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ABSTRACT. Although there is no doubt, today, what is the
proper definition of compactness for a subset of a topological
space X, the corresponding definition for a family of subsets of
X is no longer evident. Two answers, arguably, are provided
via the notion of compactoidness. The latter notion is the
leitmotif of the topical survey below.

0. Introduction. The notion of compactoidness, in the form of a
‘total net’, can be traced back at least to 1969, see Pettis [19]. There,
the total nets (of sets) were defined, a few facts (including a generalized
version of Tikhonov product theorem) about them were proven and
several interesting applications were indicated. Without any deeper
analysis, essentially the same notion also made an appearance in the
1970 papers by Topsøe (as a ‘compact net’ [22]) and Wilker (as a
‘compact filter’ [26]), as well as in a 1976 paper by Kats (‘compact
filter’ [11]).

It seems that it was Vaughan who first realized the importance of
Pettis’ contribution. He discusses the net versus filter approach in
[24], the Proceedings of a Conference in Memphis, and gives there
(some of the proofs appeared later in [25]) the basic characterization:
in a regular space a filter is compactoid if and only if it aims at its
adherence which is compact.

It looks as if not too many mathematicians read proceedings of
conferences . . . . Compactoid filters, i.e., total filters of Pettis were
then rediscovered again by Penot, and by Dolecki and Lechicki, see [7,
18]. In both cases, characteristically, the (re)discovery was motivated
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556 I. LABUDA

by applications, especially abundant in the paper by Penot. This is not
at all surprising, taking into account the central role of compactness in
analysis. However, applications will rarely be mentioned in this survey:
we focus on the internal structure of the notion under scrutiny.

Most of the subsequent development is devoted to research in conver-
gence spaces and the results are quite scattered throughout the litera-
ture; let us mention [3 5, 15 17]. Although the just-quoted paper [5]
by Dolecki, Greco and Lechicki, where filters compactoid relative to a
set were defined, could be taken as our starting point here, we restrict
attention to topological spaces only.

On the other hand, we try to organize the existing material very
carefully and with attention to detail. A measure of success attained in
this direction, we think, is a general feeling of easiness with which most
of the results are achieved. Not without a price, though: the number
of steps that lead to important theorems may seem large.

We start with the general scheme of compactoidness defined by an
arbitrary class of filters or overcovers, say D. This approach, found
in a more primitive form already in [5], compare Lemmas 3.5 and 3.6
there, gives a unification.

Once a type, determined by D, of compactoidness of a family of sets
B relative to another family of sets (say A) is defined, we can consider
D-selfcompactoidenss of B whenever B = A. D-selfcompactoidness is
a type of compactness property for a family B and in many papers,
[6, 9, 20, 23], D-selfcompactoid families are indeed called D-compact.
However, in order to recover the classical notion of compactness, a
slightly weaker notion, that of a family B being nearly D-compactoid
relative to another family A, is more appropriate. B is called D-compact
if it is nearly D-selfcompactoid. The latter notion, together with D-
selfcompactoidness, are the notions sought for in the Abstract above.
A short description of the paper follows.

The results which can be treated in full generality, that is, with
respect to more or less arbitrary classes of filters or overcovers, are
discussed first. Some of them may be of independent interest but
mainly this is a unified preparation for what follows.

In Sections 3 and 4, we concentrate on two fundamental cases: that
of ℵ-compactoidness (which can be defined by arbitrary overcovers of
cardinality less than ℵ) and that of ℵ-midcompactoidness (which can
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be defined by closed overcovers of cardinality less than ℵ). Thus, for
instance, a nonvoid family B of nonvoid subsets of a topological space
X is midcompactoid if it is ℵ-midcompactoid for every ℵ or, which is
the same, whenever for every closed overcover of X there exists a set
B ∈ B with a finite subcover.

In Section 5, versions of the Alexander subbase theorem are given.
Corollary 5.6 generalizes the classical statement to the case of a filter
base of sets. Corollary 5.4 is its analog in the case of midcompactoidness
and seems to be new even in the classical framework.

