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SEMIUMBILICS AND 2-REGULAR IMMERSIONS
OF SURFACES IN EUCLIDEAN SPACES

S.M. MORAES AND M.C. ROMERO-FUSTER

ABSTRACT. The semiumbilics are points at which the cur-
vature ellipse of a surface degenerates to a segment. We char-
acterize them here as critical points of the principal config-
urations associated to essential normal fields on the surface.
This allows us to show that orientable closed surfaces with
nonvanishing Euler number must have semiumbilics when im-
mersed in 4-space. We also obtain as a consequence some
conclusions relating the existence of 2-regular embeddings of
surfaces in R5 in the sense of Feldman with that of globally
defined essential normal fields.

1. Introduction. Feldman introduced in [4] the concept of regular
immersion of order 2 of a submanifold in Rn. He showed that, in the
case of a surface, the most relevant dimensions to study this property
are n = 5, 6, for there are no regular immersions of order 2 for n ≤ 4
and, on the other hand, such immersions become generic when n > 6.
A natural question in this context is that of the existence of 2-regular
immersions for a given surface in Rn, n = 5, 6. The answer is nontrivial,
it is not at all easy to obtain 2-regular immersions of, for instance, a
2-sphere in R5. A well-known one is the Veronesse surface [3], but you
can see that a small perturbation of this introduces 2-singular points
[9]. It was observed in [9] that for n = 5 this problem can be put
in terms of the contacts of the surface with hyperplanes. We point
out that in a first stage these contacts are governed by the behavior
of the second fundamental form of the surface, which is also related
to that of the principal configurations associated to normal fields on
the surface. Our purpose here is to use these tools in order to obtain
further information on the possibility of obtaining 2-regular immersions
of surfaces.

We find in the way that one obstruction for the 2-regularity of the
surface is the existence of semiumbilics. Such points are defined in
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terms of the curvature ellipses and have a special interest by themselves.
The curvature ellipse at a point p of a surface M immersed in Rn was
introduced in [11] as the locus of the end points of the curvature vectors
of the normal sections along all the tangent directions to M at p. This
ellipse lies in the normal subspace at p and is completely determined
by the second fundamental form. At certain points of M this ellipse
may degenerate becoming a segment or even a point. The first are
known as semiumbilic points of M , whereas the second are the umbilic.
The semiumbilic points are said to be of radial or of ordinary type
according to whether the ellipse is a radial or a nonradial segment in
the normal subspace to M at the considered point. It is not difficult
to see that every point of any surface in 3-space is a semiumbilic of
radial type (for NpM is just a line in this case) or, exceptionally, an
umbilic. Conversely, it can be deduced from some results contained
in [15] that a compact surface immersed in Rn exclusively made of
semiumbilic points of radial type lies in some 3-space. The semiumbilic
points of generic surfaces in R4 were introduced and studied from the
viewpoint of the contacts of the surface with hyperspheres (singularities
of distance squared functions on M) in [10]. It was shown there that,
under adequate genericity assumptions, they form regularly embedded
closed curves. Those of radial type, known as inflection points, are
isolated on these curves. The surfaces contained in a 3-sphere have the
property that all their points are of semiumbilic type, see [16]. Surfaces
generically immersed in R5 may only have isolated semiumbilic points,
whereas surfaces in higher dimensional Euclidean spaces do not present
such points in a generic way.

It was proven in [5] that a compact surface with nonvanishing Euler
number generically immersed in R4 as a convex surface always has
inflection points. It follows from this that it must have at least a closed
curve made of semiumbilic points. We provide here a characterization
of the semiumbilic points of a surface immersed in 4-space as critical
points of the principal configurations associated to the normal fields
on the surface, Theorem 1. This leads us to obtain the following,
Corollary 1.

Corollary 1. Any orientable closed, i.e., compact without bound-
ary, surface with nonvanishing Euler number immersed in 4-space has
semiumbilic points.
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In the case of a surface immersed in a higher dimensional space, we
see (Theorem 2) that the semiumbilic points can also be characterized
as critical points of the principal configurations associated to special
normal fields on the surface. In fact, these fields, called essential, are
special in the sense that they contain all the relevant information with
respect to the set of all the possible principal configurations on the
surface [13].

