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REPRESENTATIONS AND INTERPOLATIONS OF
WEIGHTED HARMONIC BERGMAN FUNCTIONS

KYESOOK NAM

ABSTRACT. On the setting of the upper half-space of the
Euclidean n-space, we study representation theorems and in-
terpolation theorems for weighted harmonic Bergman func-
tions. Also, we consider the harmonic (little) Bloch spaces as
limiting spaces.

1. Introduction. Let H denote the upper half space R"~! x R
where R denotes the set of all positive real numbers. We will write
points z € H as z = (2, 2,,) where 2/ € R""! and z, > 0.

For @ > =1 and 1 < p < 00, let b2 = b2 (H) denote the weighted har-
monic Bergman space consisting of all real-valued harmonic functions
u on H such that

fuloy = ( [ u<z>|pdva<z>>1/p < oo

where dV,,(z) = z5dz and dz is the Lebesque measure on R™. Then we
can see easily that the space b2 is a Banach space. In particular, b2
is a Hilbert space. Hence, there is a unique Hilbert space orthogonal
projection II, of L? onto b2 which is called the weighted harmonic
Bergman projection. It is known that this weighted harmonic Bergman
projection can be realized as an integral operator against the weighted
harmonic Bergman kernel R, (z,w). See Section 2.

In [6], many fundamental weighted harmonic Bergman space prop-
erties have been studied. In this paper, we study the representation
property of b?-functions and the interpolation by b2-functions. Our
methods are taken from those in [4] and based on estimates of the
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weighted harmonic Bergman kernel in [6]. Related results for spaces of
harmonic functions were given in [7] and [8].

The following theorems are special cases of the representation results
and the interpolation results, respectively.

Theorem 1.1. Let o > —1, and let 1 < p < oco. There ezxists
a sequence {z,} of points in H and a constant C' with the following
properties. For (Ay,) € 1P, define u by

(1.1) u(2) =Y Amzia TV Ro (2, 2m).

Then u € bP with

«

/ ulP AV < C > [ Aml?-
H

Conversely, given u € bP, there exists a sequence (\y,) € IP such that

(1.1) holds and
> Aml? < c/ [ulP dV,.
H

The corresponding theorem for p = 1 is also available with a certain
restriction.

Theorem 1.2. Let a > —1, and let 1 < p < oo. There exists
a sequence {z,} of points in H and a constant C' with the following
properties. For u € P we have

S 2 (2, P < C /H fuf? dV,.

Conversely, given (An) € IP, there exists a function u € b?, such that

Zr(gvja)/pu(zm) = A for all m and

/ P dVe < O3 Al
H

These two properties of holomorphic Bergman spaces were studied in
[5] and [9]. In [5], the representation properties of harmonic Bergman
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functions, as well as harmonic Bloch functions, were also proved on the
unit ball in R™. See [2] for the interpolation properties of holomorphic
(little) Bloch functions. On the setting of the half-space of R™, Choe
and Yi [4] have studied these two properties of harmonic Bergman
spaces. In [4], the harmonic (little) Bloch spaces are also considered as
limiting spaces of bP.

In Section 2 we give some basic properties related to the space b2,
the harmonic Bloch space B and the little harmonic Bloch space go.
In Section 3 we collect some technical lemmas which will be used in
later sections. In Section 4 and Section 5 we study the representation
theorems for b2, B and By. In Section 6 and Section 7 we prove the

interpolation theorems for b2, B and gg.

Constants. Throughout the paper the same letter C' will denote vari-
ous positive constants, unless otherwise specified, which may change at
each occurrence. The constant C' may often depend on the dimension n
and some parameters like 6, p, a or [, but it will be always independent
of particular functions, points or sequences under consideration. For
nonnegative quantities A and B, we will often write A S Bor B2 A
if A is dominated by B times some positive constant. Also, we write
A~ Bif A< Band B < A.

2. Preliminaries. In this section we summarize preliminary results
on b?, as well as the harmonic Bloch space B from [6]. Let o > —1 and
let 1 < p < co. First, we introduce the fractional derivative.

Let D denote the differentiation with respect to the last component,
and let u € b2. Then the mean value property, Jensen’s inequality and
Cauchy’s estimate yield

(2.1) [D*u(2)| S 2, ("re)/pmh

for each z € H and for every nonnegative integer k.

Let F5 be the collection of all functions v on H satisfying |v(2)| < 2;,?
for 8 >0, and let F = UgsoFg. If v € F, then v € Fp for some 5 > 0.
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In this case, we define the fractional derivative of v of order —s by

(2.2) D v(z) = %s) /Ooo 57 (2, 2, + 1) dt

for the range 0 < s < . (Here, I is the Gamma function.)

