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TIME DEPENDENT STABILITY FOR
FEYNMAN’S OPERATIONAL CALCULUS

LANCE NIELSEN

ABSTRACT. A stability theory for Feynman’s operational
calculus in the time dependent setting is presented. We
also discuss differences between the results obtained here in
the time dependent setting and similar results for the time
independent setting.

1. Introduction. In what follows we investigate certain stability
properties of Feynman’s operational calculus. The setting of the
operational calculus used in this paper is that developed by Jefferies
and Johnson in the papers [7 9] and [10]. Briefly, the operational
calculus described in the aforementioned papers is that of the formation
of functions of several noncommuting bounded linear operators on a
Banach space. The development of the operational calculus carried out
in these papers is restricted to the time independent setting wherein the
operators involved are fixed. The time dependent operational calculus,
that is to say the version of the operational calculus where operator-
valued functions replace the fixed operators of the time independent
operational calculus, was developed in [16] and [11] and, in fact,
a stability theorem for the time independent operational calculus is
presented in [14]. Other stability theorems for the operational calculus
can be found in [16] and [17]. The stability theorems presented below
differ from the theorem presented in [14] in that here we work in
the time-dependent setting. Also, while some theorems concerning
stability of the operational calculus in the time dependent setting can
be found in [17], they are confined to a functional calculus for the
exponential function. In this paper we investigate stability properties
of the operational calculus using functions other than the exponential
function.
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At this time it may be prudent to briefly explain the approach
to Feynman’s operational calculus used in this paper. As indicated
above, we are concerned with the formation of functions of several
noncommuting linear operators. However, the formation of simple
functions of only two noncommuting operators can present ambiguities.
For example, if f(x, y) = xy, what is f(A, B) where A and B are
noncommuting operators on some Banach space X? Do we set f(A, B)
equal to AB, BA, (AB+BA)/2, or some other quantity? This problem
was addressed by Richard Feynman [5] due to his interest in quantum
theory where the observables one uses are self-adjoint operators which
generally do not commute. In order to cope with the ambiguity
arising from noncommutativity, Feynman introduced some ‘rules’ for
the formation of functions of noncommuting operators. These are:

(R1) Attach time indices to operators to indicate the order in which
they act in products. (Note: Operators sometimes come with time
indices naturally attached. For example, one may have an operator
of multiplication by a time-dependent potential function.) Feynman’s
time ordering convention was that an operator with a smaller, or earlier,
time index should act before one with a larger, or later, index no matter
how they are ordered on the page.

Remark 1.1. Found in [2], and earlier in [12], is the use of measures to
attach time indices to operators, rule (R1). These measures give us the
relative position of the operators in the final disentangled expressions.
For example, if we have operators A1, . . . , Ak and associated measures
μ1, . . . , μk for which the support of μj lies to the left of the support of
μj+1, then the operator Aj always acts prior to Aj+1. Of course, if the
ordering of these supports is changed, then the order of the operators
is also changed. Hence an entire family of functional calculi is indexed
by various time-ordering measures μ1, . . . , μk. One can find a detailed
exposition of this approach to the attachment of time indices in [13] as
well as in the memoir [12].

(R2) With time indices attached, form functions of these operators
as if they were commuting. (If one stops naively at this point, the
‘equality’ involved is usually false. For example, it might say that
eA+B = eAeB even though A and B do not commute.)
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(R3) After (R2) is completed, ‘disentangle’ the resulting expression;
that is, restore the conventional ordering of the operators. In practice,
this means that we need to manipulate the expression, if possible, until
the ordering on the page coincides with the time ordering.

A much more extensive introduction to Feynman’s operational cal-
culus including a discussion of its connection with the Feynman path
integral can be found in the book of Johnson and Lapidus [13, see
especially Chapter 14].

The formalism outlined in the next section of the paper begins with
the construction of two commutative Banach algebras of functions of
several variables. The second of these algebras that will be defined, the
disentangling algebra, is the commutative setting in which the time-
ordering calculations called for in Feynman’s rules can be carried out
in a mathematically rigorous fashion. (When one does the calculations
called for by Feynman’s rules in the noncommutative setting of L(X),
the steps one goes through on their way to the final result are heuris-
tic in nature.) Once the disentangling calculation is finished in the
disentangling algebra, the result is then mapped to the noncommuta-
tive setting of L(X) via the disentangling map, see Definition 2.3 and
equation (8). The operator obtained in this way gives us the required
“disentangled” operator in L(X). (See (R3) above.)

It is the disentangling map that we investigate in this paper. Specifi-
cally, we consider the behavior of the disentangling map in the following
situations:

(1) Given time-ordering measures μ1, . . . , μk and fixed operator-
valued functions A1(·), . . . , Ak(·), choose sequences {μ1n}∞n=1, . . . ,
{μkn}∞n=1 converging weakly to μ1, . . . , μk, respectively. We consider
the behavior of the disentangling map as n → ∞. For each n ∈ N
we obtain a particular functional calculus indexed by the time-ordering
measures μ1n, . . . , μkn. Hence the limit on n is the limit of a fam-
ily of functional calculi and the problem is to determine the limiting
functional calculus.

