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SELF-TRANSVERSAL SPACES
AND THEIR DISCRETE SUBSPACES

I. JUHÁSZ, M.G. TKACHENKO,

V.V. TKACHUK AND R.G. WILSON

ABSTRACT. A space X is called self-transversal if there is
a bijection ϕ : X → X such that the family τ(X) ∪ ϕ(τ(X))
forms a subbase of the discrete topology on X. We prove
that, under CH, there exists a compact scattered space which
is not self-transversal. It is shown that there exist compact
self-transversal spaces of arbitrarily large cardinality with the
Souslin property. We present examples of compact spaces
which give a negative answer in ZFC to Problems 2 and 3 from
[8] and a partial negative answer to Problem 1 of [8]. We also
establish that it is independent of ZFC whether any metrizable
space X is self-transversal if and only if w(X) = |X|. We
show that any monotonically normal scattered space is self-
transversal and that adding a single point to a self-transversal
space can destroy self-transversality.

1. Introduction. Recall that two topologies τ and μ on the same set
X are called transversal if τ ∪ μ is a subbase for the discrete topology
on X. A natural way of exploring the properties of a given space
(X, τ ) is to study the interaction of its topology with its copies on the
same set obtained by all possible bijections. If some of these copies are
transversal to τ then the space (X, τ ) is called self-transversal.

The study of transversal topologies was initiated in 1966 by Steiner
who proved in [9] that no countable infinite set X admits a pair
of Hausdorff transversal topologies whose intersection is the cofinite
topology on X (such topologies are called T2-complementary). Later,
intensive study of T1-complementary topologies was undertaken by
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E. Steiner and A. Steiner, see [10, 11], Watson, see [14 16], and three
of the authors of this paper in various articles, see [7, 8, 12]. One of
the results of this research was a complete answer to Watson’s question
whether every Hausdorff space has a T1-complement. This question
was published as Problem 162 in Open problems in topology [14] and
repeated in many other papers.

Since transversality plays a crucial role in the study of complementary
topologies, many results have been obtained on the existence of “nice”
pairs of transversal topologies. Shakhmatov, Tkachenko and Wilson
proved in [8], among other things, that every Hausdorff space admits a
compact Hausdorff transversal topology and that every space embeds
as a retract into a self-transversal space. It was also discovered in [8]
that self-transversality of a space X has strong implications concerning
the topology of X. One of them is the equality nw(X) = |X| for any
self-transversal space X. Consequently, weight and cardinality must
coincide in any compact self-transversal space. This is a very strong re-
striction which shows that even the interval [0, 1] with the natural topol-
ogy is not self-transversal. On the other hand, Shakhmatov, Tkachenko
and Wilson showed that many compact spaces are self-transversal and
formulated in [8] some natural questions on self-transversal spaces.

We show that, under CH, there exists a scattered compact space
which is not self-transversal, answering negatively Problem 1 from [8].
If we do not require compactness then the respective example exists in
ZFC. We also give a general construction which furnishes ZFC examples
of compact self-transversal spaces of arbitrarily large cardinality with
the Souslin property. This gives a negative answer to Problem 2 of [8].
The same method makes it possible to obtain compact self-transversal
spaces without points of countable π-character; this provides a strong
negative answer to Problem 3 from [8].

Let (FH) denote the following statement: “For any infinite cardinal
κ there are at most finitely many cardinals between κ and κω”; since
(FH) is weaker than GCH, it is consistent with ZFC. We establish that
(FH) is equivalent to the following assertion: “A metrizable space X is
self-transversal if and only if w(X) = |X|”. We also give some examples
of a “bad” behavior of self-transversality; in particular, we prove that a
dense subspace of a self-transversal space can fail to be self-transversal
and that adding one point can also destroy self-transversality.
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2. Notation and terminology. Given a space X, the family τ (X)
is its topology and τ∗(X) = τ (X)\{∅}. If A⊂X, then τ (A, X) = {U ∈
τ (X) : A⊂U}; we write τ (x, X) instead of τ ({x}, X). The space D is
the doubleton {0, 1} with the discrete topology. A space X is scattered
if every non-empty subspace of X has an isolated point. The space X
is monotonically normal if, for every pair (x, U) with x ∈ U ∈ τ (X)
there exists a set H(x, U) ∈ τ (x, U) such that, for any U, V ∈ τ (X) if
H(x, U) ∩ H(y, V ) �= ∅ then x ∈ V or y ∈ U . The expression X � Y
denotes that the spaces X and Y are homeomorphic; the symbol
stands for the end of a proof.