If u € b2, then for every nonnegative integer k, D¥u € F by (2.1).
Thus for s > 0, we define the fractional derivative of u of order s by

(2.3) Doy = D~ BEI=9) plly,

Here, [s] is the smallest integer greater than or equal to s and D° = D°
is the identity operator. If s > 0 is not an integer, then —1 < [s]—s—1 <
0 and [s] > 1. Thus we know from (2.1) that, for each z € H and for
every u € b,

DS - - Oot[s]fsle[s] / £) dt
) = 5= | w2+ )

always makes sense.

Let P(z,w) be the extended Poisson kernel on H and

2 Zn + Wy

P, (w) := P(z,w) = W (B [z

where z,w € H and w = (w’, —w,,) and B is the open unit ball in R".
It is known that the weighted harmonic Bergman projection II,, of L?
onto b? is

M. /() = /H F(w) Rz w) dVi ()

for all f € L2 where R, (z,w) is the weighted harmonic Bergman kernel
and its explicit formula is
1

(2.4) R.(z,w) = ol DLP, (w)

and Cy = (=1)IH1T (o + 1) /2%, Also, it is known that

C

B
(2.5) D, Ra(z,w)| < P
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for all z,w € H. Here, 8 > —n—a and the constant C' is dependent only
on n,a and 3. Using (2.5), we know R, (z,-) € bl for all 1 < ¢ < 0.
Thus, II,, is well defined whenever f € L? for 1 < p < co. Also, for
1<p<oo,ueb, zcH,

(2.6) u(z) = /H w(w) Ry (2, w) dVis (w)

whenever 8 > «. Furthermore, we have a useful norm equivalence. If
a>-1,1<p<ooand (14+«)/p+~ >0, then

(2.7) [ullzy, ~ lwiDullLs,

as u ranges over bF.

Set zo = (0,1). A harmonic function u on H is called a Bloch function
if
llullg = sup wy,|Vu(w)| < oo,
weH

where Vu denotes the gradient of u. We let B denote the set of Bloch
functions on H and let B denote the subspace of functions in B that
vanish at zg. Then the space B is a Banach space under the Bloch
norm || ||5.

A function u € B is called a harmonic little Bloch function if it has
the following vanishing condition

hmH zn|Vu(z)| =0

z—9>

where 9°H denotes the union of 9H and {oc}. Let By denote the set
of all harmonic little Bloch functions on H. It is not hard to verify that
By is a closed subspace of B. Let Cy denote the set of all continuous
functions on H vanishing at oo.

Because R, (z,) is not in L., II,, f is not well defined for f € L>°. So
we need the following modified Bergman kernel. For z,w € H, define

Ea(z,w) = R, (z,w) — Ry (20, w).

Then, there is a constant C' = C'(n, ) such that

(2.8) Ra(z,wnsc( R I EE >

|z —w|nte|zg —w| |z —W||z0 — W



242 K. NAM

for all z,w € H. Thus, (2.8) implies that Ry (z,-) € LY, for each fixed
z € H and then we can define II,, on L by

. f(z) = /H F(w) Bz w0) dVi ()

for f € L°. Then, it turns out that ﬁa is a bounded linear map from
L onto B. Also, I, has the following property: If v > 0 and v € B
then

(2.9) I, (w)D")(z) = Cu(z)

where C' = C(«,7). The Bloch norm is also equivalent to the normal
derivative norm: If v > 0, then

(2.10) [ulls = [[wa D a0

as u ranges over B. (Sce [6] for details.)

3. Technical lemmas. In this section we prove technical lemmas
which will be used in later sections. We first introduce a distance
function on H which is useful for our purposes. The pseudohyperbolic
distance between z,w € H is defined by

|z —wl

p(Z,U))— |Z—E|

This p is an actual distance. (See [4].) Note that p is horizontal
translation invariant and dilation invariant. In particular,

(3.1) p(z,w) = p(¢a(2), $a(w))

for z,w € H where ¢,(a € H) denotes the function defined by

Z—a oz,
ule) = (20, 2)

for = € H. Note that the Jacobian of ¢;! is a”. For z € H and
0 < d§ < 1, let Es(z) denote the pseudohyperbolic ball centered at z
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with radius 0. Note that ¢.(Es(z)) = Es(z0) by the invariance property
(3.1). Also, a simple calculation shows that

1+62 28
(3.2) Es2) = B((+\ 1 ) g o)

so that B(z,62,) C Es(z) C B(2,26(1—3)"12,) where B(z,r) denotes
the Euclidean ball centered at z with radius r. From (3.2), we have
two lemmas which will be used many times in this paper. For proofs
of the following lemmas, see [4].

Lemma 3.1. For z,w € H, we have

E

g

1—p(z,w) < P 1+ p(z,w)
14 p(z,w) — ~1-p(z,w)’

n

This lemma implies the following lemma.

Lemma 3.2. For z,w € H, we have

L= p(zw) _ J2=3] _ 1+ p(zw)
1+ p(z,w) = |lw=3 — 1—p(z,w)

for all s € H.

