ALMOST SURE CONVERGENCE OF AQSI SEQUENCES IN DOUBLE ARRAYS

MI-HWA KO, TAE-SUNG KIM AND JONG-IL BAEK

Abstract

For double arrays of constants $\left\{a_{n i}, 1 \leq i \leq\right.$ $\left.k_{n}, n \geq 1\right\}$ and a sequence $\left\{X_{n}, n \geq 1\right\}$ of asymptotically quadrant sub-independent (AQSI) random variables the almost sure convergence of $\sum_{i=1}^{k_{n}} a_{n i} X_{i} / \log k_{n}$ is derived. The Marcinkiewicz strong law of large numbers for AQSI sequence is also obtained by applying this result.

1. Introduction. Let (Ω, \mathcal{F}, P) be a probability space, and let $\left\{X_{n}, n \geq 1\right\}$ be a sequence of random variables defined on (Ω, \mathcal{F}, P).

Lehmann [5] introduced the notion of positive quadrant dependence: A sequence $\left\{X_{n}, n \geq 1\right\}$ is said to be pairwise positive quadrant dependent if, for $s, t \in \mathbf{R}$,

$$
\begin{equation*}
P\left\{X_{i}>s, X_{j}>t\right\}-P\left\{X_{i}>s\right\} P\left\{X_{j}>t\right\} \geq 0 \tag{0.a}
\end{equation*}
$$

or

$$
\begin{equation*}
P\left\{X_{i}<s, X_{j}<t\right\}-P\left\{X_{i}<s\right\} P\left\{X_{j}<t\right\} \geq 0 \tag{0.b}
\end{equation*}
$$

Dropping the assumption of positive dependence, but using the magnitude of the lefthand sides in (0.a) and (0.b) as a measure of dependence, Birkel [1] introduced the notion of asymptotic quadrant independence: A sequence $\left\{X_{n}\right\}$ of random variables is called asymptot-

[^0]ically quadrant independent (AQI) if there exists a nonnegative sequence $\{q(m)\}$ such that, for all $i \neq j$ and $s, t \in \mathbf{R}$,
(1.a) $\left|P\left\{X_{i}>s, X_{j}>t\right\}-P\left\{X_{i}>s\right\} P\left\{X_{j}>t\right\}\right| \leq q(|i-j|) \alpha_{i j}(s, t)$,
\[

$$
\begin{equation*}
\left|P\left\{X_{i}<s, X_{j}<t\right\}-P\left\{X_{i}<s\right\} P\left\{X_{j}<t\right\}\right| \leq q(|i-j|) \beta_{i j}(s, t) \tag{1.b}
\end{equation*}
$$

\]

where $q(m) \rightarrow 0$ and $\alpha_{i j}(s, t) \geq 0, \beta_{i j}(s, t) \geq 0$.
Chandra and Ghosal [3] considered a dependence condition which is a useful weakening of this definition of AQI proposed by Birkel [1]: A sequence $\left\{X_{n}, n \geq 1\right\}$ of random variables is said to be asymptotically quadrant sub-independent (AQSI) if there exists a nonnegative sequence $\{q(m)\}$ such that $q(m) \rightarrow 0$, and for all $i \neq j$,

$$
\begin{align*}
P\left\{X_{i}>s, X_{j}>t\right\}-P\left\{X_{i}>\right. & s\} P\left\{X_{j}>t\right\} \tag{2.a}\\
& \leq q(|i-j|) \alpha_{i j}(s, t), \quad s, t>0 \\
P\left\{X_{i}<s, X_{j}<t\right\}-P\left\{X_{i}<\right. & s\} P\left\{X_{j}<t\right\} \tag{2.b}\\
& \leq q(|i-j|) \beta_{i j}(s, t), \quad s, t<0
\end{align*}
$$

where $\alpha_{i j}(s, t)$ and $\beta_{i j}(s, t)$ are nonnegative numbers. This AQSI condition is satisfied by AQI sequences as well as by pairwise m dependent and pairwise negative quadrant dependent sequences.
There are two well-known results; namely, the Kolmogorov strong law of large numbers and the Rademacher-Mensov strong law of large numbers, e.g., [7, p. 114], [6, Section 36], [8, Chapter 3], Hall and Heyde [4, p. 22]. Chandra and Ghosal [3] proved the strong law of large numbers for weighted averages of AQSI sequences by using an extension of the well-known Rademacher-Mensov inequality, see Lemma 2.1 in Section 2.
In this paper we obtain the almost-sure convergence of a triangular array of weighted sum of AQSI random variables. A result of this type has not been established in the literature.