Given a point x ∈ X, a family B⊂ τ∗(X) is called a π-base at x
if every U ∈ τ (x, X) contains an element of B. The π-character
πχ(x, X) of the point x in X is the minimal cardinality of a π-base
at x. The spread s(X) (extent ext (X)) of a space X is the supremum
of cardinalities of (closed) discrete subspaces of X. If A is a family of
subsets of a set Y such that ∪A = Y then 〈A〉 is the topology on Y
generated by A as a subbase.

As usual, the symbol ω stands for the set of natural numbers and
N = ω\{0}. The space R is the real line with the usual topology. The
hypothesis (FH) says that the set {μ : μ is a cardinal and κ ≤ μ ≤ κω}
is finite for any infinite cardinal κ. Given a family T = {Xt : t ∈ T} of
any spaces, the expression ⊕{Xt : t ∈ T} is used for the free union of
the family T . The rest of our terminology is standard and follows [2].

3. Self-transversal topologies. Shakhmatov, Tkachenko and
Wilson described a number of properties every self-transversal space
must have. We are also going to give some necessary and some sufficient
conditions for self-transversality; they will be applied to answer three
questions from [8] and give characterizations of self-transversality in
some “nice” classes of spaces.

The following statement was proved and applied several times in [8];
since it has not been stated there explicitly, it is worth citing here.

3.1. Proposition. Given any space X let O be the set of all isolated
points of X. If |X| = |O| then X is self-transversal.
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3.2. Proposition. Given any infinite space X, if there is a closed
discrete D⊂X with |D| = |X| then X is self-transversal.

Proof. Making the set D smaller if necessary, we can assume,
without loss of generality, that |D| = |X\D| and hence there exists
a bijection ϕ : X → X such that ϕ(D) = X\D. Let τ = τ (X)
and μ = ϕ(τ (X)); given any x ∈ D, we can find U ∈ τ (x, X) such
that U ∩ D = {x}. If y = ϕ−1(x) then y ∈ X\D ∈ τ (y, X) and
hence D = ϕ(X\D) ∈ μ. As a consequence, U ∩ D ∈ 〈τ ∪ μ〉 and
{x} = U ∩ D, so x is isolated in 〈τ ∪ μ〉. Now, if x ∈ X\D then, for
y = ϕ−1(x) ∈ D, take any W ∈ τ (y, X) with W ∩D = {y} and observe
that ϕ(W ) ∩ (X\D) ∈ 〈τ ∪ μ〉 and ϕ(W ) ∩ (X\D) = {x}, so the point
x is again isolated in 〈τ ∪ μ〉.

3.3. Lemma. Let X be a Hausdorff space; assume that we are given
families {Xn : n ∈ ω} and {Dn : n ∈ ω} of infinite subsets of X with
the following properties:

(1) ∪{Xn : n ∈ ω} is open in X and Xi ∩ Xj = ∅ whenever i �= j;

(2) if P = X\(∪{Xn : n ∈ ω}) then |P | ≤ |D0| and X1 ∩ P = ∅;

(3) Dn is a discrete subspace of X and Dn ⊂ Int (Xn) for every n ∈ ω;

(4) |Xn| = |Xn\Dn| = |Dn+1| for all n ∈ ω;

(5) Xn ∩ Xn+2 = ∅ for any n ∈ ω.

Then X is self-transversal.

Proof. We will construct a bijection ϕ : X → X which is actually
an involution, i.e., ϕ(ϕ(x)) = x for all x ∈ X. To this end apply (2)
to find a bijection a0 : P → Q of P onto some Q⊂D0; let E0 = Q
and En = Dn for all n ∈ N. Observe that the set P can be empty in
which case Q = ∅ and there is no need to define a0. Choose a bijection
bn : Xn\En → En+1 for every n ∈ ω (this choice is possible by (4)).

