
h(k)

is equivalent to the system of equations

(2.3) f(n) =
3n∑

k=0

(−1)k

[
3n
k

]
q(

3n−k
2 )φ0(qk; n)φ1(qk; n)φ2(qk; n)Ω(k),

(2.4) g(n) =
3n+1∑
k=0

(−1)k

[
3n + 1

k

]
q(

1+3n−k
2 )

× φ0(qk; n)φ1(qk; n)φ2(qk; n + 1)Ω(k),

(2.5) h(n) =
3n+2∑
k=0

(−1)k

[
3n + 2

k

]
q(

2+3n−k
2 )

× φ0(qk; n)φ1(qk; n + 1)φ2(qk; n + 1)Ω(k).

Proof of Theorem 1. By proceeding as Chu Wenchang in the proof
of [2, Theorem 3], to prove the equivalence between two systems of
equations, it suffices to substitute one system into another and then
verify the desired result.
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Now, substituting (2.2) into the righthand side of (2.3), we have

(2.6)
3n∑

k=0

(−1)k

[
3n
k

]
q(

3n−k
2 )φ0(qk; n)φ1(qk; n)φ2(qk; n)

×
∑
m≥0

(−1)3m

[
k

3m

]
A2m + q3mB2m

φ0(qk; m)φ1(qk; m)φ2(qk; m + 1)
f(m)

−
3n∑

k=0

(−1)k

[
3n
k

]
q(

3n−k
2 )φ0(qk; n)φ1(qk; n)φ2(qk; n)

×
∑
m≥0

(−1)3m

[
k

1+3m

]
A1m + q3m+1B1m

φ0(qk; m)φ1(qk; m+1)φ2(qk; m+1)
g(m)

+
3n∑

k=0

(−1)k

[
3n
k

]
q(

3n−k
2 )φ0(qk; n)φ1(qk; n)φ2(qk; n)

×
∑
m≥0

(−1)3m

[
k

2+3m

]
A0m + q3m+2B0m

φ0(qk; m+1)φ1(qk; m+1)φ2(qk; m+1)
h(m).

Denote the first sum as Sf (n), then

(2.7)

Sf (n) =
3n∑

k=0

(−1)k

[
3n
k

]
q(

3n−k
2 )φ0(qk; n)φ1(qk; n)φ2(qk; n)

×
∑
m≥0

(−1)3m

[
k

3m

]
A2m + q3mB2m

φ0(qk; m)φ1(qk; m)φ2(qk; m + 1)
f(m)

=
n∑

m=0

(−1)3m

[
3n
3m

]
(A2m + q3mB2m)f(m)

×
3n∑

k=3m

(−1)k

[
3n − 3m
k − 3m

]
q(

3n−k
2 )

× φ0(qk; n)φ1(qk; n)φ2(qk; n)
φ0(qk; m)φ1(qk; m)φ2(qk; m + 1)

.
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When n > m, the fraction

P (qk) :=
φ0(qk; n)φ1(qk; n)φ2(qk; n)

φ0(qk; m)φ1(qk; m)φ2(qk; m + 1)

is a polynomial of degree 3n− 3m− 1 in qk, therefore it can be written
as

P (qk) :=
3n−3m−1∑

t=0

ctq
kt.

Considering that

(x; q)n =
n∑

k=0

(−1)k

[
n

k

]
q(

k
2)xk,

then we have

(2.8)

Sf (n) = f(n) +
n−1∑
m=0

(−1)3m

[
3n
3m

]
(A2m + q3mB2m)f(m)

×
3n−3m−1∑

t=0

ctq
3mt+(3n−3m

2 )(qt−3n+3m+1; q)3n−3m

= f(n).

Similarly, we can assert that the second sum and the third sum in
(2.6) all equal zero. So (2.6) equals f(n).

Similarly, by substituting (2.2) into the righthand side of (2.4), or
replacing the righthand side of (2.5) by (2.2), we can also demonstrate
that the corresponding sums reduce to g(n) or h(n).