We will use the following concept in this paper. Let $\left\{X_{n}, n \geq 1\right\}$ be a sequence of random variables, and let X be a nonnegative random variable. If there exists a constant $C, 0<C<\infty$, satisfying
$\sup _{n \geq 1} P\left(\left|X_{n}\right|>t\right) \leq C P(X \geq t)$ for any $t \geq 0$, then $\left\{X_{n}, n \geq 1\right\}$ is said to be stochastically dominated by X (briefly $\left.\left\{X_{n}, n \geq 1\right\} \prec X\right)$.

Throughout the remainder of this paper, C will stand for a constant whose value may vary from line to line.
2. Results. The following result is an extension of the well-known Rademacher-Mensov inequality. A proof of this result can be found in Theorem 10 of [2].

Lemma 2.1 [3]. Let X_{1}, \ldots, X_{n} be square integrable random variables such that there exist numbers $c_{1}^{2}, \ldots, c_{n}^{2}$ satisfying

$$
\begin{equation*}
E\left(X_{m+1}+\cdots+X_{m+p}\right)^{2} \leq c_{m+1}^{2}+\cdots+c_{m+p}^{2}, \quad \forall m, p \tag{3}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
E\left(\max _{1 \leq k \leq n}\left(\sum_{i=1}^{k} X_{i}\right)^{2}\right) \leq((\log n / \log 3)+2)^{2} \sum_{i=1}^{n} c_{i}^{2} \tag{4}
\end{equation*}
$$

Lemma 2.2. Let $\left\{X_{n}, n \geq 1\right\}$ be a sequence of mean zero, square integrable and asymptotically quadrant sub-independent random variables with $\sum_{m=1}^{\infty} q(m)<\infty$ and, for all $i \neq j$,

$$
\begin{align*}
& \int_{0}^{\infty} \int_{0}^{\infty} \alpha_{i j}(s, t) d s d t \leq D\left(1+E X_{i}^{2}+E X_{j}^{2}\right) \tag{5}\\
& \int_{0}^{\infty} \int_{0}^{\infty} \beta_{i j}(s, t) d s d t \leq D\left(1+E X_{i}^{2}+E X_{j}^{2}\right)
\end{align*}
$$

Then we have

$$
\begin{equation*}
E\left(\sum_{i=1}^{n} X_{i}\right)^{2} \leq C \sum_{i=1}^{n}\left(1+E X_{i}^{2}\right) \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
E\left(\max _{1 \leq k \leq n}\left(\sum_{i=1}^{k} X_{i}\right)^{2}\right) \leq((\log n / \log 3)+2)^{2} \sum_{i=1}^{n}\left(1+E X_{i}^{2}\right) \tag{8}
\end{equation*}
$$

Proof. By Lemma 2 of [5] we have

$$
\operatorname{Cov}\left(X_{i}^{+}, X_{j}^{+}\right) \leq D q(|i-j|)\left(1+E X_{i}^{2}+E X_{j}^{2}\right)
$$

So

$$
\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}^{+}\right) \leq C \sum_{i=1}^{n}\left(1+E X_{i}^{2}\right) \quad \text { for all } n
$$

Similarly

$$
\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}^{-}\right) \leq C \sum_{i=1}^{n}\left(1+E X_{i}^{2}\right) \quad \text { for all } n
$$

Thus

$$
\begin{aligned}
\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) & \leq 2 \operatorname{Var}\left(\sum_{i=1}^{n} X_{i}^{+}\right)+2 \operatorname{Var}\left(\sum_{i=1}^{n} X_{i}^{-}\right) \\
& \leq C \sum_{i=1}^{n}\left(1+E X_{i}^{2}\right) \text { for all } n
\end{aligned}
$$

Hence the proof of (7) is complete. Equation (8) follows from (7) and Lemma 2.1 .

From (8) of Lemma 2.2 we have the following maximal inequality.