1. Compactoidness. Let X be a topological space and P ⊂ X. We
denote P the closure of P , P ◦ the interior of P and P c = X \P . Let P
be a family of subsets of X. Its family of closures P is {P : P ∈ P}, its
family of interiors P◦ is {P ◦ : P ∈ P} and its family of complements
Pc is {P c : P ∈ P}. Let P be a class of families P in X. Its class of
closures P is {P : P ∈ P}, its class of interiors P◦ is {P◦ : P ∈ P}
and its class of complements Pc is {Pc : P ∈ P}. We will never regard
the families of sets as subsets in the hyperspace, so our notation will
not lead to any confusion. As an attentive reader must have already
noticed, we reserve script for families of sets, and bold for classes, that
is, sets of families of sets.

Let H be another family of subsets of X.

We write P#H and say that P meshes with H if P ∩H �= ∅ for each
P ∈ P and each H ∈ H.

We write P ≥ H and say that P is finer than H if for each H ∈ H
there exists P ∈ P such that P ⊂ H. Note that if P is a filter base
finer than H, then P#H.

P is a refinement of H if for each P ∈ P there exists H ∈ H such
that P ⊂ H. Note that P is a refinement of H if and only if Pc ≤ Hc.

We reserve B to denote a fixed, but otherwise arbitrary, nonvoid
family of nonvoid subsets of X. In many situations, however, it will
be necessary to assume additionally that B is downward directed by
inclusion, i.e., that B is a filter base. This stronger assumption will
always be mentioned explicitly.
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The adherence of B, adhB, is defined by the formula

adhB =
⋂

B =
⋂

{B : B ∈ B};

the term cluster set of B is also used, e.g., by Bourbaki himself in the
English translation of [1].

The limit set of B, limB, is the set of points to which B converges,
that is,

limB = {x ∈ X : B ≥ N (x)}
where N (x) denotes the filter of neighborhoods of x. We say that x is
the limit of B, and write limB = x, only if unicity is guaranteed, i.e.,
if limB = {x}. However, in this paper Hausdorffness is rarely needed
and, accordingly, the notions of compactness and regularity (each point
x has a base of closed neighborhoods) will not presuppose it, compare
Kelley [12].

Let A ⊂ X. As in [5], a family P of subsets of X is an overcover of
A, if

A ⊂
⋃

{P ◦ : P ∈ P}.
Let P be a class of overcovers of A. Suppose B has the following
property: for each P ∈ P, there exist B ∈ B and a finite subcover
P0 ⊂ P of B, i.e., we postulate the existence of P0 = {P1, P2, . . . , Pn}
such that Pi ∈ P and B ⊂ ⋃n

i=1 Pi.

Note that in the just stated property of B, we could, in a sense for
free, also postulate the family P to be an ideal of sets, i.e., to be stable
by subsets and by finite unions. Indeed, if it were not, we could enlarge
it into one and the existence of a finite subcover of B chosen from the
ideal guarantees the existence of a subcover chosen from the original
overcover.

Q is an ideal if and only if the family of its complements {F = Qc :
Q ∈ Q} is a filter. Thus, we expect some sort of duality between
statements involving covers and those involving filters. The following
is due to Dolecki, [2, Theorem 2.1]; it will be convenient to refer to it
as cover-filter duality (CF-duality).

Let P be a class of overcovers of A, and denote by P� the class of all
(possibly degenerate) filters generated by the elements of Pc.
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CF-duality. The following conditions are equivalent for B.

(F#) For each F ∈ P� such that F#B, A ∩ adhF �= ∅, that is, F
has a cluster point in A.

(C1) For each P ∈ P overcovering A, there exist B ∈ B and a finite
subfamily P0 ⊂ P such that B ⊂ ⋃P0.

We say that B is P-compactoid, respectively P�-compactoid, relative
to A if the condition (C1), respectively (F#), is satisfied. To streamline
the language, we adopt a few conventions. When we say that B is
D-compactoid relative to A without indicating whether cover- or filter-
compactoidness is dealt with, we mean that the class D can be a class of
either filters or overcovers and, in the first case, ‘compactoid’ refers to
filter-compactoidness; in the second case, ‘compactoid’ refers to cover-
compactoidness. The corresponding statement is then meant to apply
to both types of compactoidness. If B is D-compactoid relative to A
and D is the class of all overcovers or filters, then ‘D’ is dropped and we
say that B is compactoid relative to A. Further, if B is D-compactoid
relative to X, then ‘relative to X’ is dropped. Thus, for instance, B is
compactoid means that for every overcover P of X there exists B ∈ B
and a finite subfamily P0 of P with B ⊂ ∪P0 or that the equivalent
condition involving filters is satisfied.