In Theorem 1, by taking

φ0(qn; k) = (aqn+3+α; q3)k, φ1(qn; k) = (aqn+3+β; q3)k

and
φ2(qn; k) = (aqn+γ ; q3)k,

after simplification, we can get the following result.
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Corollary 2. The solutions of the system of equations

(2.9)

Ω(n)

=
∑
k≥0

(−1)3k

[
n
3k

]
1 − aq6k+γ

(aqn+3+α; q3)k(aqn+3+β; q3)k(aqn+γ ; q3)k+1
f(k)

−
∑
k≥0

(−1)3k

[
n

1 + 3k

]

× 1 − aq6k+4+β

(aqn+3+α; q3)k(aqn+3+β; q3)k+1(aqn+γ ; q3)k+1
g(k)

+
∑
k≥0

(−1)3k

[
n

2 + 3k

]

× 1 − aq6k+5+α

(aqn+3+α; q3)k+1(aqn+3+β; q3)k+1(aqn+γ ; q3)k+1
h(k)

are given by the following summations

f(n) = q(
3n
2 )

3n∑
k=0

(q−3n; q)kqk

(q; q)k

(aqk+1; q)3n(aqk+γ ; q3)n

(aqk+3+γ ; q3)n
Ω(k),

(2.10)

g(n) = q(
1+3n

2 )
3n+1∑
k=0

(q−3n−1; q)kqk

(q; q)k
(aqk+1; q)3n(1 − aqk+γ) Ω(k),

(2.11)

h(n) = q(
2+3n

2 )
3n+2∑
k=0

(q−3n−2; q)kqk

(q; q)k
(aqk+1; q)3n

(2.12)

× (1 − aq3n+k+3+β)(1 − aqk+γ)Ω(k).

Similar to Corollary 2, if, in Theorem 1, putting

φ0(qn; k) = (aqn+α; q3)k, φ1(qn; k) = (aqn+β; q3)k, φ2(qn; k)
= (aqn+γ ; q3)k,
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then by straightforward calculations we can obtain

Corollary 3. The solutions of the system of equations

(2.13)

Ω(n) =
∑
k≥0

(−1)3k

[
n

3k

]
1 − aq6k+γ

(aqn+α; q3)k(aqn+β; q3)k(aqn+γ ; q3)k+1
f(k)

−
∑
k≥0

(−1)3k

[
n

1 + 3k

]

× 1 − aq6k+1+β

(aqn+α; q3)k(aqn+β; q3)k+1(aqn+γ ; q3)k+1
g(k)

+
∑
k≥0

(−1)3k

[
n

2 + 3k

]

× 1 − aq6k+2+α

(aqn+α; q3)k+1(aqn+β; q3)k+1(aqn+γ ; q3)k+1
h(k)

are given by the following summations

(2.14) f(n) = q(
3n
2 )

3n∑
k=0

(q−3n; q)kqk

(q; q)k
(aqk−2; q)3n Ω(k),

(2.15) g(n) = q(
1+3n

2 )
3n+1∑
k=0

(q−3n−1; q)kqk

(q; q)k

× (aqk−2; q)3n(1 − aq3n+k+γ) Ω(k),

(2.16) h(n) = q(
2+3n

2 )
3n+2∑
k=0

(q−3n−2; q)kqk

(q; q)k
(aqk−2; q)3n

× (1 − aq3n+k+β)(1 − aq3n+k+γ) Ω(k).

In the following section, we shall give some terminating summation
formulas by using the q-inverse series relations.
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3. Summation formulas. By replacing q by q3 and then setting
b = q−n, c = q−n+1 and d = q−n+2 in (1.1), we establish that

∑
k≥0

(a, q3
√

a,−q3
√

a, q−n, q−n+1, q−n+2; q3)k

(q3,
√

a,−√
a, aqn+1, aqn+2, aqn+3; q3)k

(aq3n)k

=
(a; q3)n(aq; q)n

(a; q)2n
.

If, setting

ω(n) =
(a; q3)n(aq; q)n

(a; q)2n
, T (n) =

(q, q2, a; q3)nan

(1 − a)
,

then we have

(3.1) ω(n) =
∑
k≥0

[
n
3k

]
(−1)3k

(aqn+1, aqn+2, aqn+3; q3)k
(1−aq6k)q(

3k
2 )T (k).