(2) Fix time-ordering measures μ1, . . . , μk. If we have operator-
valued functions A1(s), . . . , Ak(s), we choose sequences {A1n(s)}∞n=1,
. . . , {Akn(s)}∞n=1 of operator-valued functions converging to A1(s), . . . ,
Ak(s) respectively, in some specified way, we again want to determine
the limit on n. Since the time-ordering measures are fixed, we are
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working in one particular functional calculus in this case and are
determining the limit of a sequence of operators obtained from this
functional calculus.

Future work on the stability properties of the operational calculus
includes consideration of the stability of the disentangling map defined
in the presence of a (C0) semi-group, see [11]. Also to be addressed is
the construction of a stability theory for Feynman’s operational calculus
where time-ordering measures with nonzero discrete parts are used.
Work in this direction is in progress.

2. The time-dependent disentangling map. Before presenting
the stability theorems for the operational calculus in the time depen-
dent setting, we have to define the disentangling map in the time de-
pendent setting. In doing this we follow the initial definitions set out
in [16] and [11].

Remark 2.1. As the reader will note, the algebras of functions defined
below are referred to as Banach algebras. We will not prove this
assertion here but will instead refer the reader to the paper [7] where
the proof is carried out for the time independent setting. However, as
noted in [16] and [11], the proof of this fact for the time dependent
setting is the same.

Remark 2.2. We will assume throughout that the Banach space X is
separable.

Definition 2.1. Fix T > 0. For i = 1, . . . , k let Ai : [0, T ] → L(X)
be maps that are measurable in the sense that A−1

i (E) is a Borel set
in [0, T ] for any strong operator open set E ⊂ L(X). To each Ai(·) we
associate a finite continuous Borel measure μi on [0, T ] and we require
that, for each i,

(1) ri =
∫

[0,T ]

‖Ai(s)‖L(X)μi(ds) < ∞.

We define, as in [7, 11] and [16], the commutative Banach algebra
AT (r1, . . . , rk) of functions f of k complex variables that are analytic
on the open polydisk {(z1, . . . , zk) : |zi| < ri, i = 1, . . . , k} and
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continuous on its boundary. (We emphasize that the weights we are
using here depend on the operator-valued functions as well as on T and
on the measures.) The norm for this Banach algebra is defined to be

(2) ‖f‖AT
=

∞∑
n1,... ,nk=0

|an1,... ,nk
| rn1

1 · · · rnk

k .

Definition 2.2. To the algebra AT we associate as in [7, 11]
and [16] a disentangling algebra by creating formal commuting ob-
jects (Ai(·), μi)∼, i = 1, . . . , k. (These objects play the role of
the indeterminants z1, . . . , zk.) We define the disentangling algebra
DT ((A1(·), μ1)∼, . . . , (Ak(·), μk)∼) to be the collection of functions of
the new indeterminants with the same properties as the elements of
the algebra defined in Definition 2.1. However, rather than using the
notation (Ai(·), μi)∼ below, we will often abbreviate to Ai(·)∼, espe-
cially when carrying out calculations. The norm for DT is the same as
defined in (2) for the Banach algebra AT though we will refer to it as
‖ · ‖DT

if a distinction needs to be made.

It is not hard to show that AT and DT are commutative Banach
algebras which are isomorphic to one another, see Propositions 1.1 1.3
in [7].

Remark 2.3. We will often write DT in place of DT (A1(·)∼, . . . ,
Ak(·)∼) or DT ((A1(·), μ1)∼, . . . , (Ak(·), μk)∼).

For each t ∈ [0, T ] we define the disentangling map

(3) T t
μ1,... ,μk

: DT ((A1(·), μ1)∼, . . . , (Ak(·), μk)∼) −→ L(X)

as in [7, 11] and [16]. In order to state the following definition, which
gives us the action of the disentangling map, we must first introduce
some notation. (This notation is essentially the same as used in [7,
11], and [16].) For a nonnegative integer n and a permutation π ∈ Sn,
the set of all permutations of {1, . . . , n}, we define subsets Δt

n(π) of
[0, t]n by

(4)

Δt
n(π) =

{
(s1, . . . , sn) ∈ [0, t]n : 0 < sπ(1) < sπ(2) < · · · < sπ(n) < t

}
.
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We next define, for nonnegative integers n1, . . . , nk and a permutation
π ∈ Sn with n := n1 + · · · + nk,
(5)

C̃π(i)(sπ(i)) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A1(sπ(i))∼, if π(i) ∈ {1, . . . , n1},
A2(sπ(i))∼, if π(i) ∈ {n1, . . . , n1 + n2},
...
Ak(sπ(i))∼, if π(i) ∈ {n1 + · · · + nk−1 + 1, . . . , n}.

Now, for every t ∈ [0, T ], we define the action of the disentangling map
on monomials.