We note that the set A appearing in the definition cannot be empty.
This is, of course, unless the class P� in the condition (F#) is empty
which would mean that there is no compactoidness to speak of in the
first place.

We also consider D-compactoidness relative to a family of subsets of
X. Namely, if A is such a family, then B is said to be D-compactoid
relative to A if B is D-compactoid relative to A for each A ∈ A. If
A = B, then B is said to be D-selfcompactoid.

Naturally, a nonempty subset E ⊂ X is called D-compactoid relative
to A if the family {E} consisting of one set E is so. Most important
special cases occur when A = X, A = E or A = E. In the first case E is
D-compactoid (because ‘relative to X’ was dropped), in the second case
E is D-compactoid relative to its adherence and, finally, in the third
case E is D-selfcompactoid. In the overcover case, the latter means that
for each overcover P ∈ P of A, there exists a finite subfamily P0 ⊂ P
such that A ⊂ ∪P0. In the filter case, it means that for each filter
F ∈ P� meshing with A, F has a cluster point in A.
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Remark. In the original terminology of [5], B was compactoid ‘with
respect to A.’ In more recent papers there is a tendency to replace ‘with
respect to A’ by ‘in A.’ This, strictly speaking, is abusive because not
every cluster point has to be in A. This is one reason for which we
try ‘relative to A,’ a term shorter than the original ‘with respect to A.’
Another reason is the symmetry with the following definition.

A subset E ⊂ X is called countably compact relative to A if every
sequence (xn) in E has a cluster point in A (and ‘countably compact
relative to X’ is shortened to relatively countably compact, [14]).

1.1 Theorem. Let B be D-compactoid relative to A. If A ⊆ ∩B,
then both B and A are D-selfcompactoid.

Proof. We give a proof in the case D is a class of filters. As A ⊂ B
for each B in B, it is trivial that B is D-selfcompactoid. Let D ∈ D be
a filter meshing with A. As A ⊂ ∩B, D meshes with B. By condition
(F#), D has a cluster point in A.

Remarks 1. A predecessor to the above statement, for compactoid
filters, is essentially proven already in [18, Proposition 14] although
the statement of the proposition there is unnecessarily restricted to the
case of filters having a base consisting of closed sets (which are called
regular filters in [18] and [5]).

2. In the investigations concerning the active boundary of upper semi-
continuous set valued maps, see, e.g., [14], cluster sets which are strict
subsets of the adherence are used in an essential way. This, together
with Section 1.3 below, motivates the present form of the theorem
involving A ⊂ ∩B.

We write B � A and say that B aims at A if B is finer than the
filter of neighborhoods of A, that is, if for each neighborhood V of
A there exists B ∈ B such that B ⊂ V . The following proposition,
for compactoid filters, can be found, e.g., in [18, Proposition 13(c)].
However, it seems that corresponding statements for nets of values
of an upper semi-continuous set-valued map have been known much
earlier, see, e.g., [21, Lemma].
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1.2 Proposition. Let P be a class of open overcovers of A, and let
A be P-selfcompactoid. If B aims at A, then B is P-compactoid relative
to A.

Proof. Let P ∈ P. By assumption on A, there exists a finite subcover
P0 of P such that A ⊂ ∪P0. As P is an open cover, ∪P0 is a
neighborhood of A and, as B � A, there is a B ∈ B such that B ⊂ ∪P0.

Remark. Since P ∈ P are assumed to be open, our overcovers here are
just open covers. Then, as easily seen, P-selfcompactoidness amounts
to P-compactness, to be defined below.

1.3 Theorem. Let C be a class of closed overcovers of A, and let
B be C-compactoid relative to A. Then B and adhB are C-compactoid
relative to A. If A ⊆ adhB, then B is C-compactoid relative to its
intersection and A is C-selfcompactoid.

Proof. Let P ∈ C. By condition (C1), there exists B ∈ B and a finite
subfamily P0 of P such that B ⊂ ∪P0. As ∪P0 is closed, B ⊂ ∪P0.
This shows that adhB and B are C-compactoid relative to A. Now,
as A is contained in the intersection of B, Theorem 1.1 applied with
B = B implies the theorem.

