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ON THE ZEROES OF TWO FAMILIES OF
POLYNOMIALS ARISING FROM

CERTAIN RATIONAL INTEGRALS

JOHN B. LITTLE

ABSTRACT. We prove a conjecture of Boros, Moll and
Shallit on the location of the zeroes of certain polynomials
arising in the evaluation of the rational definite integrals∫∞
0

[dx/(x4 + 2ax2 + 1)m+1].

1. Introduction. In a series of recent papers George Boros, Victor
Moll, and a number of coauthors have studied patterns in closed form
expressions for the rational definite integrals

(1)
∫ ∞

0

dx

(x4 + 2ax2 + 1)m+1
, a > −1.

The recent article [4] gives some of the interesting background behind
this line of investigation and a survey of their results. In this note we
will take up a question concerning certain polynomials connected to
the integrals (1) introduced in [1].

A standard argument shows that (1) is equal to

π
(
2m
m

)
23m+3/2(a + 1)m+1/2 2F1(−m, m + 1; 1/2 − m; (1 + a)/2),

where 2F1 is the usual hypergeometric series. For positive integral m,
the hypergeometric series terminates and the authors of [1] study the
polynomials in the variable a defined by Pm(a) =

(
2m
m

)
2F1(−m, m +

1; 1/2−m; (1 + a)/2). For each m, Pm(a) is a polynomial all of whose
coefficients are positive integers.

Let dl(m) be the coefficient of al in Pm(a). In [1], it is shown that

dl(m) =
1

l!m!2m+l

(
αl(m)

m∏
k=1

(4k − 1) − βl(m)
m∏

k=1

(4k + 1)

)
,
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where the αl(m) and βl(m) are polynomials in m. For example,

α0(m) = 1
α1(m) = 2m + 1
α2(m) = 2(2m2 + 2m + 1)
α3(m) = 8(2m4 + 4m3 + 26m2 + 24m + 9)

and

β0(m) = 0
β1(m) = 1
β2(m) = 2(2m + 1)
β3(m) = 12(m2 + m + 1)

and so on. It can be seen that all the roots of these polynomials lie on
the line �(m) = −1/2. Numerical calculations on subsequent terms in
the α and β families suggest the following conjecture.

Conjecture [1]. For all l ≥ 1, all roots of αl(m) = 0 lie on the line
�(m) = −1/2 in the complex plane. Similarly, the roots of βl(m) = 0
for l ≥ 2 lie on the line �(m) = −1/2.

In this note we will present a proof of this conjecture. The first step,
given in Section 2 below, is to rewrite the polynomials αl(m) and βl(m)
as functions of the new variable s = 2m+1. When this is done, we will
see that αl is an even function for l even, and an odd function for l odd.
Similarly, βl is an odd function of s for l even and an even function of s
if l is odd. We prove these facts by expressing the generating functions
of the αl and βl sequences in terms of hypergeometric series. In the
second step of the proof, Section 3, we will show that as functions of
s the αl and βl satisfy certain three-term recurrence relations. We
then finish the proof in Section 4 by adapting the classical proof of the
interlacing roots properties of sequences of orthogonal polynomials via
Sturm sequences.

2. Expressing αl and βl in terms of s = 2m + 1. Introduce the
new variable s = 2m+1, and write Al for the polynomial in s obtained
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by substitution: Al(s) = αl((s−1)/2). Similarly, Bl(s) = βl((s−1)/2).
In this section we will begin by deriving expressions

∞∑
l=0

Al(s)
ul

l!
= (1 + 2u)s/2

2F1

(
s

2
+

1
4
,
1
4
;

1
2
; 4u2

)

and
∞∑

l=0

Bl(s)
ul

l!
= u(1 + 2u)s/2

2F1

(
s

2
+

3
4
,
3
4
;

3
2
; 4u2

)
.

These can certainly also be derived from the hypergeometric formula for
the value of (1) given in Section 1, using the power series decomposition

f(u) = feven(u2) + ufodd(u2).

However, the method we will present leads to useful expressions for
these generating functions with fewer manipulations.

We consider the αl(m) first. Boros, Moll, and Shallit give the
following formula:

(2) αl(m) =
�l/2�∑
t=0

(
l

2t

) m+t∏
ν=m+1

(4ν−1)
m∏

ν=m−l+2t+1

(2ν +1)
t−1∏
ν=1

(4ν +1).