Definition 2.3. Let Pn1,... ,nk
t (A1(·)∼, . . . , Ak(·)∼) = (A1(·)∼)n1 · · ·

(Ak(·)∼)nk . We define the action of the disentangling map on this
monomial by

(6)

T t
μ1,... ,μk

Pn1,... ,nk
t (A1(·)∼, . . . , Ak(·)∼)

= T t
μ1,... ,μk

((A1(·)∼)n1 · · · (Ak(·)∼)nk)

:=
∑

π∈Sn

∫
Δt

n(π)

Cπ(n)(sπ(n)) · · ·Cπ(1)(sπ(1))

× (μn1
1 × · · · × μnk

k ) (ds1, . . . , dsn)

where the notation is as defined in (5) except that here we omit the
tildes and so obtain the appropriate operator-valued functions in place
of the formal commuting objects.

Finally, for f ∈ DT ((A1(·), μ1)∼, . . . , (Ak(·), μk)∼) written as
(7)

f (A1(·)∼, . . . , Ak(·)∼) =
∞∑

n1,... ,nk=0

cn1,... ,nk
(A1(·)∼)n1 · · · (Ak(·)∼)nk ,

we define the action of the disentangling map on f by

(8)

T t
μ1,... ,μk

f (A1(·)∼, . . . , Ak(·)∼)
= ft;μ1,... ,μk

(A1(·)∼, . . . , Ak(·)∼)

=
∞∑

n1,... ,nk=0

cn1,... ,nk
T t

μ1,... ,μk
Pn1,... ,nk

t (A1(·)∼, . . . , Ak(·)∼) .
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Remark 2.4. As is shown in [16] and [11] the disentangling map is a
linear contraction from the disentangling algebra to the noncommuta-
tive Banach algebra of bounded linear operators on the Banach space
X. This differs somewhat from the time independent setting of [7]
where the disentangling map, defined exactly as above, is shown to be
a norm one contraction. As remarked in [16] and [11], it is the presence
of time dependent L(X)-valued functions that causes the map to be a
contraction not necessarily of norm one.

Remark 2.5. It is worth pointing out that equation (6) is where
the calculations involved in applying Feynman’s ‘rules’ are carried out.
In fact, this equation is stated as part of Proposition 2.2 of [7] when
continuous Borel probability measures are used for time-ordering. It is
shown in [8] that the same disentangling results when finite continuous
Borel measures are used in place of probability measures.

3. Stability of the time-dependent operational calculus.

3.1 Introductory remarks. We wish to comment briefly here on
what we mean by stability in the context of this paper. Below we will
consider stability of the calculus in two different situations. First we
will consider stability of the calculus with respect to the time-ordering
measures. Specifically, given operator-valued functions A1(·), . . . , Ak(·)
and the associated time-ordering measures μ1, . . . , μk (which will, for
convenience, be taken to be continuous probability measures) on the
interval [0, T ], we will choose sequences {μ1n}∞n=1, . . . , {μkn}∞n=1 of
continuous probability measures on [0, T ] that converge weakly to the
given continuous probability measures μ1, . . . , μk and determine that
the sequence {T T

μ1n,... ,μkn
}∞n=1 converges in an appropriate topology to

T T
μ1,... ,μk

. The reader will note that for each n ∈ N we have a particular
functional calculus and consequently our stability result in this setting
states that we have a family of functional calculi converging to a certain
functional calculus. A theorem along the same lines as that under
discussion here can be found in [14] although that theorem is given
in the time independent setting and the proof, while similar to the
one given below, is different in some significant respects. The second
stability result we will establish below is that of stability with respect to
the operator-valued functions. The result obtained below is quite nice
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in that we only need choose sequences {A1n(·)}∞n=1, . . . , {Akn(·)}∞n=1

of operator-valued functions converging μi almost everywhere for each
i = 1, . . . , k. A vector-valued version of Egorov’s theorem is then used
to establish the stability result. It is striking that we obtain convergence
in the strong topology here with only almost everywhere convergence
of the sequences of operator-valued functions.

3.2 Stability with respect to the measures. Let Ai : [0, T ] →
L(X), i = 1, . . . , k, be measurable in the sense of Definition 2.1.
Associate with each Ai a continuous Borel probability measure μi on
[0, T ]. Also as in the introduction define

(9) ri :=
∫

[0,T ]

‖Ai(s)‖μi(ds)

for i = 1, . . . , k, and assume that each of these quantities is finite.
Construct the commutative Banach algebra AT (r1, . . . , rk) and the
disentangling algebra DT ((A1(·), μ1)∼, . . . , (Ak(·), μk)∼), also a com-
mutative Banach algebra.

Now suppose that {μ1n}∞n=1, . . . , {μkn}∞n=1 are sequences of contin-
uous Borel probability measures on [0, T ] such that μin ⇀ μi for
i = 1, . . . , k.

Remark 3.1. The reader will recall that a sequence {νn}∞n=1 of
probability measures on a metric space S converges weakly to the
probability measure ν on S, denoted by νn ⇀ ν, if

∫
S

f dνn →
∫

S
f dν

for every bounded continuous function f on S.

We assume now that each Ai(·) is continuous with respect to the usual
topology on [0, T ] and the norm topology on L(X). Define sequences
{rin}∞n=1, i = 1, . . . , k of real numbers by

(10) rin =
∫

[0,T ]

‖Ai(s)‖μin(ds).