Remark. Of course, the most important case of Theorem 1.1, respec-
tive 1.2, is A = ∩B, respectively A = ∩B. But see Remark 2 above.

1.4 Proposition. Let A1, A2 be families of subsets of X such that
the P-overcovers of A2 refine the P-overcovers of A1 in the sense that
for each A2 ∈ A2 and P ∈ P overcovering A2 there exists A1 ∈ A1

overcovered by P. If B is P-compactoid relative to A1, then it is so
relative to A2.
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Proof. Let A2 ∈ A2, and let P ∈ P be an overcover of A2. By
assumption, P is an overcover of A1 for some A1 ∈ A1. As B is P-
compactoid relative to A1, there is a finite subfamily P0 of P and B ∈ B
such that B ⊂ ∪P0. This shows that B is P-compactoid relative to
A2.

Remark. Let O be the topology of X and A a family of subsets of X.
Denote O(A) = {O ∈ O : A ⊂ O} and O(A) = ∪{O(A) : A ∈ A}. We
note that the condition on A1 and A2 is satisfied if and only if O(A2)
is a refinement of O(A1).

Overcovers provide a scheme which permits the unified approach to
various notions of compactoidness. However, in topology the traditional
overcovers are open covers. It will, therefore, be of importance to
identify the arising notions in terms of open covers. The following
two lemmas will be helpful.

1.5 Lemma. Let P be a class of overcovers of a set A ⊂ X such
that P◦ ⊂ P. The following are equivalent.

(i) B is P-compactoid relative to A.

(ii) B is P◦-compactoid relative to A.

1.6 Lemma. Let P be a class of closed overcovers such that P◦ ⊂ P.
Then the following are equivalent.

(i) B is P-compactoid relative to A.

(ii) B is P◦-compactoid relative to A.

2. Near compactoidness. Let B and A be two families of subsets
of X, and let Q be a class of filters (on X). We say that a filter base
B is nearly Q-compactoid relative to A, if

(F>) Q ∈ Q, Q ≥ B =⇒ adhQ#A.
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Remark. Formally, we could state the above definition, as in the case
of Q-compactoidness, for a family B. However, it may be observed
that, whenever a filter finer than B exists, B is forced to be a filter
subbase.

B is said to be Q-compact, if it is it nearly Q-selfcompactoid, that is,
if

Q ∈ Q, Q ≥ B =⇒ adhQ#B.

As just noted, Q-compactness is defined for filter bases only. Q-self-
compactoidness, which can be written

Q ∈ Q, Q#B =⇒ adhQ#B,

makes sense for any family B. The difference between the two is most
visible when B equals {E}, where ∅ �= E ⊂ X. Q-compactness of E
means, as expected, that any Q-filter on E has a cluster point in E.
On the other hand, Q-selfcompactoidness of E involves, by its very
definition, Q-filters that mesh with E. These filters live, so to say, in
the surrounding space X and therefore Q-selfcompactoidness is a more
stringent requirement on E which, however, is not intrinsic. We are,
of course, interested when the two notions coincide on filter bases or,
at least, on subsets of X.

A filter base B is said to be Q-refinable if, for each Q ∈ Q meshing
with B, there exists F ∈ Q which is finer than both Q and B. It
is clear that, for such filter bases near Q-compactoidness and Q-
compactoidness coincide. Thus

2.1 Proposition. Let B be a Q-refinable filter base. Then B is
Q-selfcompactoid if, and only if, it is Q-compact.

An obvious consequence is, that B is selfcompactoid if and only if
it is compact. This, because any filter base is refinable with respect
to the class of all filters. Some other examples will appear below,
but we will not delve too much into that in this article. Even in the
case of subsets of X, although for any class D of open overcovers the
coincidence trivially holds, the case of general D is non-obvious.
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Let D = D(X) be a class of filters on X. If E ⊂ X, then D(E) is
the class D defined on the (sub)space E. We do not exclude the case
when D(E) could be the empty class. Let (P ) denote a property that
a filter base may or may not have. A filter base having the property
(P ) is also said to be a (P )-base (the same way a filter belonging to D
is called a D-filter).

