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NEW CONGRUENCES FOR ODD
PERFECT NUMBERS

LUIS H. GALLARDO AND OLIVIER RAHAVANDRAINY

ABSTRACT. We present some new congruences for odd
perfect numbers improving on a congruence modulo 2 of Ewell.

1. Introduction. Our notation is classical. First of all, for a
positive integer n we denote by σ(n) the sum of all positive divisors of
n; secondly we say that such an integer n is perfect if one has

2 n = σ(n).

The main result of Ewell’s paper [2] is the following. If n is an odd
perfect number, then

(1) n2 +
(n−1)/2∑

k=1

σ(2k − 1) σ(2n − (2k − 1)) ≡ 0 (mod 2).

The proof is intricate. It turns out that there is a simple proof
of this result, see Theorem 2.6. It is a consequence of an easy
counting argument and some formulae from Touchard [5] involving the
“convolution” sums

Sr(n) =
n−1∑
k=1

kr σ(k) σ(n − k)

This will be the first part of our paper.

In the second part, we will show that there is a simple relation
between Ewell’s sum as well as the “odd part” of the convolution sums
for r = 0, when computed over 2n instead of over n, i.e.,

S∗
0 (2 n) =

2 n−1∑
k=1

k odd

σ(k) σ(2 n − k)
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and the sums of the kth powers of divisors function

σk(n) =
∑
d |n

d k

for k ∈ {1, 3}.
These relations together with some classical formulae from Liouville,

Glaisher, Lehmer and Touchard lead to new congruences modulo 32,
see Corollary 3.7, that generalize Ewell’s result.

2. Some results on the Srs. We denote, as usual, by N the set of
nonnegative integers. For n, r ∈ N with n ≥ 2, put

Sr(n) =
n−1∑
k=1

kr σ(k) σ(n − k).

Now, using the well known lemma:

Lemma 2.1. σ(n) is odd if and only if either n is a square or it is
twice a square.

We get the following result:

Proposition 2.2. If n is odd and if it is not a square, then for
r ∈ N, Sr(2n) ≡ 0 (mod 2).

Proof.

Case r = 0. We clearly have:

S0(2n) = 2
n−1∑
k=1

σ(k) σ(2n − k) + σ(n) σ(n).

To conclude, note that σ(n) is even, see Lemma 2.1.

Case r ≥ 1. It is enough to establish the case r = 1.
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Let Λ0 be the set {k ∈ [1, 2n − 1] ∩ N / k, σ(k) and σ(2n − k) are
odd}.

We have S1(2n) ≡ ∑
k∈Λ0

1 ≡ card (Λ0) (mod 2).

By Lemma 2.1, there exist a, b, α, β ∈ N such that (k = a2 or
k = 2α2) and (2n − k = b2 or 2n − k = 2β2).

The condition on n implies that : k ∈ Λ0 if and only if k and 2n − k
are both odd squares. So that 2 n is a sum of two distinct squares.

Set Λ1 = {(a2, b2) ∈ N2 / 2n = a2 + b2}, f : Λ0 → Λ1, g : Λ1 → Λ0

such that f(k) = (k, 2n − k) and g(a2, b2) = a2. These two maps are
bijections with g = f−1. Thus, we have card (Λ0) = card (Λ1).

Moreover, (a2, b2) ∈ Λ1 ⇒ [(b2, a2) ∈ Λ1 and a2 �= b2].

It follows that S1(2n) ≡ card (Λ0) ≡ card (Λ1) ≡ 0 (mod 2).

Let r(n) be the cardinality of the set {(a, b) ∈ Z2 / 2n = a2+b2}. For
an integer s =

∏
p|s

p prime

pjp , consider the two multiplicative functions:

τ (s) =
∑
d|s

1, μ(s) =
∏
p|s

p≡1 (mod 4)

pjp .

We have the following classical lemma, see [3]:

Lemma 2.3. For all positive integers n

r(n) = 4 τ (μ(n)).

Proposition 2.4. If for some nonnegative integer k, n = p4k+1S2

where p ≡ 1 (mod 4) is a prime number not dividing S, and if S is odd
then

Sr(2n) ≡ 0 (mod 2), for all r ≥ 1.

Proof. As in 2.2, it is enough to prove the case r = 1.
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We denote Λ2 = {(a, b) ∈ Z2 / 2n = a2 + b2} and r(2n) = card (Λ2).
Noting that (a2, b2) ∈ Λ1 if and only if (± a, ± b) ∈ Λ2, we see that
r(2n) = 4 card (Λ1).

Set S =
∏

q|S qjq ; thus, since n = p4k+1S2, we have:

μ(2n) = μ(2) μ(p4k+1)
∏
q|S

μ(q2jq)

which implies

τ (μ(2n)) = τ (p4k+1)
∏
q|s

q≡1 (mod 4)

τ (q2jq) = (4k + 2)
∏
q|s

q≡1 (mod 4)

(2jq+1).