Theorem 2.3. Let $\left\{X_{n}, n \geq 1\right\}$ be a sequence of mean zero, square integrable AQSI random variables with $\sum_{m=1}^{\infty} q(m)<\infty$, satisfying (5) and (6). Then

$$
\begin{equation*}
P\left\{\max _{1 \leq k \leq n}\left|\sum_{i=1}^{k} X_{i}\right| \geq \varepsilon\right\} \leq C((\log n / \log 3)+2)^{2} \sum_{i=1}^{n}\left(1+E X_{i}^{2}\right) \tag{9}
\end{equation*}
$$

The following theorem is the main result:

Theorem 2.4. Let $\left\{X_{n}, n \geq 1\right\}$ be a sequence of mean zero, square integrable AQSI random variables with $\sum_{m=1}^{\infty} q(m)<\infty$ and satisfying (5) and (6). Let $\left\{X_{n}, n \geq 1\right\}$ be stochastically dominated by
a nonnegative random variable X with $E X^{r}<\infty$ for $0<r<2$. Let $\left\{k_{n}, n \geq 1\right\}$ be an increasing sequence of integers. If $\left\{a_{n i}, 1 \leq i \leq\right.$ $\left.k_{n}, n \geq 1\right\}$ is an array of constants satisfying

$$
\begin{equation*}
\sum_{i=1}^{k_{n}}\left|a_{n i}-a_{n, i+1}\right|=O\left(\frac{1}{k_{n}^{1 / r}}\right) \tag{10}
\end{equation*}
$$

where $a_{n, k_{n}+1}=0$, then, as $n \rightarrow \infty$,

$$
\begin{equation*}
\frac{1}{\log k_{n}} \sum_{i=1}^{k_{n}} a_{n i} X_{i} \longrightarrow 0 \quad \text { a.s. } \tag{11}
\end{equation*}
$$

3. Proof of Theorem 2.4. Without loss of generality, we suppose that $a_{n i} \geq 0, i \geq 1, n \geq 1$. Otherwise we assume that $a_{n i_{1}}, \ldots, a_{n i_{m}}$ are nonnegative, while $a_{n i_{m+1}}, \ldots, a_{n i_{k_{n}}}$ are negative. It is easy to check that if $\left\{a_{n i_{j}}, 1 \leq j \leq m\right\}$ and $\left\{a_{n i_{j}}, m+1 \leq j \leq k_{n}\right\}$ satisfy (10), then we only have to consider $\sum_{j=1}^{m} a_{n i_{j}} X_{n i_{j}}$ and $\sum_{j=m+1}^{k_{n}} a_{n i_{j}} X_{n i_{j}}$. Let

$$
X_{i}^{\prime}=\left(-i^{1 / r}\right) \vee\left(X_{i} \wedge i^{1 / r}\right), \quad X_{i}^{\prime \prime}=X_{i}-X_{i}^{\prime}
$$

Since X_{i}^{\prime} and $X_{i}^{\prime \prime}$ are increasing functions of X_{i}, both $\left\{X_{n}^{\prime}-E X_{n}^{\prime}\right\}$ and $\left\{X_{n}^{\prime \prime}-E X_{n}^{\prime \prime}\right\}$ also form mean zero AQSI sequences. Let

$$
\begin{gathered}
S_{n}^{\prime}=\sum_{i=1}^{k_{n}} a_{n i}\left(X_{i}^{\prime}-E X_{i}^{\prime}\right), \quad S_{n}^{\prime \prime}=\sum_{i=1}^{k_{n}} a_{n i}\left(X_{i}^{\prime \prime}-E X_{i}^{\prime \prime}\right) \\
A_{k}=\sum_{i=1}^{k}\left(X_{i}^{\prime}-E X_{i}^{\prime}\right)
\end{gathered}
$$

and assume $0<r<2$. For fixed n, there exists $t \in N$ such that $2^{t}<k_{n} \leq 2^{t+1}$. Then from (10) we easily get

$$
\left|S_{n}^{\prime}\right| \leq C\left(2^{t}\right)^{-1 / r} \max _{1 \leq i \leq 2^{t+1}}\left|A_{i}\right|
$$

by applying the Abelian transformation. Noticing that $\left\{X_{n}^{\prime}-E X_{n}^{\prime}\right.$, $n \geq 1\}$ is an AQSI sequence and applying Theorem 2.3, and for each $\varepsilon>0$,