D is called locally determined, by a property (P ), if a filter D belongs
to the class provided it admits a base having property (P ). Such a
class D is, moreover, hereditary, if

(1) If E ⊂ X and D ∈ D(X) such that D#E, then D ∩ E ∈ D(E);

(2) If H is a (P )-base on E, then there exists a (P )-base H′ on X
such that H′ ∩ E ≥ H.

2.2 Proposition. Suppose D is a class of filters on X which is locally
determined and hereditary. Let E ⊂ X. Then E is D-selfcompactoid
if and only if E is D-compact.

Proof. ‘If’. Let D ∈ D be meshing with E. By (1), F := D ∩ E is a
filter on E belonging to D(E). Hence F has a cluster point, say x, in
E. As is easily seen, x is also a cluster point of D.

‘Only if’. Let D be a filter in D(E). It is generated by a base H
having property (P). By (2), there exists a base H′ on X such that the
filter it generates, call it D′, is in D(X). As E is D-selfcompactoid,
the filter D′ has a cluster point, say x, in E. Noting that D′ induces
on E a filter which is finer than D, we see that x is a cluster point of
D.

3. ℵ-compactoidness. Let ℵ be a cardinal number. We denote by
P(ℵ) the class of all overcovers such that card {P : P ∈ P} < ℵ for
each P ∈ P(ℵ) and by F(ℵ) the family of all filters F such that each
F can be generated by a base of cardinality less than ℵ.

CF-duality. Let A ⊂ X. The following conditions are equivalent.

(F#(ℵ)) If F ∈ F (ℵ) and F#B, then F has a cluster point in A

(adhF ∩ A �= ∅).
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(C1 (ℵ)) If P ∈ P (ℵ) overcovers A, then there exist a finite
subfamily P0 ⊂ P and B ∈ B such that B ⊂ ∪P0.

(C2(ℵ)) For each open cover V of A of cardinality less than ℵ
there exist a finite subfamily V0 ⊂ V and B ∈ B
such that B ⊂ ∪V0.

Indeed, F(ℵ) = P�(ℵ). The equivalence C1(ℵ) ⇔ C2(ℵ) follows from
Lemma 1.5.

• B is said to be ℵ-compactoid relative to A if it satisfies one (hence
all) of the above conditions.

It is customary, and we will do that, to refer to ℵ0-compactoidness
as finite compactoidness, and to ℵ1-compactoidness as the countable
one. Also, one denotes by P1 the class P(ℵ0), by Pω the class P(ℵ1).
Again, it is customary to denote by F1 the family F(ℵ0) of principal
filters and use Fω instead of F(ℵ1).

If ℵ is dropped in the above, we obtain the conditions (F#), (C1) and
(C2) characterizing compactoidness relative to A. It is clear that B is
compactoid if it is ℵ-compactoid for every ℵ.

3.1 Proposition. If B is finitely compactoid relative to A and A is
ℵ-compact, then B is ℵ-compactoid relative to A.

Proof. Indeed, B is finitely compactoid relative to A if and only if B
aims at A. The condition (C2(ℵ)) allows the use of open covers. Apply
Proposition 1.2.

Remark. Our terminology is chosen in such a way that ‘full prop-
erties,’ e.g., being compactoid, follow from the corresponding ‘ℵ-
properties,’ being ℵ-compactoid, by dropping the ℵ. This is consis-
tent with the fact that an object has the ‘full property’ if it has the
‘ℵ-property’ for every ℵ, and also with the fact that, if an object is
fixed, then the ‘full property’ is nothing else than the ‘ℵ-property’ for
a sufficiently large ℵ. An obvious consequence is that a statement, like
Proposition 3.1, which is valid for every ℵ, implies automatically the
‘full’ statement. For instance, in the case of Proposition 3.1, we have
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If B is finitely compactoid relative to A and A is compact, then B is
compactoid relative to A.

For this reason, below, the ‘full’ statements which are obtained ‘by
dropping the ℵ’ are treated as self-evident and will not be formulated.

The conditions C2(ℵ), 1.1 and 3.1 combine into

3.2 Theorem. B is ℵ-compactoid relative to its intersection if and
only if B aims at ∩B, which is ℵ-compact.

Following [17], B is closed if adhB = ∩B. In the case of a filter base
B, the ‘only if’ part of the ‘full’ statement in the next corollary is [17,
Theorem 2.5].