Finally, we see that since the semiumbilic are a particular case of
singular points of order two of the immersion in the sense of Feldman,
the above characterization provides a relation between the existence
of regular immersions of order two and that of essential normal fields
globally defined over the surfaces, Theorem 4. In particular, it follows
that the classical immersion of the projective plane into a 4-sphere of
R5, known as the Veronesse surface, [6], being a 2-regular surface in R5,
does not admit globally defined essential normal fields, which implies
the non existence of globally defined normal fields whose tangent
component to 4-sphere is nowhere vanishing (Corollary 3).

2. Curvature ellipses and semiumbilics. Let M be a surface
immersed in Rn, n ≥ 4, and let ∇ denote the Riemannian connection of
Rn. Given vector fields, X,Y , locally defined along M , we can choose
local extensions X,Y over Rn, and define the Riemannian connection
on M as ∇XY =

(∇XY
)�, that is, the tangent component of ∇X on

M .

If we denote by X (M) and N (M) respectively the spaces of tangent
and normal fields on M , the second fundamental form on M is defined
as follows:

α : X (M) ×X (M) −→ N (M)(
X,Y

) �−→ ∇XY −∇XY,

This is a well-defined bilinear symmetric map and induces, for each
p ∈M and ν ∈ NpM , ν �= 0, a bilinear form on the tangent space TpM
given by Hν(v, w) =

〈
α(v, w), ν

〉
. The corresponding quadratic form

IIν(v) = Hν(v, v) =
〈
α(v, v), ν

〉
is known as the second fundamental

form in the direction ν.

Given p ∈ M , consider the unit circle in TpM parametrized by the
angle θ ∈ [0, 2π]. Denote by γθ the curve obtained by intersecting M
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with the hyperplane at p composed by the direct sum of the normal
subspaceNpM and the straight line in the tangent direction represented
by θ. The curvature vector η(θ) of γθ in p lies in NpM . Varying θ from
0 to 2π, this vector describes an ellipse in NpM , called the curvature
ellipse of M at p, see [6] and [11].

We can take M locally as the image of an embedding φ : R2 →
Rn. Let {x, y} be isothermic coordinates and {e1, e2, . . . , en} an
orthonormal frame in a neighborhood of a point p = φ(0, 0) ∈ M ,
in such a way that {e1, e2} is the tangent frame determined by these
coordinates and {e3, . . . , en} is a normal frame. Then the second
fundamental form of M is determined by the parameters ai, bi, ci,
i = 1, . . . , n− 2, at p is given by

αφ(p) =

⎡
⎣

a1 b1 c1
...

an−2 bn−2 cn−2

⎤
⎦ ,

where

ai = αφ(e1, e1) · ei+2 =
1
E

∂2φ

∂x2
(p) · ei+2,

bi = αφ(e1, e2) · ei+2 =
1

E
√
EG− F 2

(
E
∂2φ

∂x∂y
(p) − F

∂2φ

∂y2
(p)

)
· ei+2

=
1
E

∂2φ

∂x2
(p) · ei+2

and

ci = αφ(e2, e2) · ei+2

=
1

E(EG− F 2)

(
E2 ∂

2φ

∂y2
(p) − 2EF

∂2φ

∂x∂y
(p) + F 2 ∂

2φ

∂x2
(p)

)
· ei+2

=
1
E

∂2φ

∂y2
(p) · ei+2,

for i = 1, . . . , n − 2, and ds2 = E(dx2 + dy2) is the first fundamental
form.

The curvature ellipse can be seen as the image of the affine map

η : S1 ⊂ TpM −→ NpM,
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given by
η(θ) = H +B cos 2θ + C sin 2θ,

where H = (
∑n−2

i=1 /2)(ai + ci) · ei+2, B = (
∑n−2

i=1 /2)(ai − ci) · ei+2 and
C =

∑n−2
i=1 bi · ei+2.