The following lemma is used to prove the representation theorem.
If o is a nonnegative integer, then it is proved in [4]. Therefore, to
complete the proof of the following lemma, we only need to show the
case that « is not an integer.

Lemma 3.3. Let o > —1 and (3 be real. Then

“n

‘zﬁRa(s, z) — wﬁRa(s,w)’ < Cp(z,w) s

whenever p(z,w) < 1/2 and s € H.
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Proof. Suppose =0 and let k = [@]. Then k£ — « > 0. From the
proof of Lemma 3.4 in [4], it is easily seen that

Cp(z,w)

|Rk(s,2) — Ri(s,w)| < PR
Thus we get from (2.4),
(3.3) |Ra(s,2) — Ra(s,w)]

< C/ | DM P (2, 2 + 1) — DMTUP (W' wy, + t)[EF 7 dt
0

< C/OO p((z’,zn + t), (wl,wn + t)) tk—a—l dt
~Jo (2, 20 + 1) — 5|7 FF

1
< Op(zw) —5mra

Now, let 8 be a real number. Then from (3.3) and (2.5), we have

()
Zn

|zﬁRa(s, z) — wSRa(s,w”

< 27 |Ra(s,2) = Ra(s,w)| + 2] |Ra(s, w)|

<C o c &

< Cpleyw) T—ima + Cplew) o — s
2

< Op(zw) e

The last two inequalities of the above hold by Lemma 3.1 and
Lemma 3.2. The proof is complete. o

Let & > —1, and let 1 < p < 0o. Define IIg on the weighted Lebesque
space LP by

sf(2) = [ Fw)Ro(zw) dVs(w)
H
for each f € LP and every z € H. Then we show in the following lemma

I1 is a bounded projection on LE. For the proof of the following lemma,
see Theorem 4.3 in [6].
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Lemma 3.4. Suppose a > —1, 1 <p < oo and a+1 < (B + 1)p.
Then Il is bounded projection of LY onto bP .

By simple estimation, we have the next lemma which will be used
frequently. For the proof of the following lemma, see Lemma 2.1 in [6].

Lemma 3.5. For b<0,—1 < a+ b, we have

waer
/ —" ___dw<Cz
H

2 —m[nte =T

for every z,w € H.
Lemma 3.6. Let a > —1,1<p < oo, and let (1+«a)/p+v > 0.
Suppose 0 < § < 1. Then
C
P
< o /E'(;(z) |u(w) [P dw

for all z € H and for every u harmonic on H where k = [y] if v > —1
and k =0 if v < —1. The constant C = C(n,p,~) is independent of 6.

2 P DT ()P

Proof. Since k is a nonnegative integer, we have from Lemma 3.6 of
4], .
n+pk k
DY < e [l

Suppose that 7 is not a nonnegative integer. Then, we have from (2.3),

[DMu(z)| < ﬁ /00 |DRu(2, 2y + )|t dt
—7)Jo

1/p
C o0 tk_V_l
< dt w(w) [P dw
< 5(n+pk)/1’/0 (2n + £)(nFPR)/p </E5(z)| (w)] )

1/p
C
< p .
= APk /=05 (k) </E'5(z) lu(w)] dw>

The proof is complete. |
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If ~ satisfies the condition of Lemma 3.6, we can show D7u is
harmonic on H. If 7 is a nonnegative integer, then DY is harmonic on
H, because it is a partial derivative of a harmonic function. If 7 is not
a nonnegative integer, we see also D7u is harmonic on H by passing
the Laplacian through the integral.

The notation |E| denotes the Lebesque measure of a Borel subset E
of H. Let |E|, denote V,,(E). The following lemma is proved by using
the mean value property and Cauchy’s estimates.

Lemma 3.7. Suppose u is harmonic on some proper open subset €2
of R*. Let a > —1 and let 1 < p < co. Then, for a given open ball
ECQ,

E[P/™E|,
/E u(2) — (@] dVa(2) < O E‘ag' o / fu(w)[? dw

for all a € E. The constant C depends only on n,a and p.

4. Representation on weighted harmonic Bergman func-
tions. In this section we prove the representation property of % -
functions. Let {z,,} be a sequence in H, and let 0 < § < 1. We say
that {zp,} is d-separated if the balls Es(z,,) are pairwise disjoint or
simply say that {z,,} is separated if it is d-separated for some §. Also,
we say that {z,} is a d-lattice if it is §/2-separated and H = UFEs (2, ).
Note that any “maximal” 6/2-separated sequence is a d-lattice.

From [4], we have the following three lemmas.