Now, if x ∈ P , let ϕ(x) = a0(x); to make the mapping ϕ an
involution, let ϕ(x) = a−1

0 (x) for each x ∈ Q = E0. Now assume
that x ∈ X\(P ∪ E0); there is a unique n ∈ ω such that x ∈ Xn.
If x ∈ Xn\En, then let ϕ(x) = bn(x); if x ∈ En, then n > 0 so
we can define ϕ(x) = b−1

n−1(x). It is immediate that ϕ : X → X is an
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involution; let τ = τ (X) and μ = ϕ(τ ). To prove that 〈τ ∪ μ〉 is discrete
take any x ∈ X and let y = ϕ(x); we must consider the following cases.

Case 1. x ∈ P . Then y ∈ E0 so, by (3), there exists a set
V ∈ τ (y, X) such that V ⊂X0 and V ∩ E0 = {y}. If U = X\X1,
then U ∈ τ (x, X) by (2). Consequently, ϕ(V ) = b0(V \{y}) ∪ {x}; it
follows from b0(V \{y})⊂X1, that U ∩ ϕ(V ) = {x} which shows that
x is isolated in 〈τ ∪ μ〉.

Case 2. x ∈ E0. Then y ∈ P so the result of Case 1 is applicable
to the point y. Thus y is isolated in 〈τ ∪ μ〉 and hence there exist
V ∈ τ (y, X) and U ∈ τ (x, X) such that V ∩ϕ(U) = {y}. Since ϕ is an
involution, we have ϕ(V ) ∩ U = {x} so x is isolated in 〈τ ∪ μ〉.

Case 3. x ∈ Xn\En for some n ∈ ω. Then y ∈ En+1 and
(3) shows that there exists V ∈ τ (y, X) such that V ⊂Xn+1 and
V ∩ En+1 = {y}. If U = X\Xn+2, then we have U ∈ τ (x, X) by (5);
since ϕ(V \{y}) = bn+1(V \{y})⊂Xn+2, we obtain ϕ(V ) ∩ U = {x}
which shows that x is isolated in 〈τ ∪ μ〉.

Case 4. x ∈ En+1 for some n ∈ ω. Then y ∈ Xn\En so the result
of Case 3 is applicable to the point y. Consequently, y is isolated in
〈τ ∪ μ〉 and hence there exist U ∈ τ (x, X) and V ∈ τ (y, X) such that
V ∩ ϕ(U) = {y}. Since ϕ is an involution, we have ϕ(V ) ∩ U = {x} so
x is also isolated in 〈τ ∪ μ〉.

3.4. Proposition. Let X be a self-transversal space with a bijection
ϕ : X → X which witnesses the self-transversality of X. Then,
for any subspaces Y, Z ⊂X, the set D = {(y, ϕ(y)) : y ∈ Y and
ϕ(y) ∈ Z} is a discrete subspace of the product Y × Z. Therefore
|Z ∩ ϕ(Y )| ≤ s(Y × Z) ≤ min{s(Y ) · nw(Z), nw(Y ) · s(Z)}.

Proof. Given any t = (y, z) ∈ D, we have z = ϕ(y) ∈ Z; since
ϕ(τ (X)) is transversal to τ (X), there is U ∈ τ (y, X) and V ∈ τ (z, X)
such that ϕ(U) ∩ V = {z}. It is straightforward that W = (U ∩ Y ) ×
(V ∩ Z) ∈ τ (t, Y × Z) and W ∩ D = {t}.
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3.5. Corollary. If X is a self-transversal space, then |Y | ≤ nw(Y ) ·
s(X) for any Y ⊂X; besides, there is a discrete D⊂X × X such that
|D| = |X| and, in particular, s(X × X) = |X|.

Proof. Take any bijection ϕ : X → X which witnesses the self-
transversality of X; to prove the first statement apply Proposition 3.4
to the sets Y and Z = X; if we let Y = Z = X in Proposition 3.4 then
we obtain the second statement.