A point p ∈ M at which the curvature ellipse is degenerate (a
segment or a point) is said to be semiumbilic. An inflection point is a
semiumbilic point for which the curvature ellipse is a radial segment,
and a semiumbilic point at which the curvature ellipse becomes a unique
point shall be called umbilic. In case this ellipse coincides with the
origin p of NpM , then p is said to be a flat umbilic. Semiumbilics form
closed curves with isolated inflection points at generic surfaces in R4

[9]. On the other hand, they appear isolated on generic surfaces in
R5 [13] and do not appear at all over generic surfaces in Rn, n ≥ 6.
Moreover, umbilic and flat inflection points may be avoided over generic
surfaces in both Rn, n ≥ 4.

The affine span of the curvature ellipse at a point p is an affine
subspace, Hp ⊂ NpM . We denote Ep the vector subspace of NpM
parallel to Hp. For surfaces in 4-space, the subspace Hp = Ep coincides
with the whole normal plane at a non semiumbilic points. If p is a
semiumbilic point, Hp is an affine line in NpM .

The vector valued quadratic form αφ induces, for each p ∈ M , a
linear map Ap from the normal space, NpM , of M at p to the space Q
of quadratic forms in the variables x and y. If we represent a vector
v ∈ NpM by its coordinates (v3, . . . , vn) with respect to the basis
{e3, . . . , en}, we have

Ap(v3, . . . , vn) = v3(d2φ · e3) + · · · + vn(d2φ · en).

Now, by using the natural identifications (through the basis induced by
the above frame) of NpM with Rn−2 and of Q with R3, we can view
this as the linear map Ap : Rn−2 → R3, whose matrix is the transpose
of that of αφ(p).

We classify a point p ∈ M into the type Mi, i = 3, 2, 1, 0, according
to rank (Ap) = 3, 2, 1, 0.

Lemma 1. Given a surface M in Rn, n ≥ 4,

i) If p ∈M is semiumbilic, then rank (Ap) < 3.
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ii) p ∈M1 if and only if p is either an inflection point or a (non flat)
umbilic.

iii) p is a flat umbilic if and only if p ∈M0.

Proof. i) If p is semiumbilic so η(θ) degenerates to a segment,
we then have that the vectors H = (

∑n−2
i=1 /2)(ai + ci) · ei+2, B =

(
∑n−2

i=1 /2)(ai − ci) · ei+2 and C =
∑n−2

i=1 bi · ei+2 must be linearly
dependent. But this implies that αφ(p) has not maximal rank.

ii) We observe that p ∈ M1 if and only if rank αφ(p) = 1 which
is equivalent to say that each two of vectors H, B and C are linearly
dependent, but this means that the curvature ellipse is either a radial
segment (B �= 0 or C �= 0) or reduces a point (B = 0 and C = 0).
Since rankαφ(p) = 1, it follows in this case that H �= 0 and thus this
point is a (non flat) umbilic.

iii) Notice that the curvature ellipse at p reduces to origin p of NpM if
and only ifH, B and C vanish at p, but this means that rank αφ(p) = 0.

Proposition 1. Given a surface M in Rn, n ≥ 4,

i) p ∈M3 if and only if Hp is a plane and p /∈ Hp.

ii) p ∈ M2 is non semiumbilic if and only if Hp is a plane and
p ∈ Hp = Ep.

iii) p ∈M2 is semiumbilic if and only if Hp is a line and p /∈ Hp.

iv) p ∈ M1 is an inflection point if and only if Hp is a line and
p ∈ Hp.

v) p ∈ M1 is an umbilic if and only if Hp is a point different from
p.

vi) p ∈M0 is a flat umbilic if and only if Hp = p.

Proof. First of all we observe that, in the expression of the curvature
ellipse η(θ) = H + B cos 2θ + sin 2θ, the mean curvature vector H is
the vector from the origin p of NpM to the center of curvature ellipse.