Note that rin → ri for each i = 1, . . . , k. For each n ∈ N
we obtain the commutative Banach algebras AT (r1n, . . . , rkn) and
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DT ((A1(·), μ1n)∼, . . . , (Ak(·), μkn)∼). Construct the Banach algebra
UD by defining

(11) UD :=
∑

n∈N∪{0}

⊕
DT ((A1(·), μ1n)∼, . . . , (Ak(·), μkn)∼).

where for n = 0 the summand is DT ((A1(·), μ1)∼, . . . , (Ak(·), μk)∼).
(The author is indebted to R. Crist for a suggestion that led to the use
of this direct sum Banach algebra in this paper.) The norm on UD is

(12) ‖{fn}‖UD
= sup{‖fn‖DT

((A1(·), μ1n)∼, . . . , (Ak(·), μkn)∼) :
n = 0, 1, 2, . . . }.

(See, for example, the book [15] for the details of direct sum Banach
algebras.) Let πn be the canonical projection from UD to the nth
summand for n = 0, 1, 2, . . . .

With these preliminaries finished we state the following theorem.

Theorem 3.1. Let Ai : [0, T ] → L(X), i = 1, . . . , k, be continuous
with respect to the usual topology on [0, T ] and the norm topology on
L(X). Associate to each Ai(·) a continuous Borel probability measure
μi on [0, T ]. Let {μin}∞n=1, i = 1, . . . , k, be sequences of continuous
Borel probability measures on [0, T ] such that, for each i = 1, . . . , k,
μin ⇀ μi. Construct the direct sum Banach algebra UD as above, see
equation (11), with norm ‖ · ‖UD

given by (12). Then

(13) lim
n→∞

∣∣Λ (
T T

μ1n,... ,μkn
(πn(θf ))

)
− Λ

(
T T

μ1,... ,μk
(π0(θf ))

) ∣∣ = 0

for all Λ ∈ L(X)∗ and all θf := (f, f, f, . . . ) ∈ UD. Note that equation
(13) can be restated as

(14) lim
n→∞

∣∣Λ (
T T

μ1n,... ,μkn
(f) − T T

μ1,... ,μk
(f)

) ∣∣ = 0.

Proof. To accomplish the proof we need to first establish that we
can interchange the limit on n and the sum over nonnegative integers
m1, . . . , mk in the series expansion of f . (Recall the definition of the
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disentangling map given in equation (8).) Once this is done, we show
that

(15)

lim
n→∞

∣∣∣∣
∫

Δm(π)

Λ
(
Cπ(m)(sπ(m)) · · ·Cπ(1)(sπ(1))

)

× (μm1
1n × · · · × μmk

kn ) (ds1, . . . , dsm)

−
∫

Δm(π)

Λ
(
Cπ(m)(sπ(m)) · · ·Cπ(1)(sπ(1))

)

× (μm1
1 × · · · × μmk

k ) (ds1, . . . , dsm)
∣∣∣∣

= 0

for m1, . . . , mk ∈ N ∪ {0} and each π ∈ Sm.

For the first step in the proof, we calculate as follows. Given
Λ ∈ L(X)∗ and θf := (f, f, f, . . . ) ∈ UD, we have

∣∣∣Λ (
T T

μ1n,... ,μkn
(πn(θf ))

)
− Λ

(
T T

μ1,... ,μk
(π0(θf ))

) ∣∣∣
(16)

≤ ‖Λ‖
∥∥∥∥

∞∑
m1,... ,mk=0

cm1,... ,mk

∑
π∈Sm

∫
Δm(π)

Cπ(m)(sπ(m)) · · ·Cπ(1)(sπ(1))

× (μm1
1n × · · · × μmk

kn ) (ds1, . . . , dsm)

−
∞∑

m1,... ,mk=0

cm1,... ,mk

∑
π∈Sm

d

∫
Δm(π)

Cπ(m)(sπ(m)) · · ·Cπ(1)(sπ(1))

× (μm1
1 × · · · × μmk

k ) (ds1, . . . , dsm)
∥∥∥∥

≤ ‖Λ‖
{ ∞∑

m1,... ,mk=0

|cm1,... ,mk
|

∑
π∈Sm

×
∫

Δm(π)

‖Cπ(m)(sπ(m))‖ · · · ‖Cπ(1)(sπ(1))‖·

× (μm1
1n × · · · × μmk

kn ) (ds1, . . . , dsm)
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+
∞∑

m1,... ,mk=0

|cm1,... ,mk
|

∑
π∈Sm

×
∫

Δm(π)

‖Cπ(m)(sπ(m))‖ · · · ‖Cπ(1)(sπ(1))‖

× (μm1
1 × · · · × μmk

k ) (ds1, . . . , dsm)
}

≤ ‖Λ‖
{
‖f‖DT ((A1(·),μ1n)∼,... ,(Ak(·),μkn)∼)

+ ‖f‖DT ((A1(·),μ1)∼,... ,(Ak(·),μk)∼)

}
≤ ‖Λ‖

{
‖θf‖UD

+ ‖f‖DT ((A1(·),μ1)∼,... ,(Ak(·),μk)∼)

}
.

Let ε > 0 be given. Using the definition of the norm on UD there is an
n0 ∈ N such that

(17) ‖f‖DT ((A1(·),μ1n0 )∼,... ,(Ak(·),μkn0 )∼) + ε > ‖θf‖UD
.