Since (3.1) can be reformulated as

ω(n)
(1 − aqn+γ)

=
∑
k≥0

[
n
3k

]
(−1)3k(1 − aq6k+γ)

(aqn+3+α, aqn+3+β; q3)k(aqn+γ ; q3)k+1

× (1 − aq6k)
(1 − aq6k+γ)

q(
3k
2 )T (k).

by (2.10), (2.11) and (2.12), we obtain

3n∑
k=0

(q−3n; q)kqk

(q; q)k

(aqk+1; q)3n(aqk+3+γ ; q3)n−1

(aqk+3+γ ; q3)n
ω(k) =

(1−aq6n)
(1−aq6n+γ)

T (n),

3n+1∑
k=0

(q−3n−1; q)kqk

(q; q)k
(aqk+1; q)3n ω(k) = 0,

3n+2∑
k=0

(q−3n−2; q)kqk

(q; q)k
(aqk+1; q)3n(1 − aq3n+k+3+β) ω(k) = 0.
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They can be simplified to give the formulas

3n∑
k=0

(q−3n, aq3n+1, aq3n+γ ; q)k(a; q3)kqk

(q, aq3n+1+γ ; q)k(a; q)2k

=
(1 − aq6n)(1 − aq3n+γ)

(1 − a)(1 − aq6n+γ)
(q, q2, a; q3)nan

(aq; q)3n
,

3n+1∑
k=0

(q−3n−1, aq3n+1; q)k(a; q3)kqk

(q; q)k(a; q)2k
= 0,

3n+2∑
k=0

(q−3n−2, aq3n+1, aq3n+4+β ; q)k(a; q3)kqk

(q, aq3n+3+β; q)k(a; q)2k
= 0.

Considering that

(a; q3)k = (a1/3, ω a1/3, ω2a1/3; q)k,

(a; q)2k = (
√

a,−√
a,
√

aq,−√
aq; q)k,

where ω := e2πi/3, we have

(3.2) 6φ5

[
q−3n, aq3n+1, aq3n+γ , a1/3, ωa1/3, ω2a1/3

aq3n+1+γ ,
√

a,−√
a,
√

aq,−√
aq

; q, q
]

=
(1 − aq6n)(1 − aq3n+γ)
(1 − aq6n+γ)(1 − a3n)

an(q, q2, a; q3)n

(a; q)3n
,

(3.3) 5φ4

[
q−3n−1, aq3n+1, a1/3, ωa1/3, ω2a1/3√

a,−√
a,
√

aq,−√
aq

; q, q
]

= 0,

(3.4) 6φ5

[
q−3n−2, aq3n+1, aq3n+4+β, a1/3, ωa1/3, ω2a1/3

aq3n+3+β ,
√

a,−√
a,
√

aq,−√
aq

; q, q
]

= 0.
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The special case γ = 0, β = −2 of (3.2) is of particular interest to us,
and we state it as a separate result.

(3.5) 5φ4

[
q−n, aqn, a1/3, ω a1/3, ω2a1/3√

a,−√
a,
√

aq,−√
aq

; q, q
]

=

{
an/3(q, q2, a; q3)n/(a; q)n, if n = 0 (mod 3),

0, if n �= 0 (mod 3),

which appears previously as (4.32) of [7].

4. Further summation formulas. We begin this section by giving
a useful formula

(4.1) (1 − d)(1 − ea)(1 − fa) + d(1 − a)(1 − b)(1 − c)

= (1 − a)(1 − bd)(1 − cd) + a(1 − d)(1 − e)(1 − f),

where efa = bcd. Formula (4.1) can be derived by setting n = 1 in
Sear’s transformations of terminating balanced 4φ3 series, [6, (III.15)]
and replacing e, f, b and c by ea, fa, bd, cd, respectively.

If we set f = c in (4.1) and replace a, b, c, d, by aqn+3k+α, qα−β+1,
qn−3k, aq6k+β, respectively, then we have

(4.2)

1 − aq2n+α =
1

1 − aq6k+β
(1 − aqn+3k+α)(1 − aqn+3k+β)

+
aq6k+α+1(1 − qβ−α−1)

(1 − aq6k+β)(1 − aq6k+α+1)
(1 − qn−3k)(1 − aqn+3k+α)

− aq6k+α+1

1 − aq6k+α+1
(1 − qn−3k)(1 − qn−3k−1),
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which can be used in (3.1) to get

(4.3)

(1 − aq2n+α)ω(n)
(1 − aqn+α)(1 − aqn+β)(1 − aqn+γ)

=
∑
k≥0

[
n
3k

]
(−1)3k(1 − aq6k+γ)

(aqn+α, aqn+β ; q3)k(aqn+γ ; q3)k+1

× (1 − aq6k)q(
3k
2 )T (k)