Suppose now that p is a non semiumbilic point. We then have that
the vectors B and C are linearly independent and Hp, the affine span
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of the curvature ellipse at p, is the plane spanned by them. Moreover,
it follows from Lemma 1 that p ∈M3 ∪M2.

i) We have that p ∈ M3 if and only if αφ(p) has maximal rank,
which is equivalent to saying that the vectors H, B and C must be
linearly independent. But this implies that the vector H does not lie
in the plane Hp. Therefore, p /∈ Hp. Conversely, if Hp is a plane and
p /∈ Hp, then the vectors B and C are linearly independent and H does
not belong to the plane Hp. Thus the vectors H, B and C must be
linearly independent, this mean that p ∈M3.

ii) If p is non semiumbilic and p ∈ M2, then the vectors H, B and
C must be linearly dependent. So, the vector H lies in the plane Hp.
Consequently, p ∈ Hp. The converse follows that, if Hp is a plane and
p ∈ Hp, then the curvature ellipse is non degenerate and p /∈ M3 (by
i) ). Therefore, p ∈M2.

In the case that p is a semiumbilic point we have that the vectors
B and C are linearly dependent and Hp is the line spanned by them.
Furthermore, it follows from Lemma 1 that in this case p ∈M1 ∪M2.

iii) If p ∈ M2 and is semiumbilic, it follows from Lemma 1 that η(θ)
is a non radial segment. So H does not lie over the line Hp. And thus
p /∈ Hp. The converse follows easily that, if Hp is a line and p /∈ Hp,
then p is a non radial semiumbilic. Thus, it follows from Lemma 1 that
p ∈M2.

iv) We know that, if p ∈M1 is an inflection point, then the curvature
ellipse is a radial segment. Moreover, each two of vectors H, B and C
are linearly dependent. But this implies that the vector H lies over the
line Hp. And thus p ∈ Hp. Conversely, if Hp is a line and p ∈ Hp, then
η(θ) is a radial segment. Thus, it follows from Lemma 1 that p ∈M1.

We observe that, if the curvature ellipse reduces a point, we then
have that B = 0 and C = 0, and in this case Hp is the end point of the
vector H.

v) If p ∈ M1, we clearly have that H �= 0 and thus p /∈ Hp.
Conversely, if p is a semiumbilic point and p /∈ Hp, then H �= 0; thus,
it follows from Lemma 1 that p ∈M1.
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vi) Finally, p ∈ M0 if and only if H, B and C vanish at p which is
equivalent to saying that η(θ) coincides with the origin p of NpM , that
is, if and only if H = 0, and thus p ∈ Hp.

The family of height functions on M associated to an immersion of a
surface M in n-space, locally given by φ : R2 → Rn is defined as

λ(φ) : M × Sn−1 −→ R5

(p, v) �−→ φv(p) = 〈φ(p), v〉.

Clearly, φv has a singularity at p ∈M if and only if v is normal to M
at p. Generically this is a Morse singularity in the sense that, for most
normal directions v ∈ NpM , φv has a nondegenerate singularity at p.
Nevertheless, for n ≥ 5, we can always find some normal directions
inducing degenerate height functions at each point, see [9] for the case
of surfaces in R5, the arguments for n > 5 are similar. Such directions
are called binormal.

Lemma 2. Given a point p in a surface M immersed in Rn, n ≥ 4,
and a nontrivial vector v ∈ NpM , the quadratic forms IIv(p) and
Hess (φv)(p) are equivalent, in the sense that it is possible to find some
local coordinate system in which their expressions coincide.

Proof. Given p ∈ M take an orthonormal frame at p = (0, 0),
{e1, e2} for TM and {e3, . . . , en} for NM as above. We can always
suppose that the local embedding of M , φ : R2 → Rn, is given in the
Monge form. Then, for any normal vector v ∈ NpM , we can write
v = v1e3 + · · ·+ vn−2en. And thus the height function in the direction
v is given by

φv : R2 −→ Rn

(x, y) �−→ φv(x, y) = v1φ1(x, y) + · · · + vn−2φn−2(x, y).

We then have

∂2φv

∂x2
(p) =

n−2∑
i=1

aivi,
∂2φv

∂x∂y
(p) =

n−2∑
i=1

bivi,
∂2φv

∂y2
(p) =

n−2∑
i=1

civi.
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Therefore

Hess
(
φv(p)

)
=

[∑n−2
i=1 aivi

∑n−2
i=1 bivi∑n−2

i=1 bivi

∑n−2
i=1 civi

]
.

Now observe that the coefficients of the second fundamental form
with respect to the normal direction v at p are given by

ev(p) = φxx(p) · v, fv(p) = φxy(p) · v, gv(p) = φyy(p) · v.