3.3 Corollary. Suppose B is closed. Then B is ℵ-compactoid relative
to its intersection if and only if B aims at its adherence which is ℵ-
compact.

4. ℵ-midcompactoidness. Denote by C(ℵ) the class of all closed
overcovers such that card {C : C ∈ C} < ℵ for each C ∈ C(ℵ), and by
G(ℵ) the family of all filters G ∈ C�(ℵ), that is, of those filters which
admit a base of cardinality less than ℵ consisting of open sets.

CF-duality. Let A ⊂ X. The following conditions are equivalent.

(F ◦
#(ℵ)) Each G ∈ G(ℵ) meshing with B has a cluster point in A.

(C1(ℵ)) For each C ∈ C(ℵ) overcovering A, there exist B ∈ B
and a finite subfamily C0 ⊂ C such that B ⊂ ∪C0.

(C2(ℵ)) For each open cover V of A of cardinality less than ℵ, there
exist B ∈ B and a finite subfamily {V1, V2, . . . , Vn} ⊂ V
such that B ⊂ ∪n

i=1V i.

The equivalence of the last two conditions follows from Lemma 1.6.
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• B is said to be ℵ-midcompactoid relative to A if it satisfies one
(hence all) of the above conditions.

So B is midcompactoid relative to A if B is C-compactoid relative to
A, where C is the class of all closed overcovers of A. As usual, B is
midcompactoid relative to A if it is ℵ-midcompactoid relative to A for
every ℵ.

Keeping our conventions intact, we refer to ℵ0-midcompactoidness
as finite midcompactoidness, and to ℵ1-midcompactoidness as the
countable one. Also, one denotes by C1 the class C(ℵ0), and by Cω

the class C(ℵ1). The notation G1 and Gω should be clear.

In the present situation, Lemma 1.6 can be given a more precise form.
Recall that an open domain, or a regular open set, is the interior of a
closed set or, equivalently, a set C ⊂ X such that C = (C)◦. Similarly,
a closed domain, or a regular closed set, is the closure of an open set
or a set C ⊂ X such that C = C◦, see, e.g., [13].

4.1 Proposition. The following conditions are equivalent.

(i) For each C ∈ C(ℵ) overcovering A there exist B ∈ B and a finite
subfamily C0 of C such that B ⊂ ∪ C0.

(ii) For each cover D of A by open domains with cardD < ℵ there
exist B ∈ B and a finite subfamily D0 of D such that B ⊂ ∪{D : D ∈
D0}.

(iii) For each open cover O of A with cardO < ℵ there exist B ∈ B
and a finite subfamily O0 such that B ⊂ ∪{O : O ∈ O0}.

(iv) For each overcover C of A by closed domains with card C < ℵ,
there exist B ∈ B and a finite subfamily C0 such that B ⊂ ∪ C0.

Proof. (i) implies (iv) is trivial.

(iv) implies (iii). Let O be an open cover of A. Then O is an
overcover of A by closed domains. Hence by (iv) there exist B ∈ B
and O1, O2, . . . , On such that B ⊂ ∪n

i=1Oi. This shows (iii).

(iii) implies (ii) is trivial.

(ii) implies (i). Let C be a closed overcover of A. Then C◦ is an
overcover of A by open domains. Hence by (ii) there exists B ∈ B and
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its finite cover {C◦
1 , C◦

2 , . . . , C◦
n}. Noting that, for each i = 1, 2, . . . , n,

C◦
i ⊂ Ci, we get B ⊂ ∪n

i=1Ci which shows (i).

The next proposition is a special case of 1.3.

4.2 Proposition. If B is ℵ-midcompactoid relative to A, then its
adherence adhB is ℵ-midcompactoid relative to A.

According to our terminology, a filter base B must be called ℵ-
midcompact, if it is nearly ℵ-selfmidcompactoid. Let us identify what
ℵ-midcompactness of a set means. If ℵ is sufficiently large with respect
to the cardinality of E, C(ℵ) = C. Hence, if X is a Hausdorff
space, the condition means that E is a H-closed subspace of X in the
terminology of Engelking [10] or absolutely closed in that of Bourbaki
[1]. The countable condition, obtained when ℵ = ℵ1, means that
E is a pseudocompact subspace of X if like, e.g., Engelking in [10],
one assumes X to be a Tychonoff space (Engelking and other authors
assume X to be a Tychonoff space in order to get the equivalence
with the known definition of pseudocompactness in terms of continuous
functions defined on E). Alternatively, if one assumes X to be merely
Hausdorff, one could call E a countably H-closed subspace.

