BOCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 36, Number 1, 2006

CYCLIC VECTORS IN THE α -BLOCH SPACES

SHANLI YE

ABSTRACT. In this paper we try to identify the functions whose polynomial multiples are weak^{*} dense in the β_{α} spaces. We obtain that if $|f(z)| \ge |g(z)|$ in the open unit disk and g is cyclic in β_{α} , then f is cyclic in β_{α} . Especially, for $0 < \alpha < 1$, f is cyclic in β_{α} if and only if f has no zeros in the closed unit disc.

Introduction. Let D be the open unit disk in the complex plane **C**. For each $\alpha > 0$, the α -Bloch space of D, denoted by β_{α} , consists of analytic functions f on D such that

$$||f||_{\beta_{\alpha}} = \sup\{(1-|z|^2)^{\alpha}|f'(z)| : z \in D\} < \infty.$$

We give a norm in β_{α} as follows

(1)
$$||f||_{\alpha} = |f(0)| + ||f||_{\beta_{\alpha}}.$$

With this norm, β_{α} is a Banach space and $\beta_{\alpha,0}$ a closed subspace. Here $\beta_{\alpha,0}$ denotes the set of those f in β_{α} for which $(1-|z|^2)^{\alpha}|f'(z)| \to 0$ as $|z| \uparrow 1$. The space β_{α} with the norm (1) is isometric to the second dual $\beta_{\alpha,0}^{**}$, see [9]. Furthermore, the polynomials are norm dense in $\beta_{\alpha,0}$ and in $\beta_{\alpha,0}^*$, and are weak^{*} dense in β_{α} . We refer to [1, 9] for more information about β_{α} and $\beta_{\alpha,0}$.

In this paper, we study (weak^{*}) cyclic vectors in β_{α} . These are the function f in β_{α} whose polynomial multiples are weak^{*} dense in β_{α} , i.e., they are cyclic vectors in the weak* topology for the operator of multiplication by z on β_{α} . If $f \in \beta_{\alpha}$, let [f] be the weak^{*} closure in β_{α} of the polynomial multiples of f. Thus, f is cyclic if and only if $[f] = \beta_{\alpha}$. Note that a duality argument yields the fact that, if f is in $\beta_{\alpha,0}$, then f is (norm) cyclic in $\beta_{\alpha,0}$ if and only if it is weak^{*} cyclic in β_{α} .

²⁰⁰⁰ AMS Mathematics Subject Classification. Primary 30H05, 30D45, 46E15. *Key words and phrases.* Cyclic vectors, Bloch space, analytic function. Supported in part by the Foundation of Fujian Educational Committee. Received by the editors on October 1, 2002, and in revised form on August 1,

^{2005.}

Copyright ©2006 Rocky Mountain Mathematics Consortium

When we refer to cyclic vectors in β_{α} , the weak^{*} is always understood. In a special case of $\alpha = 1$, Brown and Shields have shown the following

Theorem A [3, Theorem 2]. If $f, g \in \beta_1$, $|f(z)| \ge |g(z)|$ in D, and g is cyclic in β_1 , then f is cyclic in β_1 .

Theorem B [3, Theorem 3]. If $f \in \beta_1$, f is an outer function, then f is cyclic in β_1 .

The main results in this paper are

Theorem 1. For $\alpha > 0$, $f, g \in \beta_{\alpha}$, $|f(z)| \ge |g(z)|$ in D, and g is cyclic in β_{α} , then f is cyclic in β_{α} .

Theorem 2. For $\alpha \geq 1$, f is an outer function in β_{α} , then f is cyclic in β_{α} .

Theorem 3. For $0 < \alpha < 1$, $f \in \beta_{\alpha}$, then f is cyclic in β_{α} if and only if f has no zeros in the closed unit disc.

Throughout this paper, C's are positive constants which are not necessarily the same in each appearance.

1. Some sufficient conditions for cyclic. In this section we shall prove Theorems 1 and 2. For this purpose, we need the following lemmas.

Lemma 1. Let $f \in \beta_{\alpha}$, |z| = r, then

(a) $|f(z)| \leq (1 + (1/2) \ln(1 + r/1 - r)) ||f||_{\alpha}, \alpha = 1,$ (b) $|f(z)| \leq (1 + (1/(\alpha - 1)(1 - r)^{\alpha - 1})) ||f||_{\alpha}, \alpha > 1,$ (c) $|f(z)| \leq (1 + (1/1 - \alpha)) ||f||_{\alpha}, 0 < \alpha < 1,$ (d) $|f(z) - f(tz)| \leq (1/1 - \alpha) ||f||_{\beta_{\alpha}} [(1 - tr)^{1 - \alpha} - (1 - r)^{1 - \alpha}], 0 < \alpha < 1, 0 \leq t < 1.$

350

theorems.