3.6. Remark. It was proved in [8] that, for any self-transversal
space X, we have nw(X) = |X|. It is worth mentioning that this
equality is an easy consequence of Corollary 3.5 because nw(X) ≤
|X| = s(X×X) ≤ nw(X×X) = nw(X) for any infinite self-transversal
space X.

3.7. Theorem. Every countable Hausdorff space is self-transversal.

Proof. Take any countable Hausdorff space X. If X is compact
then it is self-transversal by Corollary 2.3 of [8]. If X is not compact
then, being countable, it is not countably compact and hence there is
an infinite closed discrete D⊂X so we can apply Proposition 3.2 to
conclude our proof.

3.8. Proposition. If X is a metrizable self-transversal space, then
there is a discrete D⊂X such that |D| = |X|. In particular, w(X) =
s(X) = |X|. However, there exists a metrizable self-transversal space
Y such that |E| < |Y | for any closed discrete E ⊂Y .

Proof. We have w(X) = nw(X) = |X| by [8, Theorem 2.11];
moreover, it is well known that any metrizable space X has a discrete
subspace of size w(X).

Now, let A be the set of ordinals less than ωω; choose a point w /∈ A
and consider the space Y = A∪{w} in which all points of A are isolated
and U ∈ τ (w, Y ) if and only if w ∈ U and Y \U ⊂ωn for some n ∈ ω.
We omit the trivial verification that Y is metrizable. The space Y has
no closed discrete subspace of cardinality ωω because every subspace
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of this cardinality accumulates to w. Finally, X is self-transversal by
Proposition 3.1.

3.9. Theorem. The following statements are equivalent:

(FH) for any cardinal κ ≥ ω, the set {μ : μ is a cardinal and
κ ≤ μ ≤ κω} is finite;

(MH) a metrizable space X is self-transversal if and only if w(X) =
|X|.

Proof. Assume that (FH) holds, and take any metrizable space X.
If X is self-transversal, then nw(X) = |X| by Theorem 2.11 from
[8]. Since X is metrizable, we have w(X) = nw(X) which proves
the necessity in (MH).

Now assume that X is a metrizable space with w(X) = |X|; it is
evident that ext (X) = w(X) = |X|. If |X| = ω the result follows from
Theorem 3.7. Thus, we can assume that X is uncountable.

If there exists a closed discrete D⊂X with |D| = |X| then Proposi-
tion 3.2 is applicable to conclude that X is self-transversal. If such a
set D does not exist then κ = |X| has countable cofinality and there
exists a compact subspace K ⊂X such that w(X\O) < κ for each
O ∈ τ (K, X) [3]. It is easy to construct a sequence {Un : n ∈ ω}
of open subsets of X such that ∩{Un : n ∈ ω} = K and Un+1 ⊂Un

for all n ∈ ω. Observe that λn = w(X\Un) < κ for each n ∈ ω and
sup{λn : n ∈ ω} = κ; an immediate consequence of (FH) is that λω

n < κ
for every n ∈ ω. Since |Z| ≤ (w(Z))ω for every metrizable space Z,
we have |X\Un| ≤ (w(X\Un))ω = λω

n < κ. This makes it possible to
choose a sequence {On : n ∈ ω}⊂ τ (K, X) and a sequence {κn : n ∈ ω}
of uncountable cardinals with the following properties:

(i) κn < κn+1 for each n ∈ ω and sup{κn : n ∈ ω} = κ;

(ii) O0 = X, ∩{On : n ∈ ω} = K and On+1 ⊂On for all n ∈ ω;

(iii) there is a discrete Dn ⊂On\On+1 with |Dn| = κn for each n ∈ ω;

(iv) |K|<κ0 and |On\On+1|= |(On\On+1)\Dn|=κn+1 for all n∈ω.

Observe that (FH) implies κ > c so, to obtain the property |K| < κ0

in (iv) we can assume that κ0 > c ≥ |K| (recall that K is a metrizable
compact space and hence |K| ≤ c).
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To finish our proof, observe that letting Xn = On\On+1 we obtain the
sequences {Xn : n ∈ ω} and {Dn : n ∈ ω} which satisfy the conditions
(1) (5) of Lemma 3.3. Therefore, X is self-transversal and we have
proved that (FH) implies (MH).