4.3 Proposition. A subset E of X is ℵ-selfmidcompactoid if and
only if it is ℵ-midcompact.

Proof. We will use Proposition 2.2. The class D = G(ℵ) is locally
determined by the property:

(P ) G ∈ G(ℵ) provided it admits an open base of cardinality less
than ℵ.

The only fact that needs a proof is the ‘extension’ condition (2) stated
before Proposition 2.2. Let H be a (P )-base on E. For each H ∈ H
(which is open relative to E) choose an open set H ′ in X such that
H ′ ∩ E = H. Let H′ = {H ′ : H ∈ H}; it is a subbase of a filter on
X whose base is the family H′′ of finite intersections of elements of H′.
Clearly, cardH′′ < ℵ. Moreover H′′ induces H on E.
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Theorem 1.3 and Proposition 4.3 in the present context give

4.4 Theorem. If B is ℵ-midcompactoid relative to A, then so is B.
If A ⊆ adhB, then B is ℵ-midcompactoid relative to its intersection
and A is ℵ-midcompact.

The following proposition should be compared with Proposition 2.1.

4.5 Proposition. If B is finitely midcompactoid relative to A which
is ℵ-compact, then B is ℵ-midcompactoid relative to A.

Proof. Let P be a closed overcover of A with cardP < ℵ. As A is
ℵ-compact, there exists P0 = {P1, P2, . . . , Pn} such that the interiors
of Pi’s cover A. That is, A ⊂ ∪P0 and ∪P0 is a closed overcover of A.
As B is finitely midcompactoid relative to A, there is B ∈ B such that
B ⊂ ∪P0. Hence B ⊂ ∪P0.

Remark. We sometimes write B �c A and say that B clings to A if
B is finer than the filter generated by the closed neighborhoods of A,
that is, if for each open set O containing A there exists B ∈ B such
that B ⊂ O. Noting that B is finitely midcompactoid means also that
B clings to A, we could state the above proposition in a way similar to
Proposition 1.2, that is, assuming that B clings to A.

For our purposes, it will be convenient to call X of weight ℵ if it
admits a base of open sets whose cardinality is less than ℵ.

4.6 Theorem. Let X be a regular space of weight ℵ. B is ℵ-
midcompactoid relative to A (if and) only if B = {B : B ∈ B} is
compactoid relative to A.

Proof. Let B be ℵ-midcompactoid relative to A. As X is of weight ℵ,
any open cover of A contains a subcover of cardinality less than ℵ. Let
therefore C be an open cover of A which, without loss of generality, can
be assumed to be of cardinality less than ℵ, and O a base of the topology
of X, also of cardinality less than ℵ. Consider OC = {O ∈ O : O ⊂ C}
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for each C∈ C. Further, define (a refinement of C) V= ∪{OC : C ∈ C}.
It is clear that V is an open cover of A and cardV < ℵ. Applying
the condition C2(ℵ), we find B∈B and {O1, O2, . . . , On} whose union
contains B. Let Ci be an element of C for which Oi ⊂ Ci, i=1, 2, . . . , n.
Then B ⊂ ∪n

i=1 Oi ⊂ ∪n
i=1 Ci which ends the proof.

4.7 Corollary. Let X be regular of weight ℵ. The following are
equivalent.

(i) B is ℵ-midcompactoid relative to its adherence.

(ii) B aims at adhB which is ℵ-compact.

(iii) B is compactoid relative to its intersection.

4.8 Corollary. Let X be regular. The following are equivalent.

(i) B is midcompactoid relative to its adherence.

(ii) B is compactoid.

(iii) B aims at adhB which is compact.

(iv) B is compactoid.

(v) B is compactoid relative to its intersection.

Remark. As mentioned in the introduction, (ii) ⇔ (iii) is due to
Vaughan [24, 25], compare also [7, 18]. (ii) ⇔ (iv) is the corollary in
[24], compare also [4].