The proof follows from a direct calculation; we omit the details.

Lemma 2. For each $\alpha > 0$,

(a) If $\{f_n\} \subset \beta_{\alpha}$, then $f_n \to 0$ weak^{*} if and only if $f_n(z) \to 0$ for all z in D, and $\sup ||f_n||_{\alpha} < \infty$,

(b) If $\{f_t\} \subset \beta_{\alpha}$, $0 < t \leq 1$, then $\lim_{t \to 1^-} f_t = 0$ weak^{*} if and only if $\lim_{t \to 1^-} f_t(z) = 0$ for all z in D, and $\sup \|f_t\|_{\alpha} < \infty$.

Proof. For each $z \in D$, the linear functional of evaluation at z is weak^{*} continuous by Lemma 1, β_{α} is isometric to the $(L_a^1)^*$, L_a^1 (denote the set of analytic functions that are in L^1 with respect to the area measure in D) is a Banach space. Using these facts, the proof can be obtained from [4, Proposition 2].

Lemma 3. If $f \in \beta_{\alpha}$, then $||f_t||_{\beta_{\alpha}} \leq ||f||_{\beta_{\alpha}}$, $0 < t \leq 1$, where $f_t(z) = f(tz)$ for all $z \in D$.

The proof follows from a direct calculation; we omit the details.

Lemma 4. For $\alpha > 1$, if $f \in \beta_{\alpha}$, then $\sup(1 - |z|^2)^{\alpha - 1} |f(z)| \le C < \infty$.

Proof. For $f \in \beta_{\alpha}$, then $f' \in L^1(D, (1-|z|^2)^{\alpha} dA(z))$. By [10, Section 4.2.1], we have

$$f'(z) = (\alpha + 1) \int_D \frac{(1 - |w|^2)^{\alpha} f'(w)}{(1 - z\overline{w})^{2 + \alpha}} \, dA(w).$$

Taking the line integral from 0 to z,

$$f(z) - f(0) = \int_D \frac{(1 - |w|^2)^{\alpha} f'(w)}{\overline{w}} \left[\frac{1}{(1 - z\overline{w})^{1 + \alpha}} - 1 \right] dA(w)$$

Using Taylor expansion, we get

$$\int_D \frac{(1-|w|^2)^{\alpha} f'(w)}{\overline{w}} \, dA(w) = 0.$$

S. YE

 So

$$\begin{split} |f(z) - f(0)| &\leq \|f\|_{\beta_{\alpha}} \int_{D} \frac{dA(w)}{|w|(1 - z\overline{w})^{1+\alpha}} \\ &= \|f\|_{\beta_{\alpha}} \bigg[\int_{D/2} \frac{dA(w)}{|w|(1 - z\overline{w})^{1+\alpha}} + \int_{D\setminus D/2} \frac{dA(w)}{|w|(1 - z\overline{w})^{1+\alpha}} \bigg] \\ &\leq \|f\|_{\beta_{\alpha}} \bigg[2 \int_{0}^{1/2} \frac{dr}{(1 - r)^{1+\alpha}} + \int_{D\setminus D/2} \frac{2dA(w)}{(1 - z\overline{w})^{1+\alpha}} \bigg] \\ &\leq \|f\|_{\beta_{\alpha}} \bigg[(2^{\alpha} - 1) \frac{2}{\alpha} + 2 \int_{D} \frac{dA(w)}{(1 - z\overline{w})^{1+\alpha}} \bigg]. \end{split}$$

However, by [10 Lemma 4.2.2],

$$\int_D \frac{dA(w)}{(1-z\overline{w})^{1+\alpha}} \le \frac{C}{(1-|z|^2)^{\alpha-1}}.$$

Thus,

$$\sup(1 - |z|^2)^{\alpha - 1} |f(z)| \le C < \infty.$$

Lemma 5. If $g \in H^{\infty}$, $\alpha > 0$, $f \in \beta_{\alpha}$ and $fg \in \beta_{\alpha}$, then $fg \in [f]$.