Then, for instance,

A4 =
(

4
0

)
(s − 6)(s − 4)(s − 2)s

+
(

4
2

)
(2s + 1)(s − 2)s

+
(

4
4

)
(2s + 1)(2s + 5) · 5

and

A5 =
(

5
0

)
(s − 8)(s − 6)(s − 4)(s − 2)s

+
(

5
2

)
(2s + 1)(s − 4)(s − 2)s

+
(

5
4

)
(2s + 1)(2s + 5)5s.
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To express the Al in a more useful form, notice first that the products
such as (s − 6)(s − 4)(s − 2)s in the first term in α4 can be written
as powers of 2 times (formal) binomial coefficients. For instance
(s − 6)(s − 4)(s − 2)s = 24

(
s/2
4

)
. Let

f(s, u) =
∞∑

k=0

(
s/2
k

)
(2u)k.

For |u| < 1/2, this binomial series converges to (1 + 2u)s/2. Second,
consider the series

(3)

g(s, u) = 1 +
(2s + 1)

2!
u2 +

(2s + 1)(2s + 5) · 5
4!

u4 + · · ·

=
∞∑

k=0

(
k∏

n=1

(2s + 4n − 3)
k∏

n=1

(4n − 3)

)
u2k

(2k)!
.

An easy argument shows the following result.

Proposition 1. For each l ≥ 0, Al is equal to l! times the coefficient
of ul in the product f(s, u)g(s, u). In particular, Al has degree exactly
l.

We know from the above that f(s, u) = (1 + 2u)s/2 for suitable u.
We can also recognize the series g(s, u) as a 2F1 hypergeometric series
using the standard algorithm explained for example in [5, Section 3.3].

Proposition 2. The series for g(s, u) given in (3) is the hypergeo-
metric series

2F1

(
s

2
+

1
4
,
1
4
;

1
2
; 4u2

)
.

We are now ready to prove the following characterization of the form
of the Al.

Proposition 3. Al is an even function of s if l is even and an odd
function of s if l is odd.
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Proof. Since the hypergeometric series g(s, u) has only even powers
of u, Al for l even equals l! times the coefficient of ul in

heven(s, u) =
(

(1 + 2u)s/2 + (1 − 2u)s/2

2

)
2F1

(
s

2
+

1
4
,
1
4
;

1
2
; 4u2

)
.

Apply the standard hypergeometric function transformation rule

2F1(a, b; c; z) = (1 − z)c−a−b
2F1(c − a, c − b; c; z)

and some elementary algebra on the first factor in heven to see that

heven(s, u)
heven(−s, u)

=

(
[(1+2u)s/2+(1−2u)s/2]/2

)
2F1

(
(s/2)+(1/4), (1/4); (1/2); 4u2

)(
[(1+2u)−s/2+(1−2u)−s/2]/2

)
2F1((−s/2)+(1/4), (1/4); (1/2); 4u2)

=(1 − 4u2)s/2 2F1

(
(s/2) + (1/4), (1/4); (1/2); 4u2

)
(1 − 4u2)s/2

2F1 ((s/2) + (1/4), (1/4); (1/2); 4u2)
=1

This says every coefficient of heven is an even polynomial in s.

Similarly, for l odd, Al is l! times the coefficient of ul in

hodd(s, u) =
(

(1 + 2u)s/2 − (1 − 2u)s/2

2

)
2F1

(
s

2
+

1
4
,
1
4
;
1
2
; 4u2

)
.

Proceeding as before we get

hodd(s, u)
hodd(−s, u)

= −1,

so all the coefficients of hodd are odd polynomials in s.

The βl are handled by a directly parallel argument starting from
another formula from [1]:

(4)

βl(m) =
�(l+1)/2�∑

t=1

(
l

2t − 1

) m+t−1∏
ν=m+1

(4ν +1)
m∏

ν=m−l+2t

(2ν +1)
t−1∏
ν=1

(4ν−1).
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As above we let s = 2m+1 and write Bl for the substituted polynomial
Bl(s) = βl((s − 1)/2).

Proposition 4. For each l ≥ 0, Bl is equal to l! times the coefficient
of ul in the product uf(s, u)G(s, u), where f(s, u) is the binomial series
expansion of (1 + 2u)s/2 as before, and G(s, u) is the hypergeometric
series

G(s, u) = 2F1

(
s

2
+

3
4
,
3
4
;

3
2
; 4u2

)

In particular, Bl has degree l − 1. Bl is an even function of s if l is
odd and an odd function of s if l is even.

The proof of the last claim is very similar to the proof of Proposition 3
and uses the same hypergeometric function transformation, so the
details are omitted. The parity reversal is produced by the extra factor
of u.