Lemma 4.1. Fiz o 1/2-lattice {an,}, and let 0 < § < 1/8. If {zn}
is a 0-lattice, then we can find a rearrangement {z;; : i =1,2,...,j =
1,2,...,N;} of {zm} and a pairwise disjoint covering {D;;} of H with
the following properties:

(a) Es2(zi;) C Dij C Es(zi5)

(b) E1/a(a;) C U Dy C Ess(as)

(c) zij € Eqjo(a;) forall i =1,2,..., and j =1,2,... ,N;.
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Lemma 4.2. Let r > 0 and let 0 < (1 +7)n < 1. If {zn} is an
n-separated sequence, then there is a constant M = M (n,r,n) such that
more than M of the balls Ey,y,(zm,) contain no point in common.

Lemma 4.3. Let N; be the sequence defined in Lemma 4.1. Then

supN; <C6™"
i
for some constant C depending only on n.

Analysis similar to that in the proof of Lemma 3.4 shows the following
lemma which is used in the proof of Proposition 4.5.

Lemma 4.4. Let a > -1, 1 <p< oo and a+1 < (f+1)p. For
feLl, define

0af) = [ 1000 o

for z € H. Then, ®g: LY — LP is bounded.

Let {z,} be a sequence in H. Let « > -1, 1 < p < oo and
a+1< (B4 1)p. For (Ay,) €17, let Qz(Ay,) denote the series defined
by

(4.1) Qe(Am)(2) = Y Azl VUV E=OP Ry (2, 2,),

for z € H. For a sequence {z,, } good enough, Qz(\,,) will be harmonic
on H. We say that {z,,} is a b2-representing sequence of order § if
Qp(I?) = b?. Lemma 4.4 implies the following proposition which shows
Qp(IP) C b2 if the underlying sequence is separated.

Proposition 4.5. Let a > -1, 1 <p< oo and a+1 < (8+ 1)p.
Suppose {zy, } is a 6-separated sequence. Then Qg : IP — b2 is bounded.

Proof. For (Ap) € 12, put f = 3 [ A |zomd PA71/PIF 7a)/p|E5(zm)|;1
X where X, is the characteristic function of Es(z,,). By (2.5) and
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Lemma 3.2, there exists a constant C' = C(n, 3,0) such that
C C

|2 — Zp P8~ |2 — |2 tF

[Rs(2, 2m)| <

for all w € Es(zy,) and z € H. Thus, we get

LB (A=1/p)+(5-0) /p
QsAm) (@) < O3 | =

(Zm)|ﬁ
/ YR g — Co £(2)
X — " dw = z).
By () |2 = W0 ’

Note from (3.2) and Lemma 3.1 that |Es(zm)|a = 205*. Thus, we
obtain from Lemma 4.4 that

Qs < O P P2t D=0+ By (2| 57 | E5(21m) o

<O Aml.

This shows that Qs : [P — LP is bounded and the series in (4.1)
converges in norm. Since every term in the series (4.1) is harmonic, the
series converges uniformly on compact subsets of H. Consequently, we
have Qs : [P — b, is bounded. This completes the proof. O

Now, we prove the main theorem in this section.

Theorem 4.6. Let o > —1, 1 <p<ooanda+1< (+1)p. Then
there exists dg > 0 with the following property. Let {zn} be a d-lattice
with § < dg and let Qg : IP — bP be the associated linear operator as in
(4.1). Then there is a bounded linear operator Pg : bY, — IP such that
QgPs is the identity on bY. In particular, {z,} is a bY-representing
sequence of order (3.

Proof. Let u € b2. We may assume § < 1/8. Fix a 1/2-lattice
{am}. Find a rearrangement {z;;} of {2, }, as well as a pairwise disjoint
covering {D;;} of H, for which all properties of Lemma 4.1 are satisfied.
Note from Lemma 3.1 and (3.2) that there exist C; and C5 independent
of § such that
(42) 7' < 2 <0y, O < |Bs(zi)]a < Cadmzlte

ijn ijn

ijn
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for all w € Ej(z;) because 6 < 1/8. Then, we have from (a) in
Lemma 4.1 and Lemma 3.6 that

@3) D )P < 080 [ ut)P g du.

ijn
Dij

Let T'u denote the sequence (zz(ﬁ:rﬁ)(l/pfl)f(ﬁfa)/p|Dij|5u(zij)). Then
we have from (4.3) that

7ulfy < 0500 Y [ futp wgdw = Clalf.

This shows that T : b2 — [P is bounded and thus Q371" is bounded on
b? by Proposition 4.5.

