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OSCILLATION RESULTS FOR
LINEAR MATRIX HAMILTONIAN SYSTEMS

YUAN GONG SUN AND FANWEI MENG

ABSTRACT. In this paper we present new oscillation cri-
teria in terms of the coefficient functions for the matrix linear
Hamiltonian systems X′ = A(t)X + B(t)Y , Y ′ = C(t)X −
A∗(t)Y , which are not contained in our recent paper [15],
and improve the main results in [15] to some extent.

1. Introduction. Consider the linear Hamiltonian system

(1.1)
{

X ′ = A(t)X + B(t)Y
Y ′ = C(t)X − A∗(t)Y,

t ≥ t0

where X(t), Y (t), A(t), B(t), C(t) are n × n real continuous matrix
functions such that B(t) and C(t) are symmetric and B(t) is positive
definite, i.e., B(t) > 0 for t ≥ t0. By M∗ we mean the transpose of the
matrix M .

For any two solutions X1(t), Y1(t) and X2(t), Y2(t) of (1.1) the
Wronskian X∗

1 (t) Y2(t)−Y ∗
1 (t)X2(t) is a constant matrix. In particular,

for any solution X(t), Y (t) of (1.1), X∗(t)Y (t)−Y ∗(t)X(t) is a constant
matrix. We now recall for the sake of convenience of reference the
following definitions from the earlier literature.

Definition 1.1. A solution X(t), Y (t) of (1.1) is said to be nontrivial
if detX(t) �= 0 for at least one t ∈ [t0,∞).

Definition 1.2. A nontrivial solution X(t), Y (t) of (1.1) is said to
be prepared if, for every t ∈ [t0,∞),

(1.2) X∗(t)Y (t) − Y ∗(t)X(t) = 0.
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Definition 1.3. System (1.1) is said to be oscillatory if one nontrivial
prepared solution X(t), Y (t) of (1.1) has the property that detX(t)
vanishes on [T,∞) for sufficiently large T ≥ t0.

We also need for stating our results the following definition of a
positive linear functional on the space of n × n matrices.

Definition 1.4. Let � be the linear space of n × n matrices with
real entries, ℘ ⊂ � be the subspace of n × n symmetric matrices, and
g be a linear functional on �. The functional g is said to be positive if
g(M) > 0 whenever M ∈ ℘ and M > 0.

In the case when A(t) ≡ 0, B(t) > 0, (1.1) reduces to the second
order self-adjoint matrix differential system

(1.3) (P (t)X ′)′ + Q(t)X = 0

with P (t) = B−1(t), Q(t) = −C(t). The oscillation and non-oscillation
of (1.3) have been extensively studied by many authors [1 9, 11, 12,
16 18]. A discrete version of (1.3) is studied in [19]. The oscillation
of (1.1) has been studied by Sowjanya Kumari and Umamaheswaram
[10], Sun [20], Meng and Sun [15], Meng and Mingarelli [14] and Meng
[13].

We recall the following concept from [3]. For any subset E of
the real line R, μ(E) denotes the Lebesgue measure of E. If
f : [t0,∞) → R is continuous and if l, m satisfy −∞ ≤ l, m ≤ ∞, then
lim approxinft→∞f(t) = l if and only if μ{t ∈ [t0,∞) : f(t) ≤ l1} < +∞
for all l1 < l and μ{t ∈ [t0,∞) : f(t) ≤ l2} = +∞ for all l2 > l. Simi-
larly, lim approxsupt→∞f(t) = m if and only if μ{t ∈ [t0,∞) : f(t) ≥
m1} = +∞ for all m1 < m and μ{t ∈ [t0,∞) : f(t) ≥ m2} < +∞ for
all m2 > m. We define lim approxt→∞f(t) = λ in case

lim
t→∞ approxsup f(t) = lim

t→∞ approxinf f(t) = λ.