We now consider the map

(18) (m1, . . . , mk) 	−→ ‖Λ‖
(
|cm1,... ,mk

|rm1
1n0

· · · rmk

kn0
+ ε/2m

+ |cm1,... ,mk
|rm1

1 · · · rmk

k ) .

In the expression on the right above, the product |cm1,... ,mk
|rm1

1n0
· · · rmk

kn0

is the summand for the norm in the disentangling algebra

DT ((A1(·), μ1n0)
∼, . . . , (Ak(·), μkn0)

∼) .

The last term on the right above is the summand for the norm on the
disentangling algebra DT ((A1(·), μ1)∼, . . . , (Ak(·), μk)∼). Finally, the
term ε/2m above enters in via equation (17) where m := m1 + · · ·+mk.
Using equation (17) the map defined in equation (18) is clearly a
summable dominating function for

(19)

∞∑
m1,... ,mk=0

|cm1,... ,mk
|

∑
π∈Sm

∣∣∣∣
∫

Δm(π)

Λ
{
Cπ(m)(sπ(m)) · · ·

Cπ(1)(sπ(1))
}

(μm1
1n × · · · × μmk

kn ) (ds1, . . . , dsm)

−
∫

Δm(π)

Λ
{
Cπ(m)(sπ(m)) · · ·Cπ(1)(sπ(1))

}

× (μm1
1 × · · · × μmk

k ) (ds1, . . . , dsm)
∣∣∣∣.
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The dominated convergence theorem applies and consequently we are
allowed to apply the limit on n to

(20)

∣∣∣∣
∫

Δm(π)

Λ
{
Cπ(m)(sπ(m)) · · ·Cπ(1)(sπ(1))

}

× (μm1
1n × · · · × μmk

kn ) (ds1, . . . , dsm)

−
∫

Δm(π)

Λ
{
Cπ(m)(sπ(m)) · · ·Cπ(1)(sπ(1))

}

× (μm1
1 × · · · × μmk

k ) (ds1, . . . , dsm)
∣∣∣∣

for fixed π ∈ Sm and fixed m1, . . . , mk ∈ N.

In order to calculate the limit of the expression above, we need to
appeal to the continuity assumption on the operator-valued functions
A1(·), . . . , Ak(·) as well as to properties of weak convergence of prob-
ability measures. To this end we rewrite the expression given in (20)
as

(21)

∣∣∣∣
∫

[0,T ]m
χΔm(π)Λ

{
Cπ(m)(sπ(m)) · · ·Cπ(1)(sπ(1))

}

× (μm1
1n × · · · × μmk

kn ) (ds1, . . . , dsm)

−
∫

[0,T ]m
χΔm(π)Λ

{
Cπ(m)(sπ(m)) · · ·Cπ(1)(sπ(1))

}

× (μm1
1 × · · · × μmk

k ) (ds1, . . . , dsm)
∣∣∣∣.

Note that χΔm(π) is continuous except on a set of μm1
1 × · · · × μmk

k -
measure zero since our measures are all continuous. Next, since [0, T ]m

is a separable metric space in the product topology, Theorem 3.2 of [1]
tells us that μm1

1n ×· · ·×μmk

kn ⇀ μm1
1 ×· · ·×μmk

k . Finally, since the set of
discontinuities of the integrands in equation (21) have μm1

1 ×· · ·×μmk

k -
measure zero, Theorem 5.2 of [1] asserts that the limit on n of the
expression in (21) vanishes. This finishes the proof.

Remark 3.2. (i) We note that the conclusion of Theorem 3.1 is not as
strong as the convergence in the operator norm topology on L(X) that
was obtained in the corresponding theorem in [14]. (Weak convergence
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of sequences of measures is used in both theorems.) This difference
is of course due to the change to the time dependent setting and the
requirements of weak convergence of sequences of measures.

(ii) The reader should note that a simple corollary to the theorem
just proved is the observation that we can replace equation (14) with
a corresponding equation concerning convergence in the weak operator
topology on L(X).

3.3 Stability with respect to the operator-valued functions.
To establish a stability theorem for the disentangling map with respect
to the operator-valued functions in the time dependent setting, we need
some preliminaries. Suppose Ai : [0, T ] → L(X), i = 1, . . . , k are given
and associate to each Ai(·) a continuous Borel probability measure μi

on [0, T ]. In order to obtain the proof of Theorem 3.5 below, we need
to change somewhat the definition of measurability that we will use
here. The reason for this is to accommodate the use of the vector-
valued version of Egorov’s theorem on almost uniform convergence of
sequences of functions. The definition found immediately below is that
given by Dunford and Schwartz in [4, p. 106].

Definition 3.1. Let (S,M, μ) be a finite measure space where μ is
a countably additive real or complex measure on S and M is the σ-
algebra of μ-measurable sets. For X a Banach space and f : S → X, we
say that f is μ-measurable if there is a sequence {fn} of X-valued simple
functions on S that converge to f in X-norm μ-almost everywhere.

Two characterizations of our definition of μ-measurability are the
following (Theorems 10 and 11, respectively, pp. 148 and 149 of [4]).