So ev(p) =
∑n−2

i=1 aivi, fv(p) =
∑n−2

i=1 bivi and gv(p) =
∑n−2

i=1 civi,
and hence

IIv(p) =
[ ∑n−2

i=1 aivi

∑n−2
i=1 bivi∑n−2

i=1 bivi

∑n−2
i=1 civi

]
= Hess

(
φv(p)

)
.

Remark 1. Notice that given normal direction v ∈ NpM , v ∈ kerAp,
if and only if p is a singularity of corank 2 of φv.

Lemma 3. Given a point p in a surface M immersed in Rn, n ≥ 4,
and a nontrivial binormal direction v ∈ Ep ⊂ NpM , the point p is
a singularity of corank 1 of φv. On the other hand, if v ∈ E⊥

p is a
binormal direction p is a singularity of corank 2 of φv.

Proof. Given v ∈ NpM , we have that p is a degenerate singularity of
corank 2 of fv if and only if the matrix,

Hess
(
φv(p)

)
=

[∑n−2
i=1 aivi

∑n−2
i=1 bivi∑n−2

i=1 bivi

∑n−2
i=1 civi

]

has null entries. Now, since Ep =
〈∑n−2

i=1 (ai−ci)·ei+2,
∑n−2

i=1 bi ·ei+2

〉
,

it follows that v must be orthogonal to Ep. Therefore, if v ∈ Ep

is a nontrivial binormal direction, we have that φv has a singularity
of corank 1 at p. On the other hand, if v ∈ E⊥

p is a binormal
direction, we have that

∑n−2
i=1 bivi = 0,

∑n−2
i=1 aivi =

∑n−2
i=1 civi and

det
(
Hess (φv(p))

)
= 0. But this implies that

Hess
(
φv(p)

)
=

[ ∑n−2
i=1 aivi 0

0
∑n−2

i=1 aivi

]
,
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and thus (
∑n−2

i=1 aivi)2 = 0 which is equivalent to saying that
∑n−2

i=1 aivi =
0. We then have that p is a singularity of corank 2 of φv.

3. Critical points of principal configurations. Given any
normal field ν on M , we can consider its associated shape operator
defined by

Sν : TpM −→ TpM

X �−→ Sν(X) = −(∇X ν̄
)�
,

where ν̄ is a local extension of ν over a neighborhood of p in Rn and
� denotes the tangent component of the normal connection ∇.

This is a self-adjoint operator and is related as follows with the
symmetric bilinear map Hν ,

〈
Sν(X), Y

〉
= Hν(X,Y ), ∀X,Y ∈ TpM.

The second fundamental form in the direction ν can thus be given as

IIν(X) =
〈
Sν(X), X

〉
.

Consequently, for each p ∈ M , there is an orthonormal basis in
TpM made of eigenvectors of Sν (ν-principal directions) at which the
second fundamental form reaches its maximum and minimum values.
The corresponding eigenvalues, k1 and k2 shall be called maximal and
minimal ν-principal curvature, respectively. The point p shall be said
to be ν-umbilic if both ν- principal curvatures coincide at it.

Denote by Uν the subset of all the ν-umbilic points of M . The ν-
principal directions define two, mutually orthogonal tangent fields all
over the region M − Uν , whose critical points are the ν-umbilics. The
corresponding integral curves shall be called ν-curvature lines. The
two foliations, together with their critical points form the ν-principal
configuration of M .

The differential equation of the ν-curvature lines is given by

(1) Sν

(
X(p)

)
= λ(p)X(p).
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Suppose that U ⊂M is a local chart with coordinates (x, y), and let
E,F,G denote the corresponding coefficients of the first fundamental
form. The coefficients of the second fundamental form in the direction
ν are then given by

eν = IIν(∂x) = 〈α(∂x, ∂x), ν〉,
fν = 〈α(∂x, ∂y), ν〉 = 〈α(∂y, ∂x), ν〉
gν = IIν(∂y) = 〈α(∂y, ∂y), ν〉,

where we denote ∂x = (∂/∂x) and ∂y = (∂/∂y).