Now, we show that Qg7 is invertible on b, for all § sufficiently
small. Let X;; denote the characteristic function of D;;. Then we
know from Lemma 3.4, u = Igu = I [> uX;;]. Since QgTu(z) =
> |Dijlpu(zi;)Ra(z, zi5), we have u — QgTu = u3 + ug where

uy(z) =1lg {Z (u —u(z)) Xz'j] (2),
ua() = Y uleig) [ Rolw) — Ro(a, ) V).

ij

Note from (c) in Lemma 4.1 that D;; C Es(zi) C Eijays(as) C
E5/s(a;). Hence, we have from (4.2)

d(E5(2ij),0Fs)3(a;)) > d(Es/s8(ai), 0Ey3(ai)) > Cain > Czijn,

for some absolute constant C. Thus, we get from Lemma 3.7 and (4.2)
that

/ fu(w) — u(z1;)|? dVa ()
D

| Es(2i) [P | Es (2ij) | /
<C u(w) P dw
d(E5(zij), 0E2/3(a:))" P J g, 4 (a,) )]

< 05”“’/ |u(w)|P wyy dw
Es/3(ai)
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for all 4, j. Here, the constant C' is independent of i, j and §. Thus, for
each fixed 7, Lemma 4.3 implies

(4.4) Z/ ) — u(zij)|P dVa(w )<05P/ ulP dV,.

Ey/3(ai)

Therefore, we get from Lemma 3.4 that

s [, <CHZ w—u(zi5)) Xig |70

(4.5) = CZ/ — u(zi5)[” dVa(w)

< c&pz/ Il V< ol
2/3 a;

The last inequality of the above holds by Lemma 4.2. Here, the constant
C is independent of §.

Now, we show |luz||z < Collul|.r for some constant C' independent
of §. Note from Lemma 3.3 and Lemma 3.2 that

| 1Baleiw) = Rate.z)| avi(w) <c/

ij

p(w, zi5)
|Z_sz|n+ﬁ
1
PR AT |Dijl -

dVs(w)

<Cs
Then, we have from (4.3) and (4.2) that

luz(2)] < O(SZ 2 — |n+5 | Dijlp ulzij)|
< 1jn
(4.6) 052‘ ST /D Jul dVa

<Cd / u| dV.
Z ‘Z az|n+ﬁ E2/3(ai)| |

The last inequality of the above holds (b) in Lemma 4.1. Note from
Lemma 3.2 and (4.2) that

f—a A
(4.7) s < / BT ks
|z — @l |Ea/3(ai)|a E2/3(a;) z =l
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1/p
Let \; = (sz/S(ai) |u(w)|P dV, (w)) , and let X; be the characteristic
function of Ey/3(a;). If p =1, we have from (4.6) and (4.7)

lug(2)| < @5 [CJZAZ«|E2/3(%)|&1 xz} (2).
Thus, Lemma 4.4 and Lemma 4.2 yield

(4.8)  lualpy <C8Y [N = 052/ lu| dVi < COljul|zs -
i i B

2/3(‘11')

Here, the constant C is independent of 4. Assume that p > 1. Holder’s
inequality and (4.7) imply that (4.6) is less than or equal to

alﬁfoc Y 1/p
C‘SZ E _%Li|n+g |Eay3(ai)ly q</132/3(a-) |ulP dVa)

1
<05y \|E ; 1/%1/ - _aV
> ZZ: 7,| 2/3(041)‘(1 Eajs(as) |Z _ m‘yH—ﬁ /3(’(U)

< ®p {05 D il Bys(ai) M Xz} (2)

where ¢ is the index conjugate to p. Now, Lemma 4.4 and Lemma 4.2
yield

(4.9) lusll?, < €67 37 NP < Ol

3

Here, the constant C' is independent of §. Let I be the identity on b2.
Then (4.5), (4.8) and (4.9) imply ||QgT — I|| < C§ for some constant
C independent of §. Therefore, Q3T is invertible for all § sufficiently
small. For such 4§, set Pg = T(QBT)_l. This completes the proof.
O

Since D7u is harmonic and we have (2.7), we can have a similar result
with Proposition 4.8 of [4].
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Proposition 4.7. Let « > -1, 1 <p < oo, and let (1 +«a)/p+v >
0. If {zm} is a 0-lattice with § sufficiently small, then

lullgy = D b7 D u(z) P

P
as u ranges over ba'

5. Representation on B and BO In this section we prove the
representation property of B-functions and Bo-functlons Let {z,,} be
a sequence in H, and let 3 > —1. For (\,;,) € [*

(5.1) Z)\mz’”ﬂ Rs(z, 2m,)

for z € H. We say that {z,,} is a B—representlng sequence of order
if Qg(loo) B. We also say that {z,,} is a Bo- -representing sequence of

order 3 if Qﬁ (Co) = Bo. As in the case of bP -representation, we begin
with a observation that a separated sequence represents a part of the
whole space. The proof of the following proposition is the same with
that of Proposition 4.9 in [4].

Proposition 5.1. Let 8 > —1 and suppose {zn} is a d-separated

sequence. Then, Qg 1°° — B is bounded. In addition, Qg maps Co

mnto By.

If v is a positive integer, then the following lemma is proved in [4].
Therefore to complete the proof of the lemma, we only need to show
the case that v is not an integer.

Lemma 5.2. Let v > 0. Then
|23 D7u(z) — w); DV u(w)| < Cp(z, w)||ull

forall z,w e H and u € B.