Theorem 3.2. Let (S,M, μ) be a finite measure space with μ a
countably additive measure on S. Let (S,M∗, μ) be the completion
of the measure space (S,M, μ). Then, given a Banach space X,
f : S → X is μ-measurable if and only if, for every F ∈ M,

(i) there is a μ-null set N ⊂ F and a countable set H ⊂ X such that
f(F − N) ⊂ cl (H), and

(ii) F ∩ f−1(G) ∈ M∗ for each open G ⊂ X.
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Remark 3.3. The set G in (ii) above can be taken as a Borel set in
X.

Theorem 3.3. Let (S,M, μ) be a finite measure space and μ a
countably additive measure on M. Let X be a Banach space. Then
f : S → X is μ-measurable if and only if

(i) f satisfies (i) above in Theorem 3.2 for F = S, and

(ii) for every x∗ ∈ X∗, the scalar function x∗f on S is measurable.

Remark 3.4. In view of Theorem 3.2, there appears to be a connection
to the definition of measurability used in the discussion of the first
stability theorem, it is not at this time entirely clear to the author
what the precise connection is.

We will assume from this point on that each Ai is μi-measurable for
each i = 1, . . . , k. We will, in addition, assume that

(22) sup {‖Ai(s)‖ : s ∈ [0, T ]} < ∞

for i = 1, . . . , k. It follows from the measurability assumption and the
norm boundedness assumption above that each of the functions Ai(·)
are Bochner integrable on [0, T ].

Remark 3.5. It should be noted that we really only need the
boundedness assumption given in equation (22) to be true μi almost
everywhere for each i. We make the stronger assumption above for
convenience.

Next choose sequences {Ai,n(·)}∞n=1, i = 1, . . . , k, of L(X)-valued
functions which are measurable in the sense of Definition 3.1 and such
that

(23) lim
n→∞ ‖Ai,n(s) − Ai(s)‖L(X) = 0

μi almost everywhere in [0, T ] for each i. Assume further that

sup {‖Ai,n(s)‖ : s ∈ [0, T ], n = 1, 2, . . . } < ∞
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and that
sup {‖Ai(s)‖ : s ∈ [0, T ]} < ∞

for i = 1, . . . , k.

We now state the vector-valued version of Egorov’s theorem that will
be used in the proof of Theorem 3.5 below. (See, for example, Theorem
12, p. 149, of [4].)

Theorem 3.4. Let (S,M, μ) be a finite measure space with a count-
ably additive measure μ. A sequence {fn} of μ-measurable functions
on S with values in a Banach space X converges μ-uniformly to the
μ-measurable function f if and only if fn → f μ almost everywhere
in S.

Remark 3.6. Recall that fn converges to f μ-uniformly if for every
ε > 0 there is a set E ∈ M such that |μ|(E) < ε and fn → f uniformly
on S −E. In the current setting of X-valued functions, convergence is
with respect to the norm on X.

We now move on to the construction of the various Banach algebras
needed for our stability theorem. Define

ri :=
∫

[0,T ]

‖Ai(s)‖μi(ds)(24)

and

ri,n :=
∫

[0,T ]

‖Ai,n(s)‖μi(ds)(25)

for every i, n. Note that, due to the norm finiteness assumptions above,
all of these numbers are finite. We obtain a family {AT (r1,n, . . . , rk,n) :
n ∈ N} of commutative Banach algebras. Associated with this family
of Banach algebras is the corresponding family {DT (A1,n(·)∼, . . . ,
Ak,n(·)∼) : n ∈ N} of disentangling algebras. Construct the Banach
algebra

UD =
∑

n∈N∪{0}

⊕
DT (A1,n(·)∼, . . . , Ak,n(·)∼)
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where the zeroth summand is the disentangling algebra DT (A1(·)∼, . . . ,
Ak(·)∼). The norm on this Banach algebra is that given above in (12).
We can now state

Theorem 3.5. Let Ai : [0, T ] → L(X), i = 1, . . . , k, be measurable
in the sense of Definition 3.1. Associate to each Ai a continuous Borel
probability measure μi on [0, T ]. Next choose sequences {Ai,n(·)}∞n=1,
i = 1, . . . , k, of L(X)-valued functions which are measurable in the
sense of Definition 3.1 and such that

(26) lim
n→∞ ‖Ai,n(s) − Ai(s)‖L(X) = 0

μi almost everywhere in [0, T ] for each i. Assume further that

sup {‖Ai,n(s)‖ : s ∈ [0, T ], n = 1, 2, . . . } < ∞

and that
sup {‖Ai(s)‖ : s ∈ [0, T ]} < ∞

for i = 1, . . ., k. Construct commutative Banach algebras AT (r1, . . ., rk)
and AT (r1,n, . . . , rk,n) with weights defined in equations (24) and
(25), the associated disentangling algebras DT (A1(·)∼, . . . , Ak(·)∼) and
DT (A1,n(·)∼, . . . , Ak,n(·)∼), and the direct sum Banach algebra UD. It
follows that

(27) lim
n→∞ T T

μ1,... ,μk
(πn(θf )) = T T

μ1,... ,μk
(π0(θf ))

for all θf ∈ UD where θf and πn are the same as in the previous
subsection. Of course equation (27) can also be written as

(28) lim
n→∞ T T

μ1,... ,μk
(f) = T T

μ1,... ,μk
(f).