Hence, τ (μ(2n)) ≡ 2 (mod 4). We conclude, by Lemma 2.3 that

S1(2n) ≡ card (Λ0) ≡ card (Λ1) =
r(2n)

4
= τ (μ(2n)) ≡ 0 (mod 2).

Proposition 2.5. If n is odd and if it is not a square, then
S2(2n) ≡ σ(n) (mod 4).

Proof. We use the following Touchard’s relation, see [5]:

n2(n − 1)
6

σ(n) = 3n2S0(n) − 10S2(n), ∀n ∈ N \ {0, 1}.

By 2.1 and 2.2, σ(n) and S2(2n) are both even. Set σ(n) = 2m and
S2(2n) = 2N . Applying the relation above to 2n, we have:

n2(2n − 1)m = 3n2S0(2n) − 5N.

But, S0(2n) is even, see (2.2), so that one has: m ≡ N (mod 2). The
proposition follows.

We are now ready to prove Ewell’s result given in formula (1) above
and to show a new congruence satisfied by odd perfect numbers.
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Theorem 2.6. If n is an odd perfect number, then

Ew ≡ 1 ≡ Nw (mod 2)

where

Ew =
(n−1)/2∑

k=1

σ(2k − 1) σ(2n − (2k − 1))

and

Nw =
n∑

k=(n+1)/2

σ(2k − 1) σ(2n − (2k − 1))

Proof. Observe that n can be written as n = p4k+1S2 for some
nonnegative integer k where p ≡ 1 (mod 4) is a prime and gcd(p, S) =
1. We have: n ≡ 1 (mod 4) and n is not a square. Hence by
Proposition 2.4, S1(2n) ≡ 0 (mod 2).

But, modulo 2 we have:

S1(2 n) =
2 n−1∑
k=1

k σ(k) σ(2 n − k)

≡
2 n−1∑
k=1

k odd

σ(k) σ(2 n − k)

≡
n∑

k=1

σ(2k − 1) σ(2 n − (2k − 1))

≡
(n−1)/2∑

k=1

σ(2k − 1) σ(2 n − (2k − 1))

+
n∑

k=(n+1)/2

σ(2k − 1) σ(2 n − (2k − 1))

so that we obtain

S1(2 n) ≡ Ew + Nw (mod 2).
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Set

Λ3 =
{
(a2, b2) ∈ ([1, n − 2] × [n + 2, 2n − 1]) ∩ N2 / 2n = a2 + b2

}
,

Λ4 =
{
(a2, b2) ∈ ([n, 2n − 1] × [1, n]) ∩N2 / 2n = a2 + b2

}
,

Λ = Λ3 ∪ Λ4 (disjoint union).

We have, as in the proof of Proposition 2.2:

Ew ≡
∑

(a2, b2)∈Λ3

1 = card Λ3 (mod 2),

Nw ≡
∑

(a2, b2)∈Λ4

1 = card Λ4 (mod 2).

Moreover, by the parity of a, b and by the fact that n is not a square,
we have:

(i) (a2, b2) ∈ Λ ⇒ (a2, b2 /∈ {n − 1, n, n + 1}),
(ii) (a2, b2) ∈ Λ ⇒ (a2 �= b2).

So:

Λ3 ⊂ [1, n − 2] × [n + 2, 2n − 1], Λ4 ⊂ [n + 2, 2n − 1] × [1, n − 2],

and
(a2, b2) ∈ Λ3 if and only if (b2, a2) ∈ Λ4.

Thus, it is sufficient to show that:

Nw =
n∑

k=(n+1)/2

σ(2k − 1) σ(2n − (2k − 1)) ≡ 1 (mod 2),

i.e., to show that card (Λ4) ≡ 1 (mod 2).

But (see proof of Proposition 2.2),

2 card (Λ4) = card (Λ3)+card (Λ4) = card (Λ) = card (Λ1) ≡ 2 (mod 4).

So, we are done.

The next proposition presents our first improvement on Ewell’s result.
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Proposition 2.7. If n is an odd perfect number, then:

Ew ≡ Nw (mod 4).

Proof. We have seen that:

⎧⎨
⎩

S2(2n) ≡ Ew + Nw ≡ 0 (mod 2),
Ew ≡ Nw ≡ 1 (mod 2),

and S2(2n) ≡ 2 (mod 4), see 2.5.

Furthermore,

S2(2n) ≡
2 n−1∑
k=1

k odd

σ(k) σ(2 n − k) ≡ Ew + Nw (mod 4).

The proposition follows.

3. Some classical formulae as well as some new congruences
for odd perfect numbers. First of all, we recall some classical results
from Liouville, Glaisher, Lehmer and Touchard. One of Touchard’s
formulae was already used in the proof of Proposition 2.5.

Lemma 3.1. Let n > 0 be an integer. Then we have

(a) n2 (n − 1) σ(n) = 18 n2 S0(n) − 60 S2(n).