In general,

lim inf
t→∞F (t) ≤ lim

t→∞ approxinf F (t) ≤ lim
t→∞ approxsupt→∞F (t)

≤ lim sup
t→∞

F (t).
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The motivation for the present work has come chiefly from our recent
paper [15]. One of our results is stated as follows:

Theorem 1. Assume there exists a smooth and real-valued function
f(t) on [t0,∞) such that a−1(t)(Φ−1BΦ∗−1)(t) ≥ I (an n× n identity
matrix) for t ≥ t0, where a(t) = exp(−2

∫ t

t0
f(s) ds), and

lim inf
T→∞

1
T

∫ T

t0

(
tr

∫ t

t0

C1(s) ds

)
dt > −∞.

If one of the conditions

(A1) lim sup
T→∞

1
T

∫ T

t0

(
tr

∫ t

t0

C1(s) ds

)
dt = +∞,

(A2) lim sup
T→∞

1
T

∫ T

t0

[
tr

∫ t

t0

C1(s) ds

]2

dt = +∞,

(A3) lim
T→∞

approxsup
[
tr

∫ T

t0

C1(s) ds

]
= +∞,

(A4) lim
T→∞

approxinf
[
tr

∫ T

t0

C1(s) ds

]
= −∞,

holds, where

C1(t) = −a(t)Φ∗(t)[C(t) + f(t)(B−1A + A∗B−1)(t)
+ (fB−1)′(t) − (f2(t)B−1)(t)]Φ(t),

and Φ(t) is a fundamental matrix of the linear equation v′ = A(t)v.
Then (1.1) is oscillatory.

In this paper, the following result has been established:

Theorem 2.1. Assume there exist a smooth and real-valued func-
tion f(t) on [t0,∞) and a positive linear functional g on � such
that a(t) g[B−1(t)] ≤ m (m > 0 is a constant), where a(t) =
exp(−2

∫ t

t0
f(s) ds), and

lim inf
T→∞

1
T

∫ T

t0

g

[
D(t) +

∫ t

t0

E(s) ds

]
dt > −∞.
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If one of the conditions

(B1) lim sup
T→∞

1
T

∫ T

t0

g

[
D(t) +

∫ t

t0

E(s) ds

]
dt = +∞,

(B2) lim sup
T→∞

1
T

∫ T

t0

g2

[
D(t) +

∫ t

t0

E(s) ds

]
dt = +∞,

(B3) lim
t→∞ approxsup g

[
D(t) +

∫ t

t0

E(s) ds

]
= +∞,

(B4) lim
t→∞ approxinf g

[
D(t) +

∫ t

t0

E(s) ds

]
= −∞,

holds, where D(t) = −a(t)B−1(t)A(t)−∫ t

t0
a(s)A∗(s)B−1(s)A(s) ds and

E(t) = −a(t)[C(t)+f(t)(B−1A+A∗B−1)(t)+(fB−1)′(t)−(f2B−1)(t)],

then (1.1) is oscillatory.

Compared with Theorem 1, Theorem 2.1 has the following advan-
tages. First, Theorem 2.1 removes the fundamental matrix of the lin-
ear equation v′ = A(t)v. At present, we do not have a general method
to find a fundamental matrix of the equation v′ = A(t)v. Therefore,
Theorem 2.1 can be conveniently applied to (1.1). Second, in some
cases the assumption a(t) g[B−1(t)] ≤ m is weaker than the assump-
tion a−1(t)(Φ−1BΦ∗−1)(t) ≥ I for t ≥ t0. For example, for the case
when a(t) ≡ 1 and Φ(t) ≡ I, let g[M ] = m11, where M = (mij)
is a matrix, and B(t) = diag (t, 1/t) for t ≥ 1, then we have that
g[B−1(t)] = 1/t ≤ 1. However, B(t) ≥ I does not hold for t ≥ 1.
Finally, with an appropriate choice of the positive linear functional g
such as g[M ] = mii for i = 1, 2, . . . , n, g[M ] = trM , and g[M ] = c∗Mc
where c is an arbitrary but fixed vector in Rn, we may give many
possibilities for oscillation criteria of (1.1).

2. Main results. Let f(t) be a smooth and real-valued function on
[t0,∞), and let

a(t) = exp
(
− 2

∫ t

t0

f(s) ds

)
.
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If a prepared solution X(t), Y (t) of (1.1) is nonoscillatory, then X(t)
is nonsingular for all sufficiently large t, without loss of generality say
t ≥ t0. Let

(2.1) W (t) = a(t)[Y (t)X−1(t) + f(t)B−1(t)], t ≥ t0.