Proof. For 0 < t < 1, $g_t(z) = g(tz)$, we can easily show that if P_n is the partial sum of the power series for g_t , then $P_n f \to g_t f$ (norm) as $n \to \infty$. Thus, we have $g_t f$ is in the weak^{*} closure of polynomial of f, which implies $g_t f \in [f]$. For $z \in D$, $\lim_{t\to 1^-} g_t(z)f(z) = g(z)f(z)$, if $\sup \|g_t f\|_{\alpha} < \infty$, then $g_t f \to gf$ weak^{*} by Lemma 2, thus $fg \in [f]$. Now we are going to show that $\sup \|g_t f\|_{\alpha} < \infty$.

For $\alpha > 1$, using Lemma 4, we see that

$$\begin{aligned} (1-|z|^2)^{\alpha} |(g_t f)'| &\leq (1-|z|^2)^{\alpha} |f'| |g_t| + (1-|z|^2)^{\alpha} |g'_t| |f| \\ &\leq \|g\|_{\infty} \|f\|_{\beta_{\alpha}} + (1-|z|^2)^{\alpha-1} |f| (1-|z|^2) |g'_t| \\ &\leq \|g\|_{\infty} \|f\|_{\beta_{\alpha}} + C(1-|z|^2) \frac{1}{(1-|tz|)} \|g\|_{\infty} \\ &< \infty. \end{aligned}$$

Hence,

$$\sup \|g_t f\|_\alpha < \infty.$$

352

For $0 < \alpha < 1$, we have

$$(1-|z|^2)^{\alpha}|(g_tf)'| \le ||g||_{\infty}||f||_{\beta_{\alpha}} + (1-|z|^2)^{\alpha}|fg'_t|.$$

Then

$$(1 - |z|^2)^{\alpha} |fg'_t| \le (1 - |z|^2)^{\alpha} |f - f_t| |g'_t| + (1 - |z|^2)^{\alpha} |f_t g'_t|$$

= $\varphi_1 + \varphi_2.$

By Lemma 1, we have

$$\begin{split} \varphi_1 &\leq \frac{1}{1-\alpha} \, (1-r^2)^{\alpha} \|f\|_{\beta_{\alpha}} [(1-tr)^{1-\alpha} - (1-r)^{1-\alpha}] \, \frac{1}{(1-tr)} \|g\|_{\infty} \\ &\leq C(\alpha) \|f\|_{\beta_{\alpha}} \bigg[\left(\frac{1-r}{1-tr}\right)^{\alpha} - \frac{1-r}{1-tr} \bigg] \|g\|_{\infty} \\ &\leq 2C(\alpha) \|f\|_{\beta_{\alpha}} \|g\|_{\infty} < \infty. \end{split}$$

From Lemma 3,

$$\begin{split} \varphi_2 &= (1 - |z|^2)^{\alpha} |(f_t g_t)' - f'_t g_t| \\ &\leq (1 - |z|^2)^{\alpha} |(fg)'_t| + (1 - |z|^2)^{\alpha} |f'_t| |g_t| \\ &\leq \|(fg)_t\|_{\beta_{\alpha}} + \|g\|_{\infty} \|f_t\|_{\beta_{\alpha}} \\ &\leq \|fg\|_{\beta_{\alpha}} + \|g\|_{\infty} \|f\|_{\beta_{\alpha}} < \infty. \end{split}$$

Thus,

$$\sup \|g_t f\|_\alpha < \infty.$$

For $\alpha = 1$, one can obtain the proof from [3, Lemma 4]. The proof is completed. \Box

Proof of Theorem 1. We have $g/f \in H^{\infty}$ and $(g/f)f = g \in [f]$, which implies that f is cyclic.

Corollary 1. For $\alpha > 0$, $f \in \beta_{\alpha}$ and $|f(z)| \ge C > 0$ in D, then f is cyclic in β_{α} .

To give the proof Theorem 2, we need the following proposition.

S. YE

Proposition 1. (a) f is cyclic in H^{∞} (with the weak^{*} topology) if and only if f is an outer function.

(b) For $\alpha > 1$, f is cyclic in H^{∞} , then f is cyclic in β_{α} .

Proof. (a) is in [8, Theorem 5.5], we only need to prove (b).

Let f be cyclic in H^{∞} . Then there exists a sequence of polynomials P_n such that $P_n f \to 1$ weak^{*}; this implies that $P_n(z)f(z) \to 1$ for all z in D and $\sup ||P_n f||_{H^{\infty}} < \infty$.

Moreover, for $\alpha \geq 1$, $H^{\infty} \subset \beta_{\alpha}$, gives that identity i: $H^{\infty} \to \beta_{\alpha}$ is bounded. So $\sup \|P_n f\|_{\alpha} < \infty$. Hence, by Lemma 2, f is cyclic in β_{α} .