Proof. Let m1, . . . , mk ∈ N. Then, by the definition of the disentan-
gling map,

(29)

Pm1,... ,mk

T ;μ1,... ,μk
(A1,n(·), . . . , Ak,n(·))

=
∑

π∈Sm

∫
Δm(π)

Cπ(m),n(sπ(m)) · · ·Cπ(1),n(sπ(1))

× (μm1
1 × · · · × μmk

k ) (ds1, . . . , dsm)
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and so

∥∥Pm1,... ,mk

T ;μ1,... ,μk
(A1,n(·), . . . , Ak,n(·)) − Pm1,... ,mk

T ;μ1,... ,μk
(A1(·), . . . , Ak(·))

∥∥
(30)

≤
∑

π∈Sm

∫
Δm(π)

‖Cπ(m),n(sπ(m)) · · ·Cπ(1),n(sπ(1))

− Cπ(m)(sπ(m)) · · ·Cπ(1)(sπ(1))‖ (μm1
1 × · · · × μmk

k ) (ds1, . . . , dsm)

≤
∑

π∈Sm

∫
Δm(π)

m∑
j=1

{
‖Cπ(1),n(sπ(1))‖ · · · ‖Cπ(j−1),n(sπ(j−1))‖

× ‖Cπ(j),n(sπ(j)) − Cπ(j)(sπ(j))‖

× ‖Cπ(j+1)(sπ(j+1))‖ · · · ‖Cπ(m)(sπ(m))‖
}

× (μm1
1 × · · · × μmk

k ) (ds1, . . . , dsm)

≤
∑

π∈Sm

m∑
j=1

∫
[0,T ]m

{
‖Cπ(1),n(sπ(1))‖ · · · ‖Cπ(j−1),n(sπ(j−1))‖

× ‖Cπ(j),n(sπ(j)) − Cπ(j)(sπ(j))‖ ‖Cπ(j+1)(sπ(j+1))‖ · · ·

‖Cπ(m)(sπ(m))‖
}

(μm1
1 × · · · × μmk

k ) (ds1, . . . , dsm)

=
∑

π∈Sm

m∑
j=1

[{∫
[0,T ]

‖Cπ(1),n(sπ(1))‖μπ(1)(dsπ(1))
}
· · ·

{∫
[0,T ]

‖Cπ(j−1),n(sπ(j−1))‖μπ(j−1)(dsπ(j−1))
}

×
{ ∫

[0,T ]

‖Cπ(j),n(sπ(j)) − Cπ(j)(sπ(j))‖μπ(j)(dsπ(j))
}

×
{ ∫

[0,T ]

‖Cπ(j+1)(sπ(j+1))‖μπ(j+1)(dsπ(j+1))
}
· · ·

{∫
[0,T ]

‖Cπ(m)(sπ(m))‖μπ(m)(dsπ(m))
}]

where μπ(i) denotes the measure associated with the operator-valued
function Cπ(i). Let ε > 0 be given. Since Aj,n → Aj μj-almost
everywhere in L(X)-norm for each j = 1, . . . , k we can, using the
vector-valued version of Egorov’s theorem, choose Borel sets Ej , j =
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1, . . . , k, in [0, T ] such that μj([0, T ]\Ej) < ε and Aj,n → Aj uniformly
in L(X)-norm on Ej , j = 1, . . . , k. We can therefore write, for each
j = 1, . . . , k,

∫
[0,T ]

‖Aj,n(s) − Aj(s)‖μj(ds)

=
∫

[0,T ]\Ej

‖Aj,n(s) − Aj(s)‖μj(ds) +
∫

Ej

‖Aj,n(s) − Aj(s)‖μj(ds)

≤ ε · sup
{
‖Aj,n(s)‖ + ‖Aj(s)‖ : s ∈ [0, T ], n ∈ N

}
+

∫
Ej

‖Aj,n(s) − Aj(s)‖μj(ds)

=: εRj +
∫

Ej

‖Aj,n(s) − Aj(s)‖μj(ds).

By uniform convergence on Ej there is an Nj ∈ N such that if n ≥ Nj ,
then ‖Aj,n(s)−Aj(s)‖ < ε for all s ∈ [0, T ]. It follows that, for n ≥ Nj ,

(32) εRj +
∫

Ej

‖Aj,n(s) − Aj(s)‖μj(ds) < εRj + εμj(Ej)

for j = 1, . . . , k. Therefore, for n ≥ max(N1, . . . , Nk), we have

∑
π∈Sm

m∑
j=1

[{ ∫
[0,T ]

‖Cπ(1),n(sπ(1))‖μπ(1)(dsπ(1))
}
· · ·

(33)

{∫
[0,T ]

‖Cπ(j−1),n(sπ(j−1))‖μπ(j−1)(dsπ(j−1))
}

×
{∫

[0,T ]

‖Cπ(j),n(sπ(j)) − Cπ(j)(sπ(j))‖μπ(j)(dsπ(j))
}

×
{∫

[0,T ]