Now assume that (MH) holds and there is an infinite cardinal κ such
that the set P (κ) = {μ : μ is a cardinal and κ ≤ μ ≤ κω} is infinite.
Let κ0 = κ+ and κn+1 = κ+

n for all n ∈ ω. Then κω > κn for every
n ∈ ω and hence κω > λ = lim{κn : n ∈ ω}.

Note first that, for each n ∈ ω, there exists a metrizable space Xn such
that w(Xn) = κn and |U | = λ for every U ∈ τ∗(Xn). To construct such
a space, let An be the discrete space of cardinality κn for each n ∈ ω.
Observe that w((An)ω) = κn and |W | = κω for any W ∈ τ∗((An)ω).
Now take a base {Bα : α < κn} of the space (An)ω and choose any set
Cα ⊂Bα with |Cα| = λ for each α < κn. Then Xn = ∪{Cα : α < κn}
is as promised.

Take any point w /∈ ∪{Xn : n ∈ ω}, and let X = {w} ∪ (∪{Xn : n ∈
ω}); every set Xn is clopen in X and carries the topology of Xn. The
local base at w is given by the family {{w}∪ (∪{Xk : k ≥ n}) : n ∈ ω}.
It is easy to see that X is a metrizable space and w(X) = |X| = λ.

To obtain a contradiction, assume that X is self-transversal and take
a bijection ϕ : X → X which witnesses this. We claim that

(∗) for any U ∈ τ∗(X) the set NU = {n ∈ ω : ϕ(U) ∩ Xn �= ∅} is
infinite.

Making U smaller, if necessary, we can assume that U ⊂Xn for
some n ∈ ω. If (∗) is not true, then there is k > n such that
ϕ(U)⊂Z = {w} ∪ X0 ∪ . . . ∪ Xk. Observe that nw(Z) ≤ κk and
nw(U) ≤ nw(Xn) ≤ κn < κk so we can apply Proposition 3.4 to
conclude that λ = |ϕ(U)| = |ϕ(U) ∩ Z| ≤ nw(U) + nw(Z) ≤ κk; this
contradiction proves (∗).

Finally, let u = ϕ−1(w); since ϕ(τ (X)) is transversal to τ (X), we
can find G ∈ τ (u, X) and H ∈ τ (w, X) such that ϕ(G) ∩ H = {w}.
However, H contains a set Pn = ∪{Xk : k > n} for some n ∈ ω while
ϕ(G) ∩ Pn �= ∅ for all n ∈ ω by (∗). This shows that ϕ(G) ∩ H �= {w}
which is again a contradiction.



SELF-TRANSVERSAL SPACES 1165

3.10. Corollary. The statement “a metrizable space X is self-
transversal if and only if w(X) = |X|” is independent of ZFC.

3.11. Corollary. The following statements are both equivalent to
(FH):

(FU) if a metrizable space X is a union of ≤ w(X)-many of its self-
transversal subspaces, then X is self-transversal;

(OP) if X is a metrizable space and X\{x} is self-transversal for
some x ∈ X, then X is self-transversal.

Proof. Assume that (FH) is false. In the (MH) =⇒ (FH) part of the
proof of Theorem 3.9, we established that if (FH) is false then there
exists a metrizable space X with the following properties:

(i) X = {w} ∪ (∪{Xn : n ∈ ω}) where Xn is a clopen subset of X
for each n ∈ ω;

(ii) Xi ∩ Xj = ∅ if i �= j and w /∈ ∪{Xn : n ∈ ω};
(iii) κn = w(Xn) is a regular (in fact, a successor) cardinal for all

n ∈ ω;

(iv) X is not self-transversal and λ = |X| = sup{κn : n ∈ ω}.
It follows from (iii) that there is a closed discrete set Dn ⊂Xn with

|Dn| = κn for every n ∈ ω. It is evident that Y = X\{w} is
homeomorphic to ⊕{Xn : n ∈ ω} so the set D = ∪{Dn : n ∈ ω}
is closed and discrete in the space Y . Since |D| = sup{κn : n ∈ ω} =
λ = |Y |, the space Y is self-transversal by Proposition 3.2. Therefore
the space X and the point w ∈ X show that (OP) fails, proving that
(OP) =⇒ (FH).