Proof. Let u € B. Fix z,w € H. By (2.10), we may assume
p(z,w) < 1/2. Note from (2.9) that u(z) = Cl,(s,Du)(z) =
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C [y $nDu(s)Ra(z,5) dVy(s). Thus, from the definition of the frac-
tional derivative, we have

(5.2) |2 DVu(z) — wlD u(w)]

o0
< C/ |20 DDu(2, 2, + t) — w) DY u(w’, wy, + ¢)[ 77 dt
0

SC/ / |snDu(s)||z%DLZ]]§a((z',zn+t),s)
o Ju
—w) DY Ry (w',wy, + 1), 8)| dVa(s) D=7 dt.

Note that DLZ]RQ((Z’,,Z” +1t),s) = D,[J]Ra((z’,zn +1),5) = CRaypy

n

((z',zn + 1), s). Thus, Lemma 3.3 and Fubini’s theorem imply that
.2) 1is less than or equal to
(5.2) is less th qual

(5.3) CHuHB/O /H’zgRaH,y]((z',zn—i—t),s)

—’LUWRQ_,_[,Y]((IU wn+t )| dV( ==t
< Cp(z,w ||’LLHBZ'Y// = zn—i—t _S|n+a+ pdtdVa(s).

Note that |(2/, 2z, +t) — 5| = |z —3| +¢ for s € H, ¢t > 0. Thus, (5.3) is
less than or equal to

=
p(z, w)l|ull sz / / TR dt dVy(s)

< Cplz,w)|lulls2] /
]

s
WZH&W ds < Cp(z,w)||ulls

after applying change of variable t = |z — 5|t and Lemma 3.5. This
completes the proof. O

Having Proposition 5.1 and Lemma 5.2, we can modify the proof of
Theorem 4.6 to obtain a similar B-representation theorem.
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Theorem 5.3. Let 0 > —1. Then there exists a positive number d
with the following property. Let {zm} be a d-lattice with § < &y, and let
Qvlg 1°° — B be the associated linear operator as in (5.1). Then there
exists a bounded linear operator 735 B — I such that Qng is the
zdentzty on B. Moreover, 735 maps By into Cy. In particular, {z,} is
both a B- representing and BO -representing sequence of order [3.

Lemma 5.2 yields the following result for B analogous to Proposi-
tion 4.7.

Proposition 5.4. Let v > 0. Let {z,} be a d-lattice with ¢
sufficiently small. Then

DVu(zm,)|

[ulls ~ sup z3,,, |
m

as u ranges over B.

6. Interpolation on b2. In this section we prove the interpolation
theorem for the space 2. Let {z;,} be a sequence on H. Let o > —1,
1<p<ooand (1+a)/p+~ > 0. For u € b2, let T,u denote the
sequence of complex numbers defined by

(6.1) Tou= (zﬁg,jwpﬂ Dvu(zm)> .

If T, (b%) = IP, we say that {z,,} is a b?-interpolating sequence of order
5.

The following two lemmas are used to prove that separation is
necessary for bP-interpolation.

Lemma 6.1. Let a > —1,1<p< oo and (1+a)/p++v > 0. Let
{zm} be a bE -interpolating sequence of order ~. Then, Ty : b2, — [P is
bounded.

Proof. Assume u; — u in b2 and Tyu; — (A,,) in [P. By the closed

graph theorem, we need to show T,u = (\,). Note from Lemma 3.6,
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Lemma 3.1 and (2.7) that

N
D amk TP D u(zm) — DYy (zm) P
m=1

<CZ/ [w) DY (u — u;) (w)|P wyy dw

Es(zm)

< ON Ju=u;ll,.

Thus, we have

|1 Tyu — ()[04 DYy 2) = A |

Zun Y DV u(zm) — DYV (2 )P

il = 3
m=1
N
<C Z
m=1
N
+C 7 [P DYy () — AP
m=1

bY T D) Al
m=N+1

< ONllu = u;ll7, + 1Tyu; = )T

+ i ‘Z%ﬁa)/ww DVu(zp) — /\m‘p
m=N-+1

for every N. Taking first the limit j — co and then N — oo, we have
Tyu = (Ap). This completes the proof. i

The following lemma is a b® -version of Lemma 5.2 which is the result
of B-functions. If v is a nonnegative integer, then the following lemma
is proved in [4]. Therefore to complete the proof of the lemma, we only
need to show the case that v is not a nonnegative integer.
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Lemma 6.2. Let a« > —1, 1 <p<ooand (1 4+ «a)/p+~ > 0. Then,
|27 DY u(z) — w(TO PN DYu(w)| < Cp(z,w)ul 1y,

forall z,w e H and u € b2

Proof. Let uw € b2 and fix z,w € H. By Lemma 3. 6 We may assume
p(z,w) < 1/2. Note from (2.6) that u(z) = [ u( (z,8)dVq(s).
Thus, letting k = [y] if v > —1 and k = O if v < —1 we have from
Lemma 3.3 and Fubini’s theorem that