‖Cπ(j+1)(sπ(j+1))‖μπ(j+1)(dsπ(j+1))
}
· · ·

{∫
[0,T ]

‖Cπ(m)(sπ(m))‖μπ(m)(dsπ(m))
}]
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<
∑

π∈Sm

m∑
j=1

{ [
sup{‖Cπ(1),n(sπ(1))‖ : s ∈ [0, T ], n ∈ N}

]
· · ·

[
sup{‖Cπ(j−1),n(sπ(j−1))‖ : s ∈ [0, T ], n ∈ N}

]
× ε{Rj + μj(Ej)} ·

[
sup{‖Cπ(j+1)(sπ(j+1))‖ : s ∈ [0, T ]}

]
· · ·[

sup{‖Cπ(m)(sπ(m))‖ : s ∈ [0, T ]}
] }

= ε {finite sum of finite terms}.

Hence we have established that, as n → ∞, ‖Pm1,... ,mk

T ;μ1,... ,μk
(A1,n(·), . . . ,

Ak,n(·)) − Pm1,... ,mk

T ;μ1,... ,μk
(A1(·), . . . , Ak(·)) ‖ → 0.

To finish our proof, we choose θf = (f, f, . . . ) ∈ UD. Then,
proceeding as in our first stability result, Theorem 3.1,

(34)

∥∥T T
μ1,... ,μk

(πn(θf )) − T T
μ1,... ,μk

(π0(θf ))
∥∥

≤
∞∑

m1,... ,mk=0

|cm1,... ,mk
|
(
rm1
1,n · · · rmk

k,n + rm1
1 · · · rmk

k

)

≤ ‖θf‖UD
+ ‖f‖DT ((A1(·),μ1)∼,... ,(Ak(·),μk)∼).

Choose, given δ > 0, an n0 ∈ N such that

(35) ‖θf‖UD
≤ ‖f‖DT ((A1,n0 (·),μ1)∼,... ,(Ak,n0 (·),μk)∼) + δ.

The map

(36) (m1, . . . , mk)

	−→ |cm1,... ,mk
| rm1

1,n0
· · · rmk

k,n0
+

δ

2m
+ |cm1,... ,mk

| rm1
1 · · · rmk

k

is therefore a summable dominating function for the sum over m1, . . . , mk

in equation (34). The dominated convergence theorem applies and we
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obtain

lim
n→∞ ‖T T

μ1,... ,μk
(πn(θf )) − T T

μ1,... ,μk
(π0(θf )) ‖

(37)

≤ lim
n→∞

∞∑
m1,... ,mk=0

|cm1,... ,mk
| ‖Pm1,... ,mk

T ;μ1,... ,μk
(A1,n(·), . . . , Ak,n(·))

− Pm1,... ,mk

T ;μ1,... ,μk
(A1(·), . . . , Ak(·)) ‖

=
∞∑

m1,... ,mk=0

|cm1,... ,mk
| · lim

n→∞ ‖Pm1,... ,mk

T ;μ1,... ,μk
(A1,n(·), . . . , Ak,n(·))

− Pm1,... ,mk

T ;μ1,... ,μk
(A1(·), . . . , Ak(·)) ‖

= 0,

finishing the proof of the theorem.

3.4 Discussion. The stability theorems presented in the previous
section give us a reasonable start to a stability theory for Feynman’s
operational calculus in the time dependent setting. The first theorem,
Theorem 3.1, establishing stability with respect to the time-ordering
measures, does not have as strong a conclusion as one would hope.
However, because we are using weak convergence of sequences of
probability measures, we needed to use a Λ ∈ L(X)∗ in order to obtain a
complex-valued function with which to use in conjunction with the weak
convergence assumption. It may be possible to improve Theorem 3.1
and work on this is in progress.

The second stability theorem, Theorem 3.5, concerning stability of
the calculus with respect to the operator-valued functions seems to be a
fairly strong result. We are able to obtain strong operator convergence
of the disentangled expressions by assuming only almost-everywhere
convergence of the sequences of L(X)-valued functions. Of course, the
fact that we are working in a finite measure space is what enables us
to apply Egorov’s theorem and this is in fact the key to the proof.

Another point worth bringing out is that we can bring an unbounded
operator into the calculus as a generator of a (C0) semi-group. Indeed,
in [11] the disentangling algebra and the disentangling map is defined
in the presence of a (C0) semi-group of operators. It is natural to ask



TIME DEPENDENT STABILITY 1367

about stability in this setting, and, in fact, one sees in [16] and [17]
theorems concerning the stability of disentanglings of the exponential
function of several noncommuting operator-valued functions in the
presence of a generator of a (C0) semigroup. Similar theorems to
some of those presented in [14] and [17] can certainly be stated and
proved. Work on such theorems is under way. Also, in the presence
of a semigroup generator one can also establish stability with respect
to strong resolvant convergence of a sequence of semigroup generators
and this theorem, too, will be presented in future work.

Finally, a version of the operational calculus using time-ordering
measures with discrete and continuous parts is under development by
the author and G.W. Johnson. While a stability theory in this more
general setting is much more difficult to work out, it does appear that
some stability theorems will be possible to establish. These results will
also appear in future work.
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