It is easy to see that W (t) is symmetric on [t0,∞). From (1.1) we have

(2.2) W ′(t) = −E(t)−A∗(t)W (t)−W (t)A(t)−a−1(t)W (t)B(t)W (t),

where
(2.3)

E(t) = −a(t)[C(t)+f(t)(B−1A+A∗B−1)(t)+(fB−1)′(t)−(f2B−1)(t)],

where fB−1 is differentiable on [t0,∞). Integrating both sides of (2.2)
from t0 to t we obtain

W (t) = W (t0) −
∫ t

t0

E(s) ds

−
∫ t

t0

[A∗(s)W (s) + W (s)A(s) + a−1(s)W (s)B(s)W (s)] ds

Now the substitution P (t) = W (t) + a(t)B−1(t)A(t) in the above
equation gives us

(2.4) P (t) = W (t0)−D(t)−
∫ t

t0

E(s) ds−
∫ t

t0

a−1(s)P ∗(s)B(s)P (s) ds,

where

(2.5) D(t) = −a(t)B−1(t)A(t) −
∫ t

t0

a(s)A∗(s)B−1(s)A(s) ds.

In the sequel, we use the following lemmas.

Lemma 2.1 [16]. If g is a positive linear functional on �, then for
all P, Q ∈ �, |g[P ∗Q]|2 ≤ g[P ∗P ] g[Q∗Q].
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Lemma 2.2. If g is a positive linear functional on � then for all
P ∈ � and B ∈ ℘ with B > 0, g[B−1] g[P ∗BP ] ≥ g2[P ].

Proof. By Lemma 2.1, we have

g [B−1] g [P ∗BP ] = g [B−1/2∗B−1/2] g [(B1/2P )∗(B1/2P )]

≥ g2[B−1/2B1/2P ] = g2[P ].

Hence, Lemma 2.2 is true.

Lemma 2.3. Assume that (1.1) is nonoscillatory on [a,∞). If there
exists a positive linear functional g on � such that a(t) g[B−1(t)] ≤ m
(m > 0 is a constant), then there is a t0 ≥ a such that

(2.6) lim
T→∞

∫ T

t

a−1(s) g [P ∗(s)B(s)P (s)] ds < +∞, for t ≥ t0

if and only if

(2.7) lim inf
T→∞

1
T

∫ T

t0

g

[
D(t) +

∫ t

t0

E(s) ds

]
dt > −∞,

where a(t), D(t) and E(t) are the same as above.

Proof. Applying the positive linear functional g to both sides of (2.4),
we have

(2.8)
g [P (t)] = g [W (t0)] − g

[
D(t) +

∫ t

t0

E(s) ds

]

−
∫ t

t0

a−1(s) g [P ∗(s)B(s)P (s)] ds.

From (2.6) and (2.8) we obtain

(2.9) g [P (t)] − M(t) = −g

[
D(t) +

∫ t

t0

E(s) ds

]
+ L,

where
L = g [W (t0)] −

∫ ∞

t0

a−1(s) g [P ∗(s)B(s)P (s)] ds



LINEAR HAMILTONIAN SYSTEMS 325

and
M(t) =

∫ ∞

t

a−1(s) g [P ∗(s)B(s)P (s)] ds.

By Lemma 2.2 and the assumption of Lemma 2.3, we have

lim
T→∞

1
T

∫ T

t0

g2[P (s)] ds

≤ lim
T→∞

1
T

∫ T

t0

a(s) g [B−1(s)]a−1(s) g [P ∗(s)B(s)P (s)] ds

≤ m lim
T→∞

1
T

∫ T

t0

a−1(s) g [P ∗(s)B(s)P (s)] ds = 0.

That is,

(2.10) lim
T→∞

1
T

∫ T

t0

g2[P (s)] ds = 0.

On the other hand, by (2.6), we observe that, for every ε > 0, it is
possible to find a t1 > t0 such that, for t ≥ t1, M(t) < ε. Hence,

1
T

∫ T

t0

M2(t) dt =
1
T

∫ t1

t0

M2(t) dt +
1
T

∫ T

t1

M2(t) dt ≤ ε2.