(1 − aq6k+β)(1 − aq6k+γ)

−
∑
k≥0

[
n

3k + 1

]
(−1)3k(1 − aq6k+1+β)

(aqn+α; q3)k(aqn+β, aqn+γ ; q3)k+1

× −aq6k+α+1(1 − aq6k)(1 − q3k+1)(1 − qβ−α−1)
(1 − aq6k+β)(1 − aq6k+1+β)(1 − aq6k+α+1)

q(
3k
2 )T (k)

+
∑
k≥0

[
n

3k + 2

]
(−1)3k(1 − aq6k+2+α)

(aqn+α, aqn+β, aqn+γ ; q3)k+1

× −aq6k+α+1(1 − aq6k)(1 − q3k+1)(1 − q3k+2)
(1 − aq6k+α+1)(1 − aq6k+2+α)

q(
3k
2 )T (k).

By using Corollary 3, we get the terminating summation formulas

3n∑
k=0

(q−3n, aq3n−2; q)kqk

(q; q)k

(aq2+α; q2)k

(aqα; q2)k

ω(k)
(aq; q)k

=
(1 − aq6n)

(1 − aqα)(1 − aq6n+β)(1 − aq6n+γ)
T (n)

(aq; q)3n−3
,

3n+1∑
k=0

(q−3n−1, aq3n−2, aq3n+1+γ ; q)kqk

(q, aq3n+γ ; q)k

(aq2+α; q2)k

(aqα; q2)k

ω(k)
(aq; q)k

=
(1 − aq6n)(1 − q3n+1)(1 − q1+α−β)

(1− aq3n+γ)(1− aqα)(1− aq6n+β)(1− aq6n+1+β)(1− aq6n+α+1)

× aq3n+βT (n)
(aq; q)3n−3

,
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3n+2∑
k=0

(q−3n−2, aq3n−2, aq3n+1+β ; q)kqk

(q, aq3n+β; q)k

(aq3n+1+γ ; q)k

(aq3n+γ ; q)k

× (aq2+α; q2)k

(aqα; q2)k

ω(k)
(aq; q)k

=
−aqα(1 − aq6n)(1 − q3n+1)(1 − q3n+2)

(1−aq3n+β)(1−aq3n+γ)(1−aqα)(1−aq6n+α+1)(1−aq6n+2+α)

× T (n)
(aq; q)3n−3

,

which can be written in the equivalent form

(4.4) 7φ6

[
q−3n, aq3n−2, q

√
aqα,−q

√
aqα, a1/3, ωa1/3, ω2a1/3√

aqα,−√
aqα,

√
a,−√

a,
√

aq,−√
aq

; q, q
]

=
(1 − aq6n)

(1 − aqα)(1 − aq6n+β)(1 − aq6n+γ)
an(q, q2, a; q3)n

(a; q)3n−2
,

(4.5)

8φ7

[
q−3n−1, aq3n−2, aq3n+γ+1, q

√
aqα,−q

√
aqα, a1/3, ω a1/3, ω2a1/3

aq3n+γ ,
√

aqα,−√
aqα,

√
a,−√

a,
√

aq,−√
aq

; q, q
]

=
an+1q3n+β(1 − aq6n)(1 − q3n+1)(1 − q1+α−β)

(1 − aq3n+γ)(1 − aqα)(1 − aq6n+β)(1 − aq6n+1+β)(1 − aq6n+α+1)

× (q, q2, a; q3)n

(a; q)3n−2
,

(4.6)

9φ8

[
q−3n−2, aq3n−2, aq3n+β+1, aq3n+γ+1, q

√
aqα,−q

√
aqα, a1/3, ω a1/3, ω2a1/3

aq3n+β , aq3n+γ ,
√

aqα,−√
aqα,

√
a,−√

a,
√

aq,−√
aq

;q, q
]

=
−an+1qα(1 − aq6n)(1 − q3n+1)(1 − q3n+2)

(1 − aq3n+β)(1 − aq3n+γ)(1 − aqα)(1 − aq6n+α+1)(1 − aq6n+2+α)

× (q, q2, a; q3)n

(a; q)3n−2
.
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Similarly, by setting c = fa in (4.1) and replacing a, b, d and f
by aq6k+β, 1/aq6k+α, aqn+3k+α and 1/a2q12k+α+β+1, respectively, we
yield

(4.7)

qn =
q3k(1 − aqn+3k+α)(1 − aqn+3k+β)

(1 − aq6k+α)(1 − aq6k+β)

− q3k(1−a2q12k+β+α+1)(1−qn−3k)(1−aqn+3k+α)
(1 − aq6k+α)(1 − aq6k+β)(1 − aq6k+α+1)

+
aq9k+α+1(1−qn−3k)(1−qn−3k−1)

(1 − aq6k+α)(1 − aq6k+α+1)
.