(b) n3 (n − 1) σ(n) = 48 n S2(n) − 72 S3(n).

(c) S∗
0 (2 n) = (1/8) (σ3(2 n) − σ3(n)).

(d) 24 (2 S3(n) − n S2(n)) = n3 (σ3(n) − (2 n − 1) σ(n)).

Proof. The first two formulae (a) and (b) appear in [5].

Formula (c) is from Glaisher [1, p. 300], while the case n odd is from
Liouville [1, p. 287].

Formula (d) is due to Lehmer [4, p. 680]. We correct here a misprint
in the exponent of n in the original formula.
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First of all we show some simple relations that hold between S∗
0(2 n),

σ3(n), σ(n), Ew and Nw:

Lemma 3.2. Let n > 1 be an odd integer. Then we have

S∗
0(2n) = 2 Ew + (σ(n))2 = Ew + Nw = σ3(n)

Proof.

S∗
0 (2 n) =

2 n−1∑
k=1

k odd

σ(k) σ(2 n − k)

=
n−2∑
k=1

k odd

σ(k) σ(2n − k) +
2n−1∑

k=n+2
k odd

σ(k) σ(2n − k) + (σ(n))2

= 2
n−2∑
k=1

k odd

σ(k) σ(2n − k) + (σ(n))2

= 2
(n−1)/2∑

j=1

σ(2j − 1) σ(2n − (2j − 1)) + (σ(n))2

= 2 Ew + (σ(n))2.

S∗
0 (2n) = Ew + Nw : see proof of Theorem 2.6.

S∗
0 (2n) = σ3(n) : by Lemma 3.1 part (c) since n is odd.

An immediate consequence is the following:

Corollary 3.3. If n is an odd perfect number, then

Ew =
σ3(n) − 4 n2

2
, Nw =

σ3(n) + 4 n2

2
.

We now state a key proposition to obtain our congruences:
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Proposition 3.4. If n ≡ 1 (mod 4), then:

S2(n) ≡ S3(n) (mod 8).

Proof.

S2(n) − S3(n) =
n−1∑
k=1

(k2 − k3) σ(k) σ(n − k).

We note that:

if l ≡ 3 (mod 4), then l is not a square and σ(l) ≡ 0 (mod 4),

if l ≡ 5 (mod 8), then l is not a square and σ(l) is even.

Thus, in the above sum:

if k is even and if n − k ≡ 1 (mod 4), then k ≡ 0 (mod 4) and
(k2 − k3) ≡ 0 (mod 16),

if k is even and if n− k ≡ 3 (mod 4), then (k2 − k3) ≡ 0 (mod 4) and
σ(n − k) ≡ 0 (mod 4),

if k ≡ 3 (mod 4), then (k2 − k3) is even and σ(k) ≡ 0 (mod 4),

if k ≡ 1 (mod 8), then (k2 − k3) ≡ 0 (mod 8),

if k ≡ 5 (mod 8), then (k2 − k3) ≡ 0 (mod 4) and σ(k) is even.

So, we are done.

An easy consequence is:

Proposition 3.5. If n is an odd perfect number, then:

S2(n) ≡ 5
n − 1

4
(mod 8).

Proof. By Touchard’s formula, in Lemma 3.1 part (b), we obtain:

n4 n − 1
4

− 6 n S2(n) + 9 S3(n) = 0.
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So that, 6 S2(n) − S3(n) ≡ (n − 1)/4 (mod 8).

It follows, by Proposition 3.4, that:

5 S2(n) ≡ n − 1
4

(mod 8),

or, equivalently:

S2(n) ≡ 5
n − 1

4
(mod 8).

Using Lehmer’s formula in Lemma 3.1 part (d) we obtain our second
corollary:

Corollary 3.6. If n is an odd perfect number, then:

σ3(n) ≡ 4n − 2 (mod 64).

Proof. By Propositions 3.4 and 3.5 we have, modulo 8:

2S3(n) − nS2(n) ≡ (2 − n)S2(n) ≡ nS2(n) ≡ 5n
n − 1

4
.

So that, we obtain from Lehmer’s formula in Lemma 3.1 part (d), the
following congruence modulo 64:

30n(n − 1) ≡ n3
(
σ3(n) − 4n2 + 2n

)

n13 . 30n(n − 1) ≡ σ3(n) − 4n2 + 2n

n5 . 30n(n − 1) ≡ σ3(n) − 4n2 + 2n.

Thus:

σ3(n) ≡ 30n7 − 30n6 + 4n2 − 2n (mod 64)
≡ 56n2 + 52n + 22 (mod 64)
≡ 4n − 2 (mod 64).

Our main new congruences now follow:

Corollary 3.7. If n is an odd perfect number, then:

Ew ≡ −2n + 1 (mod 32),
Nw ≡ 6n − 3 (mod 32).
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