Proof of Theorem 2. Let

$$g(z) = \exp\left\{\frac{1}{2\pi} \int_0^{2\pi} \frac{e^{it} + z}{e^{it} - z} \log|g^*(t)| \, dt\right\},\$$

where $f^*(t) = \lim_{r \to 1} f(re^{it})$ almost everywhere and

$$g^*(t) = \begin{cases} 1 & |f^*(t)| \ge 1, \\ |f^*(t)| & |f^*(t)| < 1. \end{cases}$$

We see that $g \in H^{\infty} \subset \beta_{\alpha}$ is an outer function and therefore cyclic in H^{∞} ; by Proposition 1, g is cyclic in β_{α} . Furthermore,

$$|g(z)| = \exp\left\{\int_{0}^{2\pi} P_{z}(t) \log|g^{*}(t)| dt\right\}$$

$$\leq \exp\left\{\int_{0}^{2\pi} P_{z}(t) \log|f^{*}(t)| dt\right\}$$

$$= |f(z)|, \quad z \in D,$$

where P_z is the Poisson kernel for the point z, so f is cyclic by Theorem 1.

2. A sufficient and necessary condition for $0 < \alpha < 1$. As usual, by the disc algebra A we mean the space of functions continuous on the closed unit disc and analytic in D, with the supremum norm.

354

Lemma 6. For every $0 < \alpha < 1$, $\beta_{\alpha} \subset A$.

Proof. See [5, p. 74].

Lemma 7. For $f \in A$, then f is cyclic in A, with the norm topology, if and only if f(z) has no zeros in the closed unit disc.

Proof. For A a Banach algebra, it can be shown that maximal ideal space is the closed unit disc, see [6, p. 189]. One shows that f is cyclic if and only if it lies in no proper closed ideal. Thus the cyclic vectors are precisely the invertible elements in the Banach algebra A, so f is cyclic in A if and only if f(z) has no zeros in the closed unit disc.

Proof of Theorem 3. For $0 < \alpha < 1$, $f \in \beta_{\alpha}$, f is cyclic in β_{α} . Let $t = (1 + \alpha)/2$; then $\alpha < t < 1$. From Lemma 2, we can easily show that f is cyclic in β_t . However, $f \in \beta_{t,o}$, shows f is cyclic in $\beta_{t,o}$. Thus, there exists a sequence of polynomials $P_n(z)$ such that $P_n f \to 1$ (norm) as $n \to \infty$. By Lemma 1, we have

$$||P_n f - 1||_A \le \left(1 + \frac{1}{1 - t}\right) ||P_n f - 1||_t,$$

thus f is cyclic in A. Hence, by Lemma 7, f has no zeros in the closed unit disc.

On the other hand, since f is continuous in the closed unit disc, there exists C > 0 such that $|f(z)| \ge C$ for all z in D. Thus, f is cyclic by Corollary 1.

Acknowledgment. The author thanks the referee for helpful comments.

REFERENCES

1. J.M. Anderson, J. Clunie and Ch. Pommerenke, On Bloch functions and normal functions, J. Reine Angew. Math. 270 1974), 12–37.

2. J.M. Anderson, J.L. Fernandez and A.L. Shields, *Inner functions in the cyclic vectors in the Bloch space*, Trans. Amer. Math. Soc. 323 (1990), 429–448.

3. L. Brown and A.L. Shields, *Multipliers and cyclic vectors in the Bloch space*, Michigan Math. J. **38** (1991), 141–146.

S. YE

4. – -----, Cyclic vectors in the Dirichlet space, Trans. Amer. Math. Soc. 285 (1984), 269-304.

5. P.L. Duren, Theory of H^p spaces, Academic Press, New York, 1970.

6. J. Garnett, Bounded analytic functions, Academic Press, San Diego, 1981.

7. R.P. Kopp, A subcollection of algebras in a collection of Banach spaces, Pacific J. Math. **30** (1969), 433–435.

8. L.A. Rubel and A.L. Shields, The space of bounded analytic functions on a region, Ann. Inst. Fourier 16 (1966), 235–277.

9. K.H. Zhu, Bloch type spaces of analytic function, Rocky Mountain J. Math. **23** (1993), 1143–1177.

10. ——, Operator theory in function spaces, Marcel Dekker, New York, 1990.

DEPARTMENT OF MATHEMATICS, FUJIAN NORMAL UNIVERSITY, FUZHOU, 350007, P.R. CHINA

E-mail address: shanliye@fjnu.edu.cn