Now assume that (FH) is true and we have an (infinite) metrizable
space X with w(X) = κ such that X = ∪{Yα : α < κ} where Yα is
self-transversal and hence |Yα| = w(Yα) ≤ κ for each α < κ. But then

|X| ≤
∑

{|Yα| : α < κ} =
∑

{w(Yα) : α < κ} ≤ κ · κ = κ = w(X),

whence w(X) = |X| which, together with (FH) implies that X is self-
transversal by Theorem 3.9. This proves that (FH) =⇒ (FU); since the
implication (FU) =⇒ (OP) is clear, we have (FU) ⇐⇒ (OP) ⇐⇒ (FH).
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Proposition 3.2 makes it natural to ask whether a space X is self-
transversal if it has a discrete (not necessarily closed) subspace D⊂X
with |D| = |X|. The following ZFC example shows that this is not
true.

3.12. Example. There exists a space X with the following
properties:

(a) |X| = c and X is a dense subspace of Rc;

(b) X is not self-transversal;

(c) X contains a subspace homeomorphic to the one-point compact-
ification of a discrete space of cardinality c.

In particular, X has a discrete subspace of cardinality c = |X|. Thus
X is a ZFC example showing that it is essential that the discrete set
in Proposition 3.2 be also closed. In addition, if a is the unique non-
isolated point of this one-point compactification, then the subspace
T = X\{a} is self-transversal by Proposition 3.2. Thus, adding one
point to the space T destroys its self-transversality.

Proof. The space Y = Cp(R) of all continuous real-valued functions
on R is dense in RR [1, Proposition 0.3.6] and the latter is homeo-
morphic to Rc. Take any point a ∈ RR\Y ; it is easy to construct a
subspace A⊂RR homeomorphic to the one-point compactification of
a discrete space of cardinality c for which a is the unique non-isolated
point of A. Since s(Y ) ≤ nw(Y ) = ω [1, Theorem 1.1.3], the set A∩Y
is at most countable so B = A\Y is the one-point compactification of
a discrete space of cardinality c with B ⊂RR\Y . We claim that the
space X = Y ∪ B has all required properties.

Since (a) and (c) are clear, we only have to check that X is not self-
transversal. To obtain a contradiction, assume that ϕ : X → X is a
bijection witnessing the self-transversality of X. Then

(∗∗) ϕ(U) ∩ Y is countable for any U ∈ τ∗(Y ),

because |ϕ(U) ∩ Y | ≤ nw(U) + nw(Y ) = ω by Proposition 3.4. Now,
if b = ϕ−1(a), then there exists V ∈ τ (b, X) and W ∈ τ (a, X) such
that ϕ(V ) ∩ W = {a}. Observe that U = V ∩ Y is a non-empty open
subset of Y and hence U is uncountable. By (∗∗), the set ϕ(U) ∩ A is
also uncountable; since W contains all points of A except for a finite
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set, we have ϕ(V ) ∩ W ⊃ ϕ(U) ∩ W ⊃ ϕ(U) ∩ W ∩ A; the last set
being uncountable, the set ϕ(V ) ∩ W is also uncountable which is a
contradiction. Therefore, X is not self-transversal.

The following theorem gives a negative answer in a strong form to
Problems 2 and 3 from [8].

3.13. Theorem. Let λ be a strong limit cardinal of countable
cofinality. Then, for any infinite cardinal κ < λ, there exists a
self-transversal compact space X with the Souslin property for which
|X| = λ and πχ(x, X) ≥ κ for each x ∈ X.

Proof. Let us first choose a sequence {λn : n ∈ ω} of infinite cardinals
such that sup{λn : n ∈ ω} = λ while 2κ < λ0 and 2λn < λn+1 for
each n ∈ ω. Let Zn = Dλn for each n ∈ ω and consider the space
Z = ⊕n∈ωZn. Clearly, Z is a locally compact, σ-compact space.