5. Alexander subbase theorem. Let X = (X,O) be a topological
space. A filter in O is a nonempty subfamily G ⊂ O which does not
contain the empty set, is stable under finite intersections and such that
if G ∈ G and G ⊂ H ∈ O, then H ∈ G. A filter which is a maximal
element with respect to inclusion in the family of filters in O is called
an ultrafilter in O. Note that if O = 2X , i.e., the topology is discrete,
we may drop ‘in O’ recovering the usual notion of an (ultra)filter in X.

A filter base B is said to be midrefinable if, for every filter G in O
meshing with B, there exists a filter F in O which is finer than both
G and B. It is clear that any filter base B which itself consists of open
sets is midrefinable.
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Here are a few simple facts.

(1) If G is a filter in O, then there exists an ultrafilter U in O finer
than G.

(2) Let U be an ultrafilter in O and let B be a midrefinable filter base.
If U#B, then U is finer than B.

(3) Let U be an ultrafilter in O. If x0 ∈ adhU , then x0 ∈ limU .

We consider the following conditions.

(U) Each ultrafilter F finer than B has a limit point in A

(limF ∩ A �= ∅).

(U◦) Each ultrafilter in O finer than B has a limit point in A.

5.1 Proposition. Suppose B is a midrefinable filter base. B is mid-
compactoid relative to A if (and only if ) (U◦) is satisfied.

Proof. Let F be a filter base in O meshing with B. Then, as
B is midrefinable, there exists a filter F ′ in O which is finer than
both F and B. Let F ′′ be an ultrafilter in O finer than F ′. Then
∅ �= A ∩ limF ′′ ⊂ adhF ′ ∩ A ⊂ adhF ∩ A. This shows (U◦) ⇒ (F ◦

#).

Applying the above with O = 2X and noting that midrefinability of
B is then automatic, we have

5.2 Corollary. Suppose B is a filter base. B is compactoid relative
to A if and only if (U) is satisfied.

Let S be a subbase of (the topology of) X, and denote by S the class
of all covers of A consisting of subbasic sets. A family B is said to be
S-midcompactoid relative to A if for each cover G ∈ S there exist sets
G1, G2, . . . , Gn in G and B ∈ B such that B ⊂ ∪n

i=1Gi.
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5.3 Theorem. Let B be S-midcompactoid relative to A. Then each
ultrafilter in O meshing with B has a limit point in A.

Proof. Let U be an ultrafilter in O, meshing with B, which does not
have a limit point in A.

For each x ∈ A, there exists G(x) in S such that x ∈ G(x) and G(x)
does not mesh with U . Otherwise, by (2), G(x) would belong to U and,
as finite intersections of such sets form a fundamental system of the
neighborhoods of x, the point x would be a limit point of U . Applying
the assumption of the theorem to the cover {G(x) : x ∈ A}, we find
x1, x2, . . . , xk and B ∈ B such that B ⊂ ∪k

i=1G(xi).

As G(xi)’s do not mesh with U , it follows that G = ∪n
i=1G(xi) does

not mesh with U either. Then, U being open, U ∩ G = ∅ for some
U ∈ U . This contradicts the fact that G ⊃ B ∈ B and U#B.

It is not clear to the present author what exactly are the families
B for which the conclusion of the above theorem amounts to their
midcompactoidness relative to A. However, we have

5.4. Corollary. Let B be a midrefinable filter base. If B is S-
midcompactoid relative to A, then it is midcompactoid relative to A. If
B is S-selfmidcompactoid, then it is selfmidcompactoid.

Proof. Indeed, by Theorem 5.3 the condition (U◦) is satisfied. Apply
Proposition 5.1.

By a similar, and even slightly simpler, argument, we get also

5.5 Theorem. Let B be S-compactoid relative to A. Every ultrafilter
meshing with B has a limit point in A.

5.6. Corollary. Let B be a filter base. If B is S-compactoid relative
to A, then it is compactoid relative to A. If B is S-selfcompactoid, then
it is selfcompactoid.
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Concluding, let us mention that historically the investigations of
upper semi-continuity were providing both a motivation as well as a
field of applications for the notion of compactoidness. This research
is not an exception and so some of the results obtained above found
applications in the author’s paper [14] devoted to a study of the active
boundary of upper semi-continuous set valued maps.
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