Then equation (1) has the following local expression in these coordi-
nates (see [14]),

(fνE − eνF ) dx2 + (gνE − eνG) dx dy + (gνF − fνG) dy2 = 0.

Moreover, if we take isothermic coordinates, i.e., E = G > 0 and
F = 0, this equation becomes

fν dx
2 + (gν − eν) dx dy + fν dy

2 = 0.

We shall see next that the semiumbilics of surfaces in 4-space can be
characterized as critical points of principal configurations.

Theorem 1. Let φ : M → R4 be an embedding of a surface M in
R4. A point p ∈M is ν-umbilic for some (locally defined) normal field
ν on M if and only if p is a semiumbilic point of M .

Proof. We can assume without loss of generality that ν is a unit
normal field all over M and that p is a ν-umbilic. Let ν⊥ be another
unit normal field orthogonal to ν at every point. Now, the area of the
curvature ellipse at p can be given in terms of the coefficients of the
second fundamental forms in the directions ν and ν⊥ evaluated at p by
the following expression [6, p. 266],

Area
(
η(θ)

)
=
π

2

⏐⏐(eν − gν)fν⊥ + (eν⊥ − gν⊥)fν

⏐⏐.
We have now that p ∈M is semiumbilic if and only if the ellipse at p

degenerates into a segment, which occurs if and only if this area is zero.
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On the other hand, it follows from the above differential equation that
p is ν-umbilic if and only if the coefficients of the second fundamental
form in the direction ν (in isothermic coordinates) satisfy the relations
eν = gν , fν = 0, but this implies that the area of the ellipse vanishes at
p and hence p must be semiumbilic.

Conversely, suppose that the ellipse at p is a segment, and taking
some direction orthogonal to the segment, we can extend this in order
to obtain a locally defined normal field ν whose image at p lies in
the subspace E⊥

p . We then have that
∑2

i=1(ai − ci)νi = 0 and∑2
i=1 biνi = 0, which is equivalent to saying that the Hessian matrix

of the height function in the direction ν at p is a diagonal matrix with
repeated entries in the diagonal. But since, from Lemma 2 we have
that this matrix coincides with that of the second fundamental form in
the direction ν, which coincides in turn with that of the shape operator
Sν , we conclude that p is a ν-umbilic.

Now, from the fact that a surface immersed in R4 is orientable if and
only if it admits some globally defined normal field [1], we obtain

Corollary 1. Any orientable closed, i.e., compact without boundary,
surface with nonvanishing Euler number immersed in R4 has semium-
bilic points.

We analyze following the case of surfaces immersed in higher dimen-
sional spaces.

Lemma 4. Given M ⊂ Rn, n ≥ 5, and a normal field ν on M , we
have that a point p is ν-umbilic if and only if ν(p) ∈ E⊥

p .

Proof. A point p is ν-umbilic if and only if eν(p) = gν(p) and
fν(p) = 0, or in other words

∑n−2
i=1 (ai − ci)νi = 0 and

∑n−2
i=1 biνi = 0.

But this amounts to saying that ν(p) ⊥ Ep.

In the case of surfaces immersed in codimension higher than or equal
to 3, the curvature ellipses induce a rank 2 subbundle EM ′ of NM
over the non semiumbilic region M ′ of M . A normal field ν that
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satisfies ν(M ′) ⊂ EM ′ is said to be essential. An essential principal
configuration for M is the one associated to any essential normal field.
A consequence of the above lemma is the following:

Theorem 2. Given an immersion φ : M → Rn, n ≥ 5, let η be
an essential normal field on M . If point of M is η-umbilic, then it is
semiumbilic.

Proof. If p is η-umbilic, then it follows from the Lemma 4 that
η(p) ∈ E⊥

p . But by hypothesis η is an essential normal field, and
η(M ′) ⊂ EM ′, where M ′ is the non semiumbilic region of M . So,
if p is a non semiumbilic, then η(p) ∈ Ep ⊂ EM ′. Therefore p is
semiumbilic.