Denote by A(Z) the one-point compactification of the space Z. The
space X = A(Z)×Dκ is a countable union of Cantor cubes and hence
c(X) = ω. It is also obvious that |X| = λ. Furthermore, X is a compact
space with πχ(x, X) ≥ κ for every x ∈ X because the projection onto
the second factor maps X openly onto Dκ. Now if Xn = Zn ×Dκ then
Xn is a clopen subspace of X and we can choose a discrete subspace
Dn ⊂Xn � Dλn in such a way that 2κ ≤ |D0| and |Dn+1| = 2λn

for each n ∈ ω. It is immediate that the families {Xn : n ∈ ω} and
{Dn : n ∈ ω} satisfy all the conditions of Lemma 3.3 and hence X is
self-transversal.

3.14. Remark. If we don’t want to guarantee a large π-character at
all points, then we can take instead of X the one-point compactification
A(Z) of the space Z from the proof of Theorem 3.13. The resulting
space also settles Problems 2 and 3 from [8]; its only “defect” is to have
one point of countable character.

3.15. Remark. The compact space X (or A(Z)) from Theorem 3.13
is self-transversal and hence |X| = w(X) while c(X) = ω. On the other
hand, if we take any cardinal μ with μω = μ then there is no compact
space K satisfying both |K| = w(K) = μ+ and c(K) = ω. Indeed, if
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K has a dense set of points of π-character ≤ μ, then by a well-known
result of Shapirovskii we have w(K) ≤ μc(K) = μ. If not, then there is
a closed F ⊂K such that χ(z, F ) ≥ μ+ for all z ∈ F and therefore, by
the Čech-Pospǐsil theorem, we have |K| ≥ |F | ≥ 2μ+

> μ+. It would
be interesting to clarify what happens for the cardinals not covered
by Theorem 3.13 and this observation. For example, it is not clear
whether there exists, under GCH, a compact space K with c(K) = ω
and |K| = w(K) = ωω+1.

The following result gives a consistent negative answer to Problem 1
of [8].

3.16. Theorem. Under CH, there exists a scattered compact space
which is not self-transversal.

Proof. Under CH, Kunen constructed a compact scattered space X
such that |X| = ω1, and the space Xn is hereditarily separable for all
n ∈ N (this example seems to have never been published but another
one with stronger properties was given in [13, Theorem 2.5]). An
immediate consequence is s(X×X) = ω so X cannot be self-transversal
by Corollary 3.5.

We do not know if the conclusion of this result could be obtained in
ZFC. However, this can be done if we do not require that the space be
compact.

3.17. Theorem. There is a zero-dimensional scattered space X
which is not self-transversal.

Proof. Juhász proved that there exists in ZFC a scattered subspace
X of Dω2 such that |X| = ω2 while s(X × X) = ω1 [5]. But then
Corollary 3.5 can be applied again to conclude that X is not self-
transversal.

However, there is a large class of scattered spaces whose elements are
all self-transversal.
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3.18. Proposition. Any scattered monotonically normal space is
self-transversal.

Proof. Take any scattered monotonically normal space X. The set
D of isolated points of X is dense in X. If |D| = κ then d(X) = κ and
hence hl(X) = c(X) ≤ d(X) ≤ κ [6]. The space X being scattered, we
have hl(X) = |X|, and therefore |X| ≤ κ. Now apply Proposition 3.1
to conclude that X is self-transversal.

3.19. Corollary. Any scattered metrizable space as well as any
scattered generalized ordered space is self-transversal.

In the sequel we prove some simple facts about general categorical
properties of self-transversal spaces.

3.20. Proposition. If (X, τ ) is a self-transversal space and μ is a
topology on X with τ ⊂μ, then (X, μ) is also self-transversal.

Proof. Let ϕ : X → X be a bijection which witnesses the self-
transversality of (X, τ ). The topology 〈ϕ(μ) ∪ μ〉 is discrete because it
is stronger than the discrete topology 〈ϕ(τ ) ∪ τ〉.