$$
\begin{aligned}
\sum_{t=1}^{\infty} P\left(\left|S_{n}^{\prime}\right|\right. & \left.\geq \varepsilon \log k_{n} \text { for some } k_{n} \in\left(2^{t}, 2^{t+1}\right]\right) \\
& \leq \sum_{t=1}^{\infty} P\left\{\frac{1}{\left(2^{t}\right)^{1 / r}} \max _{1 \leq i \leq 2^{t+1}}\left|A_{i}\right|>\frac{\varepsilon}{C} t \log 2\right\} \\
& \leq C \sum_{m=1}^{\infty} q(m) \sum_{t=1}^{\infty}(t+3)^{2} 2^{-2 t / r}(t \log 2)^{-2} \sum_{i=1}^{2^{t+1}}\left(1+E X_{i}^{\prime 2}\right) \\
& \leq C \sum_{t=1}^{\infty} 2^{-2 t / r} \sum_{i=1}^{2^{t+1}}\left(1+E X_{i}^{\prime 2}\right) \\
& \leq C \sum_{t=1}^{\infty} 2^{-2 t / r} 2^{t+1}+C \sum_{t=1}^{\infty} 2^{-2 t / r} \sum_{i=1}^{2^{t+1}} E X_{i}^{\prime 2} \\
& \leq C\left\{\sum_{t=1}^{\infty} 2^{-(2 t / r)+t+1}+\sum_{i=1}^{\infty} P\left(\left|X_{i}\right|>i^{1 / r}\right)\right. \\
& \leq C\left\{\sum_{t=1}^{\infty} 2^{-(2 t / r)+t+1}+\sum_{i=1}^{\infty} P\left(X>i^{-2 / r} E X_{i}^{2} I\left(\left|X_{i}\right| \leq i^{1 / r}\right)\right\}\right. \\
&
\end{aligned}
$$

where C depends only on ε. Obviously, $\sum_{t=1}^{\infty} 2^{t+1-(2 t / r)}<\infty$, and it follows from the condition $E X^{r}<\infty$ that $\sum_{i=1}^{\infty} P\left(X>i^{1 / r}\right)<\infty$ and $\sum_{i=1}^{\infty} i^{-2 / r} E X^{2} I\left(X \leq i^{1 / r}\right)<\infty$, see the Appendix. Thus we have

$$
\sum_{t=1}^{\infty} P\left(\left|S_{n}^{\prime}\right| \geq \varepsilon \log k_{n} \quad \text { for some } \quad k_{n} \in\left(2^{t}, 2^{t+1}\right]\right)<\infty
$$

By the Borel-Cantelli lemma we conclude that

$$
\begin{equation*}
\frac{S_{n}^{\prime}}{\log k_{n}} \longrightarrow 0 \quad \text { a.s. } \tag{12}
\end{equation*}
$$

On the other hand, since

$$
\sum_{i=1}^{\infty} P\left(\left|X_{i}\right| \geq i^{1 / r}\right)<C \sum_{i=1}^{\infty} P\left(X \geq i^{1 / r}\right)<\infty
$$

we have

$$
\begin{equation*}
P\left(\left|X_{i}\right|>i^{1 / r} \quad i . o\right)=0 \tag{13}
\end{equation*}
$$

From (10) and (13), we have

$$
\begin{aligned}
\left|\sum_{i=1}^{k_{n}} a_{n i} X_{i}^{\prime \prime}\right| & \leq\left(\max _{1 \leq i \leq k_{n}}\left|\sum_{j=1}^{n} X_{j}^{\prime \prime}\right|\right)\left(\sum_{i=1}^{n}\left|a_{n i}-a_{n, i+1}\right|\right) \\
& \leq \frac{C}{k_{n}^{1 / r}} \sum_{i=1}^{k_{n}}\left|X_{i}\right| I\left(\left|X_{i}\right| \geq i^{1 / r}\right) \longrightarrow 0 \quad \text { a.s. }
\end{aligned}
$$

By applying the Abelian transformation, that is, we have

$$
\begin{equation*}
\sum_{i=1}^{k_{n}} a_{n i} X_{i}^{\prime \prime} \longrightarrow 0 \quad \text { a.s. } \tag{14}
\end{equation*}
$$

(a) If $1<r<2$, since $\left\{X_{n}\right\} \prec X$ and $\sum_{i=1}^{\infty} i^{-1 / r} E X I\left(X>i^{1 / r}\right)<$ ∞ we get that

$$
\sum_{i=1}^{\infty} \frac{1}{i^{1 / r}} E\left|X_{i}^{\prime \prime}\right| \leq C \sum_{i=1}^{\infty} i^{-1 / r} E X I\left(X>i^{1 / r}\right)<\infty
$$

By Kronecker's lemma, we get

$$
\begin{equation*}
\frac{1}{k_{n}^{1 / r}} \sum_{i=1}^{k_{n}} E\left|X_{i}^{\prime \prime}\right| \longrightarrow 0 \tag{15}
\end{equation*}
$$