Since ε is arbitrary, then

(2.11) lim
T→∞

1
T

∫ T

t0

M2(t) dt = 0.

From (2.10) and (2.11), we have

lim
T→∞

1
T

∫ T

t0

{g [P (t)] − M(t)}2
dt

≤ 2 lim
T→∞

1
T

∫ T

t0

{g2[P (t)] + M2(t)} dt = 0.

Therefore, from (2.9), it follows that

(2.12) lim
T→∞

1
T

∫ T

t0

{
L − g

[
D(t) +

∫ t

t0

E(s) ds

]}2

dt = 0.
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By the Cauchy-Schwartz inequality and (2.12), we can easily obtain
that

lim
T→∞

1
T

∫ T

t0

{
L − g

[
D(t) +

∫ t

t0

E(s) ds

]}
dt = 0,

i.e.,

lim
T→∞

1
T

∫ T

t0

g

[
D(t) +

∫ t

t0

E(s) ds

]
dt = L > −∞,

so that (2.7) holds.

Conversely, suppose that (2.7) holds. From (2.7) and (2.8), we have

(2.13)

lim
T→∞

sup
{

1
T

∫ T

t0

g [P (s)] ds+
1
T

∫ T

t0

∫ t

t0

a−1(s) g [P ∗(s)B(s)P (s)] ds dt

}
< +∞.

Since g[P ∗(t)B(t)P (t)] ≥ 0 for t ≥ t0, it follows that limt→∞
∫ t

t0
a−1(s)×

g[P ∗(s)B(s) P (s)] ds exists, finite or infinite. Suppose that

lim
t→∞

∫ t

t0

a−1(s) g [P ∗(s)B(s)P (s)] ds = +∞.

Hence,

lim
T→∞

1
T

∫ T

t0

∫ t

t0

a−1(s) g [P ∗(s)B(s)P (s)] ds dt = +∞.

Then (2.13) yields

lim
T→∞

1
T

∫ T

t0

g [P (s)] ds = −∞.

So for large T we have, again using (2.13),

(2.14)
1
T

∫ T

t0

∫ t

t0

a−1(s) g [P ∗(s)B(s)P (s)] ds dt ≤ − 2
T

∫ T

t0

g [P (s)] ds.
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Now by the Cauchy-Schwartz inequality and Lemma 2.2, we have

∣∣∣∣∣ 1
T

∫ T

t0

g [P (s)] ds

∣∣∣∣∣ ≤
{

1
T

∫ T

t0

g2[P (s)] ds

}1/2

×
[
T − t0

T

]1/2

≤
{

m

T

∫ T

t0

a−1(s) g [P ∗(s)B(s)P (s)] ds

}1/2

,

so that (2.14) gives

(2.15)

{
1
T

∫ T

t0

∫ t

t0

a−1(s) g [P ∗(s)B(s)P (s)] ds dt

}2

≤ 4m

T

∫ T

t0

a−1(s) g [P ∗(s)B(s)P (s)] ds

for large T , say, for T ≥ T1. Setting

H(T ) =
∫ T

t0

∫ t

t0

a−1(s) g [P ∗(s)B(s)P (s)] ds dt > 0,

we obtain

H ′(T ) =
∫ T

t0

a−1(s) g [P ∗(s)B(s)P (s)] ds.

Thus, (2.15) yields H2(T ) ≤ 4mTH ′(T ) for T ≥ T1. Integrating this
inequality from T1 to T and noting that H(T ) > 0 for T ≥ T1, we get

1
4m

[log T − log T1] ≤ 1
H(T )

.

A contradiction is obtained as T → ∞. Thus limt→∞
∫ t

t0
a−1(s)×

g[P ∗(s)B(s)P (s)] ds exists as a finite limit. Consequently, we have
(2.6). Thus Lemma 2.3 is proved.

Now, let us give the proof of Theorem 2.1.