3.21. Example. A dense subspace of a self-transversal space is not
necessarily self-transversal.

Proof. If X is the Niemytzky plane (also known as the bubble space),
then X has a closed discrete subspace D⊂X such that |D| = c = |X|;
observe that the space Y = X\D is homeomorphic to the upper half-
plane of R × R. By Proposition 3.2 the space X is self-transversal
while Y is dense in X and nw(Y ) = w(Y ) = ω < |Y |, so Y is not
self-transversal by Theorem 2.11 of [8].
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3.22. Theorem. Any finite product of self-transversal spaces is
self-transversal.

Proof. It suffices to show that our statement holds for the product
of two self-transversal spaces, say, X and Y . Let ϕX : X → X and
ϕY : Y → Y be the respective bijections; denote by τ the topology of
X ×Y . Define a map ϕ : X ×Y → X ×Y by ϕ(x, y) = (ϕX(x), ϕY (y))
for any (x, y) ∈ X×Y . It is immediate that ϕ is a bijection. Given any
z = (x, y) ∈ X × Y , let x′ = ϕ−1

X (x) and y′ = ϕ−1
X (y). Then z = ϕ(z′)

where z′ = (x′, y′). The pairs of topologies (ϕX(τ (X)), τ (X)) and
(ϕY (τ (Y )), τ (Y )) being transversal, we can choose U ′ ∈ τ (x′, X), U ∈
τ (x, X) and V ′ ∈ τ (y′, Y ), V ∈ τ (y, Y ) such that ϕX(U ′) ∩ U = {x}
and ϕY (V ′) ∩ V = {y}. If W ′ = U ′ × V ′ and W = U × V then
W ∈ τ (z, X × Y ), W ′ ∈ τ (z′, X × Y ) and ϕ(W ′) ∩ W = {z} so z is
isolated in 〈τ ∪ ϕ(τ )〉.

3.23. Examples. The space Dω shows that a countable prod-
uct of discrete, and hence self-transversal, spaces can fail to be self-
transversal. It is less trivial to see that there exists a non-self-
transversal space X such that X × X is self-transversal.

Proof. Let X = R ⊕ S where S is the Sorgenfrey line. The space
X×X has a closed discrete subset of cardinality c because such a subset
exists in S ×S. Therefore X ×X is self-transversal by Proposition 3.2.

To see that X is not self-transversal, assume the contrary and fix
a bijection ϕ : X → X witnessing this. Let τ = τ (X) and μ = ϕ(τ );
furthermore, take any countable base B = {Bn : n ∈ ω} of the space R.
For each n ∈ ω consider the set Dn = {x ∈ Bn : W ∩Bn = {x} for some
W ∈ μ}. It is obvious that the Dn is discrete in (X, μ) for each n ∈ ω.
It follows from the transversality of τ and μ that R = ∪{Dn : n ∈ ω}
and therefore |Dn| > ω for some n ∈ ω. However the spread of (X, μ)
is countable because it is homeomorphic to (X, τ ); this contradiction
shows that X is not self-transversal.

4. Open problems. The following list features the most interesting
questions we could not answer while working on this paper.
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4.1. Problem. Is there in ZFC an example of a compact scattered
space which is not self-transversal?

4.2. Problem. Take a dense left-separated subspace X of a Souslin
line. Must X be self-transversal?

4.3. Problem. Assume that X is a compact space for which
there exists a discrete D⊂X such that |D| = |X|. Must X be self-
transversal?

4.4. Problem. Suppose that X is a space which is a union of two of
its closed self-transversal subspaces. Must X be self-transversal? What
happens if X is compact?

4.5. Problem. Let X be a Hausdorff space with a σ-locally finite
base. Is it true (under GCH or in ZFC) that w(X) = |X| implies that
X is self-transversal?

4.6. Problem. How can hereditarily self-transversal spaces be
characterized? For example, must a compact Hausdorff hereditarily
self-transversal space be scattered?

4.7. Problem. Given a space Z, let N(Z) be the set of its non-
isolated points. Assume that X is a compact scattered space such that
N(N(N(X))) is a finite set (such scattered spaces are said to have
height 4). Must X be self-transversal?

4.8. Problem. Must every compact σ-discrete space be self-
transversal? How about an arbitrary strongly σ-discrete space (i.e.,
a space which is a countable union of closed discrete subspaces)?
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