(b) If $r=1$,

$$
E\left|X_{i}^{\prime \prime}\right| \leq C E X I(X>i) \longrightarrow 0 \quad \text { as } \quad i \rightarrow \infty
$$

thus we have as well

$$
\begin{equation*}
\frac{1}{k_{n}} \sum_{i=1}^{k_{n}} E\left|X_{i}^{\prime \prime}\right| \longrightarrow 0 \tag{16}
\end{equation*}
$$

From (10),(15) and (16) we have, for $1 \leq r \leq 2$,

$$
\begin{align*}
\left|\sum_{i=1}^{k_{n}} a_{n i} E X_{i}^{\prime \prime}\right| & \leq \frac{C}{k_{n}^{1 / r}}\left(\max _{1 \leq i \leq k_{n}}\left|\sum_{j=1}^{i} E X_{j}^{\prime \prime}\right|\right) \tag{17}\\
& \leq \frac{C}{k_{n}^{1 / r}} \sum_{i=1}^{k_{n}} E\left|X_{i}^{\prime \prime}\right| \longrightarrow 0
\end{align*}
$$

by applying the Abelian transformation. From (14) and (17) it follows that, for $1 \leq r<2$,

$$
S_{n}^{\prime \prime} \longrightarrow 0 \quad \text { a.s. }
$$

Since $S_{n}=S_{n}^{\prime}+S_{n}^{\prime \prime}$, we obtain (11) for $1 \leq r<2$.
(c) If $0<r<1$, since (12) and (14) hold it remains to show that

$$
\sum_{i=1}^{k_{n}} a_{n i} E X_{i}^{\prime} \longrightarrow 0
$$

From the Appendix we have

$$
\begin{aligned}
& \sum_{i=1}^{\infty} \frac{1}{i^{1 / r}} E\left|X_{i}^{\prime}\right| \\
& \quad \leq C\left\{\sum_{i=1}^{\infty} P\left(X \geq i^{1 / r}\right)+\sum_{i=1}^{\infty} \frac{1}{i^{1 / r}} E X I\left(X \leq i^{1 / r}\right)\right\}<\infty
\end{aligned}
$$

Consequently, by the Kronecker lemma

$$
\frac{1}{k_{n}^{1 / r}} \sum_{i=1}^{k_{n}} E\left|X_{i}^{\prime}\right| \longrightarrow 0 \quad \text { as } \quad i \rightarrow \infty
$$

It follows that

$$
\begin{aligned}
\left|\sum_{i=1}^{k_{n}} a_{n i} E X_{i}^{\prime}\right| & \leq \frac{C}{k_{n}^{1 / r}}\left(\max _{1 \leq i \leq k_{n}}\left|\sum_{j=1}^{i} E X_{j}^{\prime}\right|\right) \\
& \leq \frac{C}{k_{n}^{1 / r}} \sum_{i=1}^{k_{n}} E\left|X_{i}^{\prime}\right|=0(1)
\end{aligned}
$$

Thus

$$
\left(\log k_{n}\right)^{-1} \sum_{i=1}^{k_{n}} a_{n i} X_{i} \longrightarrow 0 \quad \text { a.s. }
$$

that is, (11) holds for $0<r<1$. The proof is complete.

From Theorem 2.4 we get the following strong law of large number for AQSI sequence.

Corollary 2.4. Assume that $\left\{X, X_{n}, n \geq 1\right\}$ is a sequence of identically distributed, mean zero and square integrable AQSI random variables with $\sum_{m=1}^{\infty} q(m)<\infty$ and satisfying (5) and (6). If $E|X|^{r}<$ ∞ for $0<r<2$, then

$$
n^{-1 / r}(\log n)^{-1} \sum_{i=1}^{n} X_{i} \longrightarrow 0 \quad \text { a.s. }
$$

Acknowledgments. The authors would like to thank the referee for his careful reading of the manuscript and for suggestions, which improved the presentation of this paper.

Appendix

Lemma A. If $\left\{X_{n}\right\}$ is stochastically dominated by a nonnegative random variable $X\left(\left\{X_{n}\right\} \prec X\right)$ with $E X^{r}<\infty$ for $0<r<2$ then we have
(a) $\sum_{i=1}^{\infty} i^{-2 / r} E\left(X_{i}^{2} I\left\{\left|X_{i}\right|^{r} \leq i\right\}\right)<\infty$,
(b) $\sum_{i=1}^{\infty} i^{-1 / r} E\left(\left|X_{i}\right| I\left\{\left|X_{i}\right|^{r} \leq i\right\}\right)<\infty$, if $0<r<1$.