(6.2) |z,(L”+°‘)/p+7 DYu(z) — wmte)/pH DVu(w)]
<C [ [ @[ O Ra(( s+ 0).5)
O H n
w{MT/PIDE R (W' wy, + 1), 8)| dVa(s) tF 77 dt

< Cp(z,w)/ O e
H

oo tk*’yfl
X / — dt dV,(s)
o (

2 —§| 4 t)ntatk

(n+0t)/p+v
< Cp(z,w / |u(s) Tz —sprer AV, (s)

after applying change of variable ¢ = |z —§|t. If p = 1, then we have
from (6.2),

|2 P DYu(z) — wi O DYu(w)| < Cplz, w)full
because n+a+vy > 0. Assume 1 < p < co. Note that (1 + «)/p+v >0
implies n+ a < (n+ a+)q where ¢ is the index conjugate to p. Thus,

Hélder’s inequality and Lemma 3.5 imply that (6.2) is less than or equal
to

n+oc )a/p+q /q
Coteulluler ( || e Vo)) < oz w)lulag.

The proof is complete. |
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Since we have Lemma 6.1 and Lemma 6.2, the proof of the following
proposition is the same as that of Proposition 5.3 in [4] and thus
omitted.

Proposition 6.3. Let « > -1, 1 <p<oo and (14+a)/p+v > 0.
Every b -interpolating sequence of order 7y is separated.

The following lemma is used to prove b2-interpolation theorem.

Lemma 6.4. Leta > —1,1 <p<oo and (1+a)/p+v > 0. Let
{zm} be a d-separated sequence. Then, for (\y,) € IP, we have

| Azt 1D Ry (2, w)| < €m0 (e

X 3 P2/ [ D7 Ry (24, )|

for w € H and q is the index conjugate to p. The constant C is
independent of §.

Proof. Note from Lemma 3.6, (2.5) and Lemma 3.5 that

3 =42 DI R, (2, w)]

<Co" Z zf,‘l;(““’)/p/ | DR (s, w)|ds
Es/2(2m)
s~ (+a)/p
<cs ™| e ds

s — o]

< Cg—nw;(l-ka)/p—v

because 1/3 < zyn /s, < 3 for s € Es/9(2). Here, the constant C' is
independent of §. Thus, applying Hélder’s inequality to the following
two functions,

|)\m‘z(1xa)/m|pvRa(zm7 w)|1/p7 Z(n+a)/qz;l(1+a)/pq|pvRa(ZW w)|1/‘1,

m mn n
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we have

‘Z )\mzr(g;-a)/q DY Ra(2m,w) }p

< (Z P20 @4 DY R (2m, w)l)

r/q

X (Z Z%Ja)7(1+a)/p DY Ra(2m, w)|)
< O mP/ayy - (ratpr)/a Z [Am [Pz DY R, (2, w)|.

Here, the constant C' is independent of . The proof is complete. ]
Now, we prove the main theorem of this section.

Theorem 6.5. Let « > —1, 1 < p < oo and (1+a)/p+~v > 0.
Then there exists a positive number 6y with the following property. Let
{zm} be a 0-separated sequence with 6 > dy, and let T, : Vb, — [P
be the associated linear operator as in (6.1). Then there is a bounded
linear operator Sy : IP — bY, such that T, S, is the identity on IP. In
particular, {zm} is a bY-interpolating sequence of order .

. k
Proof. Fix 7. Note that D¥*1 P, (w) = C (k) Emfo C(m)(zp + wp)™/
|z — w|"*tF+™ for some nonnegative integer k. Thus, for the case that
both o and 7 are nonnegative integers, w?***7DY R, (w, w) is constant.
Assume that both o and v are not nonnegative integers. Let k = [v] if

v > —1, and let £ =0 if v < —1. Then we have
wl T YDIR,, (w, w)
= Cuwptet / / DR p((w w, + 5), (W', wy + 1))
o Jo

x tled=a=1 gp gh=7=1 g

rad k+[o]+2 0o OO t[a]—a—lsk—'y—l
= Cw, ™7 C dt ds.

Thus, applying change of variable, we have that w?T*T"DY R, (w,w) is
constant depending only on « and «. For the remaining case, we have
the same result. Thus, we will let d, , denote wi™**DYR, (w, w).
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Let 1 < p < 00. Fix (Ap,) € IP. Let Qq(Ay,) denote the function by

(6.3) Qa(Am)(2) = Z Amzw(gﬁa)/q Ro(z,2m)

where z € H and ¢ is the index conjugate to p. By Proposition 4.5, we
have @, : I” — % is a bounded operator. Thus, T,,Q is bounded on
[P by Lemma 6.1.

