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A NOTE ON SCHUR-CONVEXITY
OF EXTENDED MEAN VALUES

FENG QI

ABSTRACT. In this article, the Schur-convexity of the ex-
tended mean values is proved. Consequently, an inequality
between the logarithmic mean values and the identric (expo-
nential) mean values is deduced.

1. Introduction. It is well known that, in 1975, the extended mean
values E(r, s; x, y) were defined in [21] by Stolarsky as follows

E(r, s; x, y) =
[
r

s
· ys − xs

yr − xr

]1/(s−r)

, rs(r − s)(x − y) �= 0;(1)

E(r, 0; x, y) =
[
1
r
· yr − xr

ln y − ln x

]1/r

, r(x − y) �= 0;(2)

E(r, r; x, y) =
1

e1/r

(
xxr

yyr

)1/(xr−yr)

, r(x − y) �= 0;(3)

E(0, 0; x, y) =
√

xy, x �= y; E(r, s; x, x) = x, x = y;
(4)

where x, y > 0 and r, s ∈ R.

For x, y > 0 and t ∈ R, let us define a function g by

(5) g(t) = g(t; x, y) =
{

(yt − xt)/t, t �= 0;
ln y − ln x, t = 0.
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It is easy to see that g can be expressed in integral form as

g(t; x, y) =
∫ y

x

ut−1 du,(6)

and

g(n)(t) =
∫ y

x

(lnu)nut−1 du.(7)

Recently, a new expression for the ith order derivative of g(t; x, y) with
respect to variable t was obtained by the author as follows

(8) (−1)ig(i)(t) =
Γ(i + 1,−t ln y) − Γ(i + 1,−t lnx)

ti+1
,

where i is a nonnegative integer and Γ denotes the incomplete gamma
function defined for Re z > 0 by

(9) Γ(z, x) =
∫ ∞

x

tz−1e−t dt.

Therefore, the extended mean values E(r, s; x, y) were represented in
terms of g in [2, 7, 10, 19] by

(10) E(r, s; x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
g(s; x, y)
g(r; x, y)

)1/(s−r)

(r−s)(x−y) �= 0;

exp
(

(∂g(r; x, y)/∂r)
g(r; x, y)

)
r = s, x−y �= 0

and
(11)

ln E(r, s; x, y) =

⎧⎪⎪⎨
⎪⎪⎩

1
(s−r)

∫ s

r

(∂g(t; x, y)/∂t)
g(t; x, y)

dt (r−s)(x−y) �= 0;

(∂g(r; x, y)/∂r)
g(r; x, y)

r = s, x − y �= 0.

In 1978, Leach and Sholander [3] showed that E(r, s; x, y) are increas-
ing with both r and s, or with both x and y. Later, the monotonicities
of E were researched by the author and others in [2, 12 16] and [19,
20] using different ideas and simpler approaches.
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In 1983 and 1988, Leach and Sholander [4] and Páles [5], respectively,
solved the problem of comparison of E; that is, they found necessary
and sufficient conditions for the parameters r, s and u, v in order that
E(r, s; x, y) ≤ E(u, v; x, y) be satisfied for all positive x and y.

The concepts of mean values have been generalized or extended by
the author in [7 9] and [11, 12].

Recently, the author verified the logarithmic convexity of E(r, s; x, y)
with two parameters r and s as follows

Theorem A [10]. For all fixed x, y > 0 and s ∈ [0, +∞) (or
r ∈ [0, +∞), respectively), the extended mean values E(r, s; x, y) are
logarithmically concave in r (or in s, respectively) on [0, +∞); for all
fixed x, y > 0 and s ∈ (−∞, 0] (or r ∈ (−∞, 0], respectively), the
extended mean values E(r, s; x, y) are logarithmically convex in r (or in
s, respectively) on (−∞, 0].

Definition 1 [6, pp. 75 76]. A function f with n arguments defined
on In is Schur-convex on In if f(x) ≤ f(y) for each two n-tuples
x = (x1, . . . , xn) and y = (y1, . . . , yn) in In such that x ≺ y holds,
where I is an interval with nonempty interior.