Proof. The proof is based on certain ideas in [3]. Note that, for some $0<r<2$

$$
\begin{equation*}
E|X|^{r}<\infty \Longleftrightarrow \int_{0}^{\infty} y^{r-1} P\{|X|>y\} d y<\infty \tag{A.1}
\end{equation*}
$$

and

$$
\begin{equation*}
E|X|^{r}<\infty \Longleftrightarrow \sum_{n=1}^{\infty} P\left\{|X|^{r}>n\right\}<\infty \tag{A.2}
\end{equation*}
$$

The proof of (a). Since $\left\{X_{n}\right\}$ is stochastically dominated by a nonnegative random variable X, we obtain

$$
\begin{array}{rl}
\sum_{i=1}^{\infty} i^{-2 / r} & E\left(X_{i}^{2} I\left\{\left|X_{i}\right|^{r} \leq i\right\}\right) \\
& \leq C \sum_{i=1}^{\infty} \sum_{k=i}^{\infty} k^{-(2 / r)-1} E\left(X_{i}^{2} I\left\{\left|X_{i}\right|^{r} \leq i\right\}\right) \\
& \leq C \sum_{i=1}^{\infty} \sum_{k=i}^{\infty} k^{-(2 / r)-1} \int_{0}^{i^{1 / r}} y P\left(\left\{\left|X_{i}\right|>y\right\}\right) d y \\
& \leq C \sum_{k=1}^{\infty} \sum_{i=1}^{k} k^{-(2 / r)-1} \sum_{n=1}^{i} \int_{(n-1)^{1 / r}}^{n^{1 / r}} y P\left\{\left|X_{i}\right|>y\right\} d y \\
& \leq C \sum_{k=1}^{\infty} \sum_{n=1}^{k} k^{-2 / r} \int_{(n-1)^{1 / r}}^{n^{1 / r}} y\left(k^{-1} \sum_{i=1}^{k} P\{X>y\}\right) d y \\
& \leq C \sum_{n=1}^{\infty} \sum_{k=n}^{\infty} k^{-2 / r} \int_{(n-1)^{1 / r}}^{n^{1 / r}} y P\{X>y\} d y \\
& \leq C \sum_{n=1}^{\infty} n^{1-(2 / r)} \int_{(n-1)^{1 / r}}^{n^{1 / r}} y P\{X>y\} d y \\
& \leq C \sum_{n=1}^{\infty} \int_{(n-1)^{1 / r}}^{n^{1 / r}} y^{r-1} P\{X>y\} d y \\
& \leq C E X^{r}<\infty .
\end{array}
$$

The proof of (b). The proof is similar to that of (a).

REFERENCES

1. T. Birkel, Laws of large numbers under dependence assumptions, Statist. Probab. Lett. 14 (1992), 355-362.
2. T.K. Chandra and S. Ghosal, Some elementary strong laws of large numbers: A review, Technical Report \#2293, Indian Statistical Institute, 1993.
3. -_, The strong law of large numbers for weighted averages under dependence assumptions, J. Theoret. Probab. 9 (1996), 797-809.
4. P. Hall and C.C. Heyde, Martingale limit theory and its application, Academic Press, New York, 1980.
5. E.L. Lehmann, Some concepts of dependence, Ann. Inst. Statist. Math. 43 (1966), 1137-1153.
6. M. Loève, Probability theory II, 4th ed., Springer-Verlag, Berlin, 1978.
7. C.R. Rao, Linear statistical inference and its applications, 2nd ed., John Wiley, New York, 1973.
8. W.F. Stout, Almost sure convergence, Academic Press, New York, 1972.

Statistical Research Center for Complex Systems, Seoul National
University, Seoul 151-742, South Korea
E-mail address: kmh@srccs.snu.ac.kr
Department of Mathematics and Institute of Basic Science, Wonkwang
University, Jeonbuk 570-749, South Korea
E-mail address: starkim@wonkwang.ac.kr
Department of Mathematics and Institute of Basic Science, Wonkwang University, Jeonbuk 570-749, South Korea
E-mail address: jibaek@wonkwang.ac.kr

[^0]: 2000 AMS Mathematics Subject Classification. Primary 60F15.
 Key words and phrases. Almost sure convergence, double arrays, asymptotically quadrant sub-independent, asymptotically quadrant independent, stochastically dominated.

 This work was partially supported by the Korean Science and Engineering Foundation (R01-2005-000-10696-0) and the SRC/ERC program of MOST/KOSEF (R11-2000-073-00000).

 The second author is the corresponding author.
 Received by the editors on February 12, 2003.