3. The three-term recurrences. In this section we will show
that the sequences of polynomials Al and Bl satisfy the three-term
recurrences

Al+1(s) = 2sAl(s) − (s2 − (2l − 1)2)Al−1(s)(5)

and

Bl+1(s) = 2sBl(s) − (s2 − (2l − 1)2)Bl−1(s)(6)

for all l ≥ 1. (Note that the Al and Bl actually satisfy the same
recurrence relation, but the initial terms A0 and A1 are different from
B0 and B1, so the sequences of polynomials generated are different.)

Proposition 5. The Al(s) satisfy the recurrence (5) for all l ≥ 1.

Proof. Suppressing the dependence on s, we will now write

h(u) =
∞∑

l=0

Al(s)
ul

l!
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for the generating function of the Al. As we saw in the previous section,

(7) h(u) = (1 + 2u)s/2
2F1

(
s

2
+

1
4
,
1
4
;

1
2
; 4u2

)
.

The recurrence (5) is satisfied if and only if h(u) solves the following
differential equation:

(8) h′′(u) − 2sh′(u) + s2h(u) =
∞∑

l=0

(2l + 1)2Al(s)
ul

l!
.

We can manipulate the series for h(u) as follows to reproduce the right
side of (8). Setting u = v2, we have

vh(v2) =
∞∑

l=0

Al(s)
v2l+1

l!

⇒ (vh(v2))′ =
∞∑

l=0

(2l + 1)Al(s)
v2l

l!

⇒ (v(vh(v2))′)′ =
∞∑

l=0

(2l + 1)2Al(s)
v2l

l!

=
∞∑

l=0

(2l + 1)2Al(s)
ul

l!

which is what we want. But

(v(vh(v2))′)′ = h(v2) + 8v2h′(v2) + 4v4h′′(v2)
= h(u) + 8uh′(u) + 4u2h′′(u).

So, the equation (8) is equivalent to:

(1 − 4u2)h′′(u) − (2s + 8u)h′(u) + (s2 − 1)h(u) = 0.

Direct computation shows that this differential equation is satisfied
by the function h(u) from (7).

The proof of the recurrence (6) for the Bl polynomials is entirely
similar.
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For future reference, we note the following patterns that follow by
induction from the recurrences (5) and (6) and the equations A0 = 1,
A1 = s, B0 = 0, and B1 = 1.

Corollary 1. For all l ≥ 1, the leading coefficient of Al is 1 (Al is
monic), and the leading coefficient of Bl is l.

4. The roots of αl(m) = 0 and βl(m) = 0. We now want to use
the results of the previous sections to deduce our main result on the
roots of αl(m) = 0 and βl(m) = 0. Under our first change of variables
s = 2m + 1, the line �(m) = −1/2 corresponds to the imaginary axis
�(s) = 0. Thus Boros, Moll, and Shallit’s conjecture is equivalent to the
statement that the nonzero roots of Al(s) = 0 and Bl(s) = 0 are purely
imaginary. In order to apply some standard results about location of
roots of polynomials in their usual forms, we will next consider the
following transformations of our polynomials. Let s = it and

(9) Cl(t) = (−i)lAl(it), Dl(t) = (−i)l−1Bl(it).

Under this change of variables, the imaginary axis in the s-plane
corresponds to the real axis in the t-plane. Boros, Moll, and Shallit’s
conjecture is now equivalent to the statement that the roots of Cl(t) = 0
and Dl(t) = 0 are all real. The constant multipliers (−i)l and (−i)l−1

ensure that all the coefficients in Cl and Dl are real and that the leading
coefficient of Cl(t) is 1 for all l, while the leading coefficient of Dl(t) is
l for all l.

The recurrence relations (5) and (6) from Section 3 are equivalent to
the following recurrences for Cl(t) and Dl(t):

Cl+1(t) = 2tCl(t) − (t2 + (2l − 1)2)Cl−1(t)(10)
and

Dl+1(t) = 2tDl(t) − (t2 + (2l − 1)2)Dl−1(t)(11)

(note the sign changes in the coefficients of Cl−1 and Dl−1 introduced
by the powers of −i).

To set the stage, we recall that there is a well-known theorem of
Favard which states that any sequence pl of polynomials satisfying a
three-term recurrence of the form:

pl+1(t) = (alt + bl)pl(t) − clpl−1(t)
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with constant al > 0, cl > 0 for all l is orthogonal with respect to some
measure on an interval [a, b]. Hence all the roots of the polynomials
are real and simple.