Using this factor-separation in (3.1), we obtain the summation for-
mula

(4.8)
qnω(n)

(1 − aqn+α)(1 − aqn+β)(1 − aqn+γ)

=
∑
k≥0

[
n
3k

]
(−1)3k(1 − aq6k+γ)

(aqn+α, aqn+β; q3)k(aqn+γ ; q3)k+1

× (1 − aq6k)q(
3k
2 )+3kT (k)

(1 − aq6k+α)(1 − aq6k+β)(1 − aq6k+γ)

−
∑
k≥0

[
n

3k + 1

]
(−1)3k(1 − aq6k+1+β)

(aqn+α; q3)k(aqn+β, aqn+γ ; q3)k+1

× (1 − aq6k)(1 − q3k+1)(1 − a2q12k+β+α+1)
(1 − aq6k+α)(1 − aq6k+β)(1 − aq6k+1+β)(1 − aq6k+α+1)

× q(
3k
2 )+3kT (k)+

∑
k≥0

[
n

3k + 2

]
(−1)3k(1 − aq6k+α+2)

(aqn+α, aqn+β, aqn+γ ; q3)k+1

× aq9k+α+1(1 − aq6k)(1 − q3k+1)(1 − q3k+2)
(1 − aq6k+α)(1 − aq6k+α+1)(1 − aq6k+α+2)

q(
3k
2 )T (k).

By using (2.14), (2.15) and (2.16), we get the following three



q-TRIPLICATE INVERSE SERIES RELATIONS 1421

terminating summation formulas

3n∑
k=0

(q−3n, aq3n−2; q)k

(q; q)k

q2kω(k)
(aq; q)k

=
(1 − aq6n)

(1 − aq6n+α)(1 − aq6n+β)(1 − aq6n+γ)
q3nT (n)

(aq; q)3n−3

=
q3nT (n)

(1 − aq6n−1)(1 − aq6n−2)(aq; q)3n−3
,

×
3n+1∑
k=0

(q−3n−1, aq3n−2; q)k

(q; q)k

(aq3n+1+γ ; q)k

(aq3n+γ ; q)k

q2kω(k)
(aq; q)k

=
(1 − aq6n)(1 − q3n+1)(1 − a2q12n+β+α+1)

(1−aq3n+γ)(1−aq6n+α)(1−aq6n+β)(1−aq6n+1+β)(1−aq6n+α+1)

× T (n)
(aq; q)3n−3

,

×
3n+2∑
k=0

(q−3n−2, aq3n−2; q)k

(q; q)k

(aq3n+1+β; q)k

(aq3n+β; q)k

(aq3n+1+γ ; q)k

(aq3n+γ ; q)k

q2kω(k)
(aq; q)k

=
(1 − aq6n)(1 − q3n+1)(1 − q3n+2)

(1−aq3n+β)(1−aq3n+γ)(1−aq6n+α)(1−aq6n+α+1)(1−aq6n+α+2)

× aq3n+αT (n)
(aq; q)3n−3

,

which also can be written in the equivalent form

(4.9) 5φ4

[
q−3n, aq3n−2, a1/3, ωa1/3, ω2a1/3√

a,−√
a,
√

aq,−√
aq

; q, q2

]

=
anq3n(q, q2, a; q3)n

(1 − aq6n−1)(1 − aq6n−2)(a; q)3n−2
,
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(4.10)

6φ5

[
q−3n−1, aq3n−2, aq3n+γ+1, a1/3, ωa1/3, ω2a1/3

aq3n+γ ,
√

a,−√
a,
√

aq,−√
aq

; q, q2

]

=
(1 − aq6n)(1 − q3n+1)(1 − a2q12n+β+α+1)

(1−aq3n+γ)(1−aq6n+α)(1−aq6n+α+1)(1−aq6n+β)(1−aq6n+1+β)