Moreover, semiumbilic point of surfaces in Rn, n ≥ 5, can be
characterized as follows:

Theorem 3. Given an immersion φ : M → Rn, n ≥ 5, a
point p ∈ M is semiumbilic if and only if there exist (n − 3) linearly
independent normal fields ν1, . . . , νn−3, locally defined at p, such that
p is νi-umbilic, for all i ∈ {1, . . . n− 3}.

Proof. Suppose that there are (n − 3) linearly independent normal
fields ν1, . . . , νn−3, locally defined at p and such that M is νi-umbilic,
for all i ∈ {1, . . . n− 3}, so in isothermic coordinates we have

eνi(p) = gνi(p) and fνi(p) = 0, ∀ i = 1, . . . n− 3.

Writing the νi in terms of a normal frame {e3, . . . , en},

νi =
n−2∑
j=1

νi
jej+2,

the above expressions amount to

n−2∑
j=1

ajν
i
j =

n−2∑
j=1

cjν
i
j and

n−2∑
j=1

bjν
i
j = 0, ∀ i = 1, . . . n− 3.
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That is,

n−2∑
j=1

(aj − cj)νi
j = 0 and

n−2∑
j=1

bjν
i
j = 0, ∀ i ∈ {1, . . . n− 3},

where ai = (∂2φ/∂x2)(p) · ei+2, bi = (∂2φ/∂x∂y)(p) · ei+2 and ci =
(∂2φ/∂y2)(p) · ei+2, for i = 1, . . . , n − 2. Therefore, all the νi are
perpendicular to the vectors B = (

∑n−2
i=1 /2)(ai − ci) · ei+2 and C =∑n−2

i=1 bi · ei+2 that generate the subspace Ep. But this implies that
dimEp = 1 and hence p must be semiumbilic. The converse follows
easily by taking (n − 3) linearly independent normal vectors at p,
all of them orthogonal to Ep, extending them locally at p and going
backwards through the above considerations.

Remark 2. Suppose that ξ is a normal field on M . We can decompose
it as ξ = h1η + h2η

⊥, where η(p) ∈ Ep, η⊥(p) ∈ E⊥
p , for all p ∈ M

and h1, h2 smooth functions on M . We can take η and η⊥ to be non
zero in a small enough neighborhood of a point p. Suppose that p is
a non semiumbilic point. It follows from Lemma 4 that h1(p) = 0 if
and only if p is ξ-umbilic. But η⊥ is an umbilic normal field and thus
the ξ-principal lines coincide with the η-principal lines. Since p is non
semiumbilic, it is not a critical point of the η-configuration and hence
the ξ-principal lines do not present any special geometrical structure
at p. So, although p is a ξ-umbilic it is not a critical point for the
ξ-configuration.

We also observe that although ξ and η share the same principal
configurations their principal curvatures differ. In fact, it is not difficult
to see that Sξ(v) = h1(p)Sη(v) + h2(p)S⊥

η (v). Therefore, we have the
following relation between the principal curvatures:

ki
ξ = h1k

i
η + h1kη⊥ , i = 1, 2,

where ki
η are the η-principal curvatures and kη⊥ is the η⊥-principal

curvature, because kη⊥ = k1
η⊥ = k2

η⊥ .

A particular case of normal fields is given by the binormal fields,
that is, those defining binormal directions at every point. Their corre-
sponding principal configurations have a special geometrical meaning



SEMIUMBILICS 1341

and lead to the asymptotic lines (corresponding to vanishing principal
curvatures [12]).

Proposition 2. If p is a ξ-umbilic and ξ is a binormal field, then
p ∈M2 ∪M1 ∪M0.

Proof. If p is a ξ-umbilic, Lemma 4 tells us that p ∈ E⊥
p . It

follows from Lemma 3, since ξ(p) is a binormal direction at p, that
the height function φξ has a singularity of corank 2 at p. But, as we
have observed in Remark 1, this implies that ν(p) ∈ kerAp. Therefore,
p ∈M2 ∪M1 ∪M0.

Remark 3. We can also distinguish among all the binormal fields the
essential ones, whose critical points are semiumbilic. In the case of
surfaces immersed in 4-space, all the binormal fields are essential and
their critical points are the inflection points [7].