Because of the t2 terms in the coefficients of the Cl−1(t) and Dl−1(t) in
(10) and (11), Favard’s theorem does not apply. However, it is possible
to use the same sort of reasoning as that presented for instance in
[6, Section 3.3] in the case of orthogonal polynomial sequences. Even
though our Cl and Dl are not orthogonal sequences, they still have the
same “interlacing roots” properties that orthogonal sequences do. The
key step will be to see that the Cl and Dl satisfy the main property of
Sturm sequences.

For the convenience of the reader, we include a very brief review
of Sturm sequences and Sturm’s Theorem on counting real roots of
polynomials in an interval. See [2] or [3] for more details and the proof
of Sturm’s theorem.

A (general) Sturm sequence for a nonconstant polynomial f ∈ R[x] on
the interval [a, b] is any sequence of polynomials f = gl, gl−1, gl−2, . . . ,
g1, g0 in R[x] such that

1. f(a)f(b) �= 0

2. g0 has no roots in [a, b]

3. If a < c < b and gj(c) = 0 for j < l, then gj+1(c)gj−1(c) < 0

4. If a < c < b and f(c) = 0, then there is a neighborhood of c on
which f(x)gl−1(x) has the same sign as x − c.

Sturm’s theorem states that the number of real roots of f in the inter-
val [a, b] is equal to the number V (a)−V (b) where V (x) is the number
of sign changes in the sequence of values f(x), gl−1(x), gl−2(x), . . . ,
g1(x), g0(x).

Sturm’s theorem is often stated (and most often used) in the specific
case that the sequence of polynomials is obtained by letting gl−1 = f ′

(the derivative), and the other polynomials are the negatives of the
remainders on division following the Euclidean algorithm for the gcd.
The theorem applies more generally to any sequence as above, though.
There is also a criterion for all the roots of a polynomial to be real that
is essentially a corollary of the proof of Sturm’s theorem.
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Corollary of proof of Sturm’s theorem. Let f = gl, gl−1, . . . ,
g1, g0 be a sequence of polynomials in R[x], satisfying deg (gj) = j for
all j, and whose leading coefficients are all positive. Assume that

1. No two consecutive polynomials in the chain have a common real
zero, and

2. If gj(c) = 0 for 0 < j < l, then gj+1(c)gj−1(c) < 0.

Then the polynomial f has deg (f) distinct real roots.

Proof. This is essentially [3, Chapter 5, Exercise 11], but we provide
a proof for completeness. The number of sign changes in the sequence
f(x), gl−1(x), . . . , g0(x), denoted V (x), can only change when x is a
root of one of the gj . By the hypotheses, g0 is a positive constant,
hence has no real roots. Moreover, as in the proof of the usual form
of Sturm’s theorem, if x = c is a root of gj , 0 < j < l, V does not
change at c because of the hypotheses 1 and 2. Hence V changes only
at the roots of f . However, our hypotheses also imply that for very
negative x there will be l = deg (f) sign changes in the sequence of
values, while for very positive x there are no sign changes. Hence
V (−∞) − V (+∞) = l = deg(gl). Hence f = gl must have l real roots.

We are now ready to state and prove the result that completes the
proof of the main conjecture.

Theorem 1. Let Cl(t) and Dl(t) be the polynomials given in (9).
For each l ≥ 1, the equation Cl(t) = 0 has l = deg (Cl) distinct real
roots and Dl(t) = 0 has l − 1 = deg (Dl) distinct real roots.

Proof. For each l, we will show that the sequence Cj(t), with j
starting from l and decreasing to 0, satisfies the hypotheses of the
corollary above, and similarly for the Dj(t), j starting from l and
decreasing to 1, after a shift in indexing to satisfy the hypotheses of
the corollary.

For condition 1 in the corollary, note that the recurrence relations
(10) and (11) imply that if any two consecutive Cj have a common
root t0, then all the Cj have t0 as a root. But that is not possible since
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the equation C0(t) = 0 has no roots. Similarly for the Dj . The crucial
condition 2 is satisfied because of the recurrence relation as well. For
instance if Cj(c) = 0, then from (10)

Cj+1(c) = −(c2 + (2j − 1)2)Cj−1(c)

which implies that the signs of Cj+1(c) and Cj−1(c) are opposite
(because the sum of squares is strictly positive). Similarly for the Dj .

Moreover, it also follows that, between each consecutive pair of roots
of Cl, there is precisely one root of Cl−1, and similarly for the Dj .
In other words, the roots of the Cj and Dj polynomials have the
same “interlacing” properties that roots of sequences of orthogonal
polynomials have.
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