× an(q, q2, a; q3)n

(a; q)3n−2
,

(4.11)

7φ6

[
q−3n−2, aq3n−2, aq3n+β+1, aq3n+γ+1, a1/3, ωa1/3, ω2a1/3

aq3n+β , aq3n+γ ,
√

a,−√
a,
√

aq,−√
aq

; q, q2

]

=
(1 − aq6n)(1 − q3n+1)(1 − q3n+2)

(1−aq3n+β)(1−aq3n+γ)(1−aq6n+α)(1−aq6n+α+1)(1−aq6n+α+2)

× an+1q3n+α(q, q2, a; q3)n

(a; q)3n−2
.

5. Applications of Slater’s identities. In her paper [10], Slater
obtained the following terminating formula:
(5.1)

1 − q2

(q; q)n(q2; q)n+1

+
[n/3]∑
k=1

{
q6k2−k

(q; q)n−3k+1(q2; q)n+3k−1
− q6k2−7k+2

(q; q)n−3k+2(q2; q)n+3k−2

+
q6k2+k

(q; q)n−3k(q2; q)n+3k
− q6k2+7k+2

(q; q)n−3k−1(q2; q)n+3k+1

}
=

1
(q2; q)2n

,

(5.2)
qn(1 − q2)

(q; q)n(q2; q)n+1

+
[n/3]∑
k=1

{
q6k2−4k

(q; q)n−3k+1(q2; q)n+3k−1
− q6k2−4k

(q; q)n−3k+2(q2; q)n+3k−2

+
q6k2+4k

(q; q)n−3k(q2; q)n+3k
− q6k2+4k

(q; q)n−3k−1(q2; q)n+3k+1

}
=

qn

(q2; q)2n
,
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(5.3)
1 − q2

(q; q)n(q2; q)n+1

+
[n/3]∑
k=1

{
q3k2+k

(q; q)n−3k+1(q2; q)n+3k−1
− q3k2−5k+2

(q; q)n−3k+2(q2; q)n+3k−2

+
q3k2−k

(q; q)n−3k(q2; q)n+3k
− q3k2+5k+2

(q; q)n−3k−1(q2; q)n+3k+1

}
=

qn2

(q2; q)2n
,

(5.4)
qn(1 − q2)

(q; q)n(q2; q)n+1

+
[n/3]∑
k=1

{
q3k2−2k

(q; q)n−3k+1(q2; q)n+3k−1
− q3k2−2k

(q; q)n−3k+2(q2; q)n+3k−2

+
q3k2+2k

(q; q)n−3k(q2; q)n+3k
− q3k2+2k

(q; q)n−3k−1(q2; q)n+3k+1

}
=

qn2+n

(q2; q)2n
.

By using Corollary 2 in these formulae we can obtain some new
terminating formulae. To simplify our proceedings we consider the
special case

α = −1, β = −2, γ = 0, and a = q

of Corollary 2, we can get the following result:

Corollary 4. The solutions of the system of equations

(5.5)

Ω(n) =
∑
k≥0

[
n
3k

]
(−1)3k(1 − q6k+1)

(qn+1; q)3k+1
f(k)

−
∑
k≥0

[
n

1 + 3k

]
(−1)3k(1 − q6k+3)

(qn+1; q)3k+2
g(k)

+
∑
k≥0

[
n

2 + 3k

]
(−1)3k(1 − q6k+5)

(qn+1; q3)3k+3
h(k)
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are given by the following summations

(5.6) f(n) = (q; q)3nq(
3n
2 )

3n∑
k=0

(q−3n, q3n+1; q)kqk

(q, q; q)k
Ω(k),

(5.7) g(n) = (q; q)3n+1q
(3n+1

2 )
3n+1∑
k=0

(q−3n−1, q3n+2; q)kqk

(q, q; q)k
Ω(k),

(5.8) h(n) = (q; q)3n+2q
(2+3n

2 )
3n+2∑
k=0

(q−3n−2, q3n+3; q)kqk

(q, q; q)k
Ω(k).