Proof of Theorem 2.1. Suppose that (1.1) is not oscillatory. Then
there exists a prepared solution X(t), Y (t) of (1.1) such that X(t) is
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nonsingular. Without loss of generality, we assume that det X(t) �= 0
for t ≥ t0. Denote W (t) by(2.1); then we have that (2.8) holds. By
(2.7) and Lemma 2.3, it follows that (2.6) holds.

Suppose that (B1) holds. From (2.8) we obtain

g [W (t0)] − g [P (t)] ≥ g

[
D(t) +

∫ t

t0

E(s) ds

]
, t ≥ t0.

Thus, for t ≥ t0

1
T

∫ T

t0

−g [P (t)] dt+
T−t0

T
g [W (t0)] ≥ 1

T

∫ T

t0

g

[
D(t)+

∫ t

t0

E(s) ds

]
dt.

By the assumption (B1) and the above inequality, we have that there
exists a sequence {Tn} such that Tn → ∞ as n → ∞ and

(2.16) lim
n→∞

1
Tn

∫ Tn

t0

−g [P (t)] dt = +∞.

By the Cauchy-Schwartz inequality, we have
∣∣∣∣ 1
Tn

∫ Tn

t0

g [P (t)] dt

∣∣∣∣ ≤
{

1
Tn

∫ Tn

t0

g2[P (t)] dt

}1/2

×
[
Tn − t0

Tn

]1/2

≤
{

m

Tn

∫ Tn

t0

a−1(t) g [P ∗(t)B(t)P (t)] dt

}1/2

.

Using (2.16), we obtain

lim
n→∞

1
Tn

∫ Tn

t0

a−1(t) g [P ∗(t)B(t)P (t)] dt = +∞,

which in turn implies that

lim
n→∞

∫ Tn

t0

a−1(t) g [P ∗(t)B(t)P (t)] dt = +∞.

On the other hand, by (2.6) we have

lim
n→∞

∫ Tn

t0

a−1(t) g [P ∗(t)B(t)P (t)] dt < +∞.
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This contradiction completes the proof of the part under the assump-
tion (B1) of the theorem.

Let (B2) be true. From (2.9) we have

g2

[
D(t) +

∫ t

t0

E(s) ds

]
= {−g [P (t)] + M(t) + L}2

≤ 4
{
g2[P (t)] + M2(t)

}
+ 2L2.

Thus,

(2.17)
1
T

∫ T

t0

g2

[
D(t) +

∫ t

t0

E(s) ds

]
dt

≤ 4
T

∫ T

t0

g2[P (t)] dt +
4
T

∫ T

t0

M2(t) dt + 2L2 T−t0
T

.

Noting that

1
T

∫ T

t0

g2[P (t)] dt ≤ m

T

∫ T

t0

a−1(t) g [P ∗(t)B(t)P (t)] dt.

From (2.6) we have

lim
T→∞

1
T

∫ T

t0

g2[P (t)] dt = 0

and

lim
T→∞

1
T

∫ T

t0

M2(t) dt

= lim
T→∞

1
T

∫ T

t0

( ∫ ∞

t

a−1(s) g [P ∗(s)B(s)P (s)] ds

)2

dt = 0.

Therefore, we obtain from (2.17)

lim
T→∞

sup
1
T

∫ T

t0

g2

[
D(t) +

∫ t

t0

E(s) ds

]
dt < +∞

which contradicts the assumption (B2). This contradiction completes
the proof of the part under the assumption (B2) of the theorem.
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Let us assume that (B3) holds; then, for any real l, we have

(2.18) μ

{
t ∈ [t0,∞) : g

[
D(t) +

∫ t

t0

E(s) ds

]
≥ l

}
= +∞.

We may write (2.8) in the form

−g [P (t)] = −g [W (t0)] + g

[
D(t) +

∫ t

t0

E(s) ds

]

+
∫ t

t0

a−1(s) g [P ∗(s)B(s)P (s)] ds.

Since (2.6) holds, we have for any real k,

{t ∈ [t0,∞) : −g [P (t)] ≥ k}

=
{

t ∈ [t0,∞) : g

[
D(t) +

∫ t

t0

E(s) ds

]

≥ g [W (t0)] + k −
∫ ∞

t0

a−1(s) g [P ∗(s)B(s)P (s)] ds

}
.