The relationship of majorization x ≺ y means that

(12)
k∑

i=1

x[i] ≤
k∑

i=1

y[i],
n∑

i=1

x[i] =
n∑

i=1

y[i],

where 1 ≤ k ≤ n − 1, x[i] denotes the ith largest component in x.

A function f is Schur-concave if and only if −f is Schur-convex.

In this article, our main purpose is to prove the Schur-convexity of
the extended mean values E(r, s; x, y) with (r, s), and then we obtain
the following

Theorem 1. For fixed (x, y) with x > 0, y > 0 and x �= y, the
extended mean values E(r, s; x, y) are Schur-concave on R2

+ and Schur-
convex on R2

− with (r, s), where R2
+ and R2

− denote [0, +∞)× [0, +∞)
and (−∞, 0] × (−∞, 0], the first and third quadrants, respectively.
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Considering (r1, s1) = (0, 2r) and (r2, s2) = (r, r) for r �= 0, as a
direct consequence of Theorem 1, we obtain an inequality between the
logarithmic mean values (2) and the identric (exponential) mean values
(3) as follows

Corollary 1. Let x, y > 0 and x �= y. Then, for r > 0, we have

(13)
[

1
2r

· y2r − x2r

ln y − ln x

]1/(2r)

≤ 1
e1/r

(
xxr

yyr

)1/(xr−yr)

.

For r < 0, inequality (13) reverses.

2. Lemmae. In order to prove Theorem 1, we need the following
lemmae.

Lemma 1 [1]. Let f be a continuous function on I. Then the
arithmetic mean of function f (or the integral arithmetic mean),

(14) φ(u, v) =

⎧⎨
⎩

1
(v−u)

∫ v

u

f(t) dt u �= v,

f(u) u = v,

is Schur-convex (Schur-concave) on I2 if and only if f is convex
(concave) on I.

By formula (11) and Lemma 1, it is easy to see that, to prove the
Schur-convexity of the extended mean values E(r, s; x, y) with (r, s), it
suffices to verify the convexity of function

(15)
g′(t)
g(t)

� g′t(t; x, y)
g(t; x, y)

� ∂g(t; x, y)
∂t

· 1
g(t; x, y)

with respect to t, where g(t) = g(t; x, y) is defined by (5) or (6).

Straightforward computation results in(
g′(t)
g(t)

)′
=

g′′(t)g(t) − [g′(t)]2

g2(t)
,(16)

(
g′(t)
g(t)

)′′
=

g2(t)g′′′(t) − 3g(t)g′(t)g′′(t) + 2[g′(t)]3

g3(t)
.(17)
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Lemma 2 [10]. If y > x = 1, then, for t ≥ 0,

(18) g2(t; 1, y)g′′′t (t; 1, y) − 3g(t; 1, y)g′t(t; 1, y)g′′t (t; 1, y)

+ 2[g′t(t; 1, y)]3 ≤ 0.

Lemma 3. If y > x = 1, then, for t ≥ 0, the function g′(t)/g(t) is
concave.

Proof. This follows from using a combination of formulae (15), (16)
and (17) with Lemma 2 easily.

3. Proof of Theorem 1. It is evident that E(r, s; x, y) is symmetric
with (r, s) since we have E(r, s; x, y) = E(s, r; x, y).

Combining Lemma 2 with equality (17) shows that the function
g′t(t; 1, y)/g(t; 1, y) is concave on [0, +∞) with t for y > x = 1.
Therefore, from Lemma 1, it follows that the extended mean values
E(r, s; 1, y) are Schur-concave with (r, s) on [0, +∞) × [0, +∞) for
y > x = 1.

By standard arguments, we obtain

E(r, s; x, y) = xE(r, s; 1, (y/x)),(19)

E(−r,−s; x, y) =
xy

E(r, s; x, y)
.(20)

Hence, for fixed x and y, the extended mean values E(r, s; x, y) are
Schur-concave on [0, +∞) × [0, +∞) and Schur-convex on (−∞, 0] ×
(−∞, 0] with (r, s). The proof of Theorem 1 is complete.

Remark. Recently, the Schur-convexities with (x, y) of the extended
mean values E(r, s; x, y) were obtained, see [13, 17].
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5. Z. Páles, Inequalities for differences of powers, J. Math. Anal. Appl. 131
(1988), 271 281.
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