Note that formula (5.1) can be rewritten as

(q; q)n

(q1+n; q)n+1

=
∑
k≥0

[
n
3k

]
(−1)3k(1 − q6k+1)

(qn+1; q)3k+1

(−1)3kq6k2+k(q; q)3k

(1 − q6k+1)

−
∑
k≥0

[
n

1 + 3k

]
(−1)3k(1 − q6k+3)

(qn+1; q)3k+2

× (−1)3kq6k2+5k+1(1 + q2k)(q; q)3k+1

(1 − q6k+3)

+
∑
k≥0

[
n

2 + 3k

]
(−1)3k(1 − q6k+5)

(qn+1; q3)3k+3

(−1)3kq6k2+11k+5(q; q)3k+2

(1 − q6k+5)
.

By using Corollary 4, we can get

(5.9)
3n∑

k=0

(q−3n, q3n+1; q)kqk

(q; q)2k+1
=

(−1)3nqn(3n+5)/2

1 − q6n+1
,

(5.10)
3n+1∑
k=0

(q−3n−1, q3n+2; q)kqk

(q; q)2k+1
=

(−1)3nq(3n+1)(n+2)/2(1+q2n+1)
1 − q6n+3

,

(5.11)
3n+2∑
k=0

(q−3n−2, q3n+3; q)kqk

(q; q)2k+1
=

(−1)3nq(3n2+13n+8)/2

1 − q6n+5
.
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Similarly, by using (5.2), (5.3) and (5.4), we can obtain

(5.12)
3n∑

k=0

(q−3n, q3n+1; q)kq2k

(q; q)2k+1
=

(−1)3nqn(3n+11)/2

1 − q6n+1
,

(5.13)
3n+1∑
k=0

(q−3n−1, q3n+2; q)kq2k

(q; q)2k+1
=

(−1)3nqn(3n+5)/2(1+q4n+2)
1 − q6n+3

,

(5.14)
3n+2∑
k=0

(q−3n−2, q3n+3; q)kq2k

(q; q)2k+1
=

(−1)3nq(3n+1)(n+2)/2

1 − q6n+5
,

(5.15)
3n∑

k=0

(q−3n, q3n+1; q)kqk2+k

(q; q)2k+1
=

(−1)3nq−n(3n−1)/2

1 − q6n+1
,

(5.16)
3n+1∑
k=0

(q−3n−1, q3n+2; q)kqk2+k

(q; q)2k+1
=

(−1)3nq−n(3n+1)/2(1+q4n+2)
1 − q6n+3

,

(5.17)
3n+2∑
k=0

(q−3n−2, q3n+3; q)kqk2+k

(q; q)2k+1
=

(−1)3nq(−3n2+5n+6)/2

1 − q6n+5
,

(5.18)
3n∑

k=0

(q−3n, q3n+1; q)kqk2+2k

(q; q)2k+1
=

(−1)3nq−n(3n−7)/2

1 − q6n+1
,

(5.19)
3n+1∑
k=0

(q−3n−1, q3n+2; q)kqk2+2k

(q; q)2k+1
=

(−1)3nq−n(3n−1)/2(1+q2n+1)
1 − q6n+3

,

(5.20)
3n+2∑
k=0

(q−3n−2, q3n+3; q)kqk2+2k

(q; q)2k+1
=

(−1)3nq−n(3n+1)/2

1 − q6n+5
.

6. q-multiplicate inverse series relations. Before we present
the more general case of inverse series relations, we also need to define
parameters {α1, α2, . . . , αl}

αi ∈ [1, l], i = 1, 2, . . . , l and αi �= αj if i �= j.
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By using a similar method, finite q-differences, with q-triplicate
inverse series relations, we can establish the q-multiplicate inverse series
relations as follows

Theorem 5. With φi-polynomials defined by (2.1), the system of
equations

(6.1) Ω(n)

=
l−1∑
m=0

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
k≥0

[
n

lk+m

]
(−1)lk+m(Al−m−1,k+qlk+mBl−m−1,k)Ξm(k)

l−m−2∏
i=0

φi(qn; k)
l−1∏

i=l−m−1

φi(qn; k + 1)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

is equivalent to the system of equations

(6.2)

Ξm(n) =
ln+m∑
k=0

(−1)k

[
ln + m

k

]
q(

ln+m−k
2 )

l−m−1∏
i=0

φi(qk; n)

×
l−1∏

i=l−m

φi(qk; n + 1)Ω(k),

where m = 0, 1, 2, . . . , l − 1.

This is the q-analog of Chu’s multiplicate inverse series relations
[2, Appendix B]. We will give some applications to hypergeometric
identities in forthcoming work.
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