We show that T',Q is invertible on [” for all § sufficiently close to 1.
Let I denote the identity on P, and let («;) denote the jth component of
the sequence of (T, Qq — da~I) (Am). Since the series in (6.3) converges
uniformly on compact subsets of H, interchanging differentiation and
sum yields

aj = Z{nrel/pty D'Qa(An)(25) = daqyAj

in

_ Z(nJra)/er’Y Z )\mz’%l;_a)/q D’YRQ(Z’ITIJ zj)'

n
m#j

Thus, Lemma 6.4 gives

|04j‘p < C(sn(l—p)zj(_ZJraJr“/)*(lJra)/q Z |/\m|p Zy(i;—a)/q "D'YR,X(ZW, Zj)|

m#j

so that

o0

Z ;[P < Csm(1-p) Z Am|? qui:lra)/q
m=1
n+a — (14«
(6.4 X D T DT Ry (2, 25)]
j#Em
= 05" S A

m=1

where

B = 240e)/0 37 St =09 DI R (2, 2)-
j#m
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By Lemma 3.6 and Lemma 3.1, we have

By < COm2{LF)a 37 k= (ke)/a / D7 R (21m, 5)]| ds
j#m Es/2(25)

<O / s0T=(+)/ I DYR (2., 5)| ds
j#m E5/2(ZJ)
S;H—v—(l-&-a)/q

< co " 1+a)/q/ syt N
H\Es(zm) ‘8 — Zm|n+0¢+’y

atr—(1+a)/q
=" / g e &
H\E;5(20) |s — Zo v

for all m. Here, the constant C' is independent of §. The last equality
of the above holds by change of variable s = ¢_!(s). Thus, (6.4) is less
than or equal to

satr—(+a)/q
05_"1’/ n_—n_,’_oH_ ds.
H\E5(z0) |s — Zo| Y

Consequently, we obtain

gotr=(+a)/a ) L/p
" ds

|s — Zg |ty

(65)  |T,Q0 — do I < C5" (/H

\Es(z0)

for some constant C' independent of §. Since Lemma 3.5 yields

aJrA/ (14«a)/
fuie = s <o

the integral in (6.5) tends to 0 as 6 1. Thus T, Q, is invertible on [P
for all ¢ sufficiently close to 1. For such 4, put S, = Q. (TAYQOK)*1

Let p=1. Fix (A\y) € I*. Let Qat1(Am) denote by

Qa+1()\m)(z) = Z A17"LZ7nnRoc-§—1(Zv Zm)

for z € H. Then Proposition 4.5 and Lemma 6.1 yield that Qn+1 :
PR b}l is bounded and T),Q+1 is bounded on I'. Now, we show
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that T,Qq+1 is invertible on [* for all § sufficiently close to 1. Let a;
denote the jth component of the sequence (T,Qa4+1 — dat1,41) (Am).
Differentiating term by term yields

a; = 20T DIQu i1 (M) (2) = datin A

+a+t
= Zn o Z AmZmn D7 Ra+1(zjazvrz)
m#j

Thus we have from Lemma 3.6 and Lemma 3.1 that

a+y

_ ZmnWy
Z o] < 67" Z Z A 2 — | +otr+l dw
m j#£m ES/Q(ZJ') m
+
z U)
<05 S Al mn dw
; m I\ B () |Zm _w|n+a+’7+l

a—+y

w
%: H\Es(20) |ZO — w|n+o¢+—y+1

where the constant C'is independent of §. Since a4+~ > —1, Lemma 3.5
yields

a—i—v
/ |Zo — w|n+a+7+1 dw < oo.

Thus, T,Qq+1 is invertible on [* for all § sufficiently close to 1. For
such §, put S, = Qa+1 (TVQQ_H)_l. The proof is complete. o

7. Interpolation on B ‘and EQ, In this section we consider the
interpolation theorems for B and By. Let v > 0, and let {z,} be a
sequence in H. For u € B, define

(7.1) fyu = (20D u(zm)).
Then (2.10) implies
T,:B— 1"

is bounded. If T (B) =1°°, {z,} is called a B- interpolating sequence

of order ~. Also, if T (Bo) = Co, {zm} is called a By-interpolating
sequence of order 7.
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__The following proposition shows that separation is also necessary for
By interpolation. Since we have Lemma 5.2, the proof of the following
proposition is the same as that of Proposition 5.6 in [4].

Proposition 7.1. Let v > 0. Every g—interpolating sequence of
order 7y is separated. Also, every By-interpolating sequence of order -y
s separated.

Having Proposition 5.1, we can modify the proof of Theorem 6.5 to
the following theorem.

Theorem 7.2. Let v > 0. Then there exists a positive number §
with the following property. Let {z,} be a d-separated sequence with
6 > g, and let T . B — 1°® be the associated linear opemtor as in
(7.1). Then there ezists a bounded linear operator S 1° — B such
that T. Sv is the identity on [°°. Moreover, S maps CO into BO In

particular, {z,} is both a B—mterpolatmg and Bo—mterpolatmg sequence
of order 7.
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