Consequently, from (2.18) it follows that, for any real k,

μ{t ∈ [t0,∞) : −g [P (t)] ≥ k} = +∞.

In particular, μ(Ek) = +∞, where Ek = {t ∈ [t0,∞) : −g [P (t)] ≥ k >
0}. Thus, ∫

Ek

g2[P (t)] dt ≥ k2μ(Ek) = +∞.

On the other hand,

(2.19)

∫
Ek

g2[P (t)] dt ≤ m

∫
Ek

a−1(s) g [P ∗(s)B(s)P (s)] ds

≤ m

∫ ∞

t0

a−1(s) g [P ∗(s)B(s)P (s)] ds < +∞

due to (2.6). It is a contradiction. Hence, the proof of the part under
the assumption (B3) of the theorem is complete.
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Suppose that (B4) holds. Since (2.6) holds, then for every ε > 0,
there exists a T0 > t0 such that t ≥ T0 implies that

M(t) =
∫ ∞

t

a−1(s) g [P ∗(s)B(s)P (s)] ds < ε.

The assumption (B4) yields for every real l

(2.20) μ

{
t ∈ [t0,∞) : g

[
D(t) +

∫ t

t0

E(s) ds

]
≤ l

}
= +∞.

For any real k, we have in view of (2.9)

{t ∈ [T0,∞) : −g [P (t)] ≤ k}

=
{

t ∈ [T0,∞) : g

[
D(t) +

∫ t

T0

E(s) ds

]
≤ k+L+M(t)

}

=
{

t ∈ [T0,∞) : g

[
D(t) +

∫ t

t0

E(s) ds

]
≤ k+L+ε +

∫ T0

t0

g [E(s)] ds

}
.

Thus, for every real k, (2.20) yields that

μ {t ∈ [t0,∞) : −g [P (t)] ≤ k} = +∞.

Set Ek = {t ∈ [t0,∞) : −g [P (t)] ≤ k < 0}, then μ (Ek) = +∞ and∫
Ek

g2[P (t)] dt ≥ k2μ (Ek) = +∞.

However, from (2.19) we have
∫

Ek
g2[P (t)] dt < +∞. This contradic-

tion completes the proof of the part under the assumption (B4) of the
theorem.

This completes the proof of Theorem 2.1.

The following theorem complements Theorem 2.1.

Theorem 2.2. If there exists a positive linear functional g on �
such that a(t) g[B−1(t)] ≤ M (M > 0 is a constant),

lim inf
T→∞

1
T

∫ T

t0

g

[
D(t) +

∫ t

t0

E(s) ds

]
dt = −∞,
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and

(2.21) lim
t→∞ approxsup g

[
D(t) +

∫ t

t0

E(s) ds

]
= m > −∞,

then (1.1) is oscillatory, where a(t), D(t) and E(t) are the same as
above.

Proof. Suppose that (1.1) is not oscillatory. Then there exists a
prepared solution X(t), Y (t) of (1.1) such that X(t) is nonsingular.
Without loss of generality, we assume that detX(t) �= 0 for t ≥ t0.
Denote W (t) by (2.1), then we have (2.8) holds. From (2.21) and
Lemma 2.3, it follows that

(2.22) lim
T→∞

∫ T

t0

a−1(s) g [P ∗(s)B(s)P (s)] ds = +∞.

For any ε > 0, the given condition yields

μ

{
t ∈ [t0,∞) : g

[
D(t) +

∫ t

t0

E(s) ds

]
≥ m − ε

}
= +∞.

Thus, using (2.8) we have

μ

{
t ∈ [t0,∞) :

∫ t

t0

a−1(s) g [P ∗(s)B(s)P (s)] ds

≤ −g [P (t)] + g [W (t0)] − m + ε

}
= +∞.

Consequently, for large t,∫ t

t0

a−1(s) g [P ∗(s)B(s)P (s)] ds ≤ −g [P (t)] + g [W (t0)] − m + ε.