4. Normal fields on 2-regular surfaces. Following Feldman
[4], we say that a point p of M is 2-singular provided the linear map
T 2

pφ : T 2
pM → T 2

φ(p)R
5 is not injective. By choosing local coordinates

{x, y} at p in M , we have that the linear subspace T 2
pM is generated

by the vectors

{
∂

∂x

∣∣∣
p
,
∂φ

∂y

∣∣∣
p
,
∂2φ

∂x2

∣∣∣
p
,
∂2φ

∂x∂y

∣∣∣
p
,
∂2φ

∂y2

∣∣∣
p

}
.

Thus the definition of 2-singular point amounts to saying that the
vectors {

∂φ

∂x
,
∂φ

∂y
,
∂2φ

∂x2
,
∂2φ

∂x∂y
,
∂2φ

∂y2

}

are linearly dependent at p. An embedding φ : M → R5 is said to be
regular of order 2 if there are no 2-singular points in M . It can be seen
[9] that, for a surface in Rn, n ≥ 5, a point p ∈M is 2-singular if and
only if p ∈M2 ∪M1 ∪M0.

Therefore, a 2-regular surface is strictly made of points of type M3.
Consequently, 2-regular surfaces do not have semiumbilic.
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Theorem 4. A 2-regular immersion of a compact surface with
nonvanishing Euler number in Rn, n ≥ 5, does not admit globally
defined essential normal fields.

Proof. A globally defined essential normal field gives rise to globally
defined principal configurations. Since χ(M) �= 0, the Poincaré-Hopf
formula implies that these configurations must have critical points,
but we have seen that the critical points of such configurations are
semiumbilic points of M .

On the other hand,

Theorem 5. 2-regular immersions of compact surfaces with non-
vanishing Euler number in Rn, n ≥ 5, do not admit globally defined
binormal fields.

Proof. A globally defined binormal field ν induces a globally defined
ν-configuration on M (family of asymptotic lines). But Proposition 2
implies that the corresponding critical points are 2-singular points of
M and thus, in virtue of the Poincaré-Hopf formula, the condition that
χ(M) �= 0 would imply that M is not 2-regular.

Remark 4. It can be shown that surfaces generically immersed in
Rn, n ≥ 6, do not have semiumbilic points. Therefore, the property of
having globally defined essential fields is non generic for the compact
surfaces immersed in Rn, n ≥ 6. On the other hand, surfaces
generically immersed in Rn, n ≥ 7, are 2-regular and, similarly, we can
deduce that having a globally defined binormal field is a non generic
property for compact surfaces in Rn, n ≥ 7.

As a consequence of Theorem 3, we have

Corollary 2. A 2-regular compact surface M ⊂ Rn, n ≥ 5
with nonvanishing Euler number can not admit globally defined normal
distributions of dimension (n− 3).
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Proof. They may admit up to (n − 4) globally defined linearly
independent normal fields all contained in E⊥, but any further one
would have nowhere vanishing projection on E and this would imply
the existence of semiumbilics and thus the non regularity of M .

To illustrate the above results we consider the following example: Let
V be a hyperspherical embedding of the projective plane in R5, known
as the Veronese surface. This embedding is locally given by

V (x, y)

=
(
y
√

4− x2− y2

2
,
x
√

4− x2− y2

2
,
xy

2
,
x2− y2

4
,

3x2+ 3y2− 8
4
√

3

)
,

and it can be seen that the image of V is completely homogeneous and
is contained in a 4-sphere of radius 2/

√
3. Moreover, the curvature

ellipse is a circle at each point of V . Therefore it defines a 2-regular
embedding of the projective plane in R5. Since χ(V

(
P 1(2)) �= 0, we

can conclude

Corollary 3. The only globally defined normal field on V is the
radial field of the hypersphere S4(2/

√
3) restricted to V .

Moreover, if we consider the inverse of the stereographic projection
ψ : S4(2/

√
3) → R4, we get an embedding of the projective plane in

R4. Since stereographic projection takes semiumbilic into semiumbilic,
we deduce that ψ(V ) is a surface with nonvanishing Euler characteristic
embedded with no semiumbilics in 4-space. Therefore,

Corollary 4. The surface ψ(V ) does not admit any globally defined
normal field.
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