Hence, in view of (2.22), we have limt→∞ −g[P (t)] = +∞. We may
choose T0 > t0 such that −g[P (t)] > g[W (t0)]−m+ ε for t ≥ T0. Then
we have

μ

{
t ∈ [T0,∞) :

∫ t

t0

a−1(s) g [P ∗(s)B(s)P (s)] ds ≤ −2g [P (t)]
}

= +∞.
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Let

E =
{

t ∈ [T0,∞) :
∫ t

t0

a−1(s) g [P ∗(s)B(s)P (s)] ds ≤ −2g [P (t)]
}

.

Hence μ(E) = +∞. Setting, for t ≥ T0,

H(t) =
∫ t

t0

a−1(s) g [P ∗(s)B(s)P (s)] ds > 0,

we get H ′(t) = a−1(t) g[P ∗(t)B(t)P (t)] ≥ 0. For t ∈ E,

H2(t) ≤ 4 g2[P (t)] ≤ 4 Ma−1(t) g [P ∗(t)B(t)P (t)] = 4 MH ′(t).

Integrating over E and noting that H(t) > 0 for t ≥ T0, we obtain

1
4M

μ(E) ≤
∫

E

H ′(t)
H(t)

dt ≤ lim
T→∞

∫ T

T0

H ′(t)
H(t)

dt <
1

H(T0)
< +∞,

which is a contradiction, since μ(E) = +∞. This completes the proof
of Theorem 2.2.

In order to illustrate our theorems, we consider the following example.

Example. Consider the Hamiltonian system

(2.23)
{

X ′ = A(t)X + B(t)Y
Y ′ = C(t)X − A∗(t)Y,

t ≥ t0,

where

A(t) =
[

a1(t) a3(t)
a2(t) a4(t)

]
, B(t) =

[
b1(t) 0

0 b2(t)

]
,

C(t) =
[−c1(t) c2(t)

c2(t) c3(t)

]
,

ai(t), bj(t) > 0, ck(t) are continuous functions on [t0,∞) for i =
1, 2, 3, 4, j = 1, 2 and k = 1, 2, 3, and there exists a constant m > 0
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such that b−1
1 (t) ≤ m for t ≥ t0. If we let ρ(t) ≡ 0, g[M ] = m11, where

M = (mij) is a 2 × 2 matrix, then we have

g [D(t)] = −g [B−1(t)A(t)] −
∫ t

t0

g [A∗(s)B−1(s)A(s)] ds

= −a1(t) b−1
1 (t) −

∫ t

t0

[a2
1(s) b−1

1 (s) + a2
2(s) b−1

2 (s)] ds,

and

g

[ ∫ t

t0

E(s) ds

]
=

∫ t

t0

g [E(s)] ds = −
∫ t

t0

g [C(s)] ds =
∫ t

t0

c1(s) ds.

Set

U(t) =
∫ t

t0

[c1(s) − a2
1(s) b−1

1 (s) − a2
2(s) b−1

2 (s)] ds − a1(t) b−1
1 (t).

Now, let us consider the following two cases.

Case 1. If

lim inf
T→∞

1
T

∫ T

t0

U(t) dt > −∞,

and one of the following conditions holds

lim sup
T→∞

1
T

∫ T

t0

U(t) dt = +∞,

lim sup
T→∞

1
T

∫ T

t0

U2(t) dt = +∞,

lim
t→∞ approxsup U(t) = +∞,

lim
t→∞ approxinf U(t) = −∞,

then (2.23) is oscillatory by Theorem 2.1.

Case 2. If

lim inf
T→∞

1
T

∫ T

t0

U(t) dt = −∞,
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and

lim
t→∞ approxsup U(t) > −∞,

then (2.23) is oscillatory by Theorem 2.2. However, it is difficult to
apply Theorems 1 and 2 in our recent paper [15] to (2.23), since the
continuous functions a3(t), a4(t), b2(t) > 0, c2(t), c3(t) and c4(t) are
arbitrary and the fundamental matrix of the linear equation v′ = A(t)v
is not very easy to obtain.

Remark. With an appropriate choice of the positive linear functional
g such as g[M ] = mii for i = 1, 2, . . . , n, g[M ] = trM , and g[M ] =
c∗Mc where c is an arbitrary but fixed vector in Rn, we may derive
many possibilities for oscillation criteria of (1.1) from Theorems 2.1 and
2.2. Because of the limited space, we omit them here.
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