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PLANAR CUBIC POLYNOMIAL DIFFERENTIAL
SYSTEMS WITH THE MAXIMUM NUMBER

OF INVARIANT STRAIGHT LINES

JAUME LLIBRE AND NICOLAE VULPE

ABSTRACT. We classify all cubic systems possessing the
maximum number of invariant straight lines (real or complex)
taking into account their multiplicities. We prove that there
are exactly 23 topological different classes of such systems.
For every class we provide the configuration of its invariant
straight lines in the Poincaré disc. Moreover, every class is
characterized by a set of affine invariant conditions.

1. Introduction and statement of the main results. We
consider here the real polynomial differential system

(1)
dx

dt
= P (x, y),

dy

dt
= Q(x, y),

where P, Q are polynomials in x, y with real coefficients, i.e., P, Q ∈
R[x, y]. We shall say that system (1) is cubic if max(deg (P ), deg (Q))
= 3.

A straight line ux + vy + w = 0 satisfies

u
dx

dt
+ v

dy

dt
= uP (x, y) + vQ(x, y) = (ux + vy + w) R(x, y)

for some polynomial R(x, y) if and only if it is invariant under the flow
of the system. If some of the coefficients u, v, w of an invariant straight
line belong to C \ R, then we say that the straight line is complex ;
otherwise the straight line is real. Note that, since system (1) is real,
if it has a complex invariant straight line ux + vy + w = 0, then it also
has its conjugate complex invariant straight line ūx + v̄y + w̄ = 0.

Let
X = P (x, y)

∂

∂x
+ Q(x, y)

∂

∂y

be the polynomial vector field corresponding to system (1).
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An invariant straight line f = 0 for a cubic vector field X has
geometric multiplicity m if there exists a sequence of cubic vector fields
Xk converging to X, such that each Xk has m distinct invariant straight
lines f1

k = 0, . . . , fm
k = 0, converging to f = 0 as k → ∞, and this does

not occur for m + 1.

An invariant straight line f = 0 for a cubic vector field X has algebraic
multiplicity m if m is the greatest positive integer such that fm divides
PX(Q) − QX(P ). In [4] it is proved that both notions of multiplicity
coincide. The algebraic definition of multiplicity is very useful for its
computation.

We note that this definition of multiplicity can be applied to the
infinite line Z = 0 in the case when this line is not full of singular
points. So, including the infinite line according with [1] the maximum
number of the invariant straight lines for cubic systems is 9.

In this paper we classify all cubic systems possessing the maximum
number of invariant straight lines taking into account their multiplici-
ties.

Invariant straight lines for quadratic systems have been studied by
Druzhkova [6] and Popa and Sibirskii [16, 17], for cubic systems by
Liybimova [9, 10], for quartic systems by Sokulski [22] and Xiang
Zhang [23], for some more general systems by Popa [13, 14] and Popa
and Sibirskii [15].

The maximum number of invariant straight lines taking into account
their multiplicities for a polynomial differential system of degree m is
3m when we also consider the infinite straight line, see [1]. This bound
is always reached if we consider the real and the complex invariant
straight lines, see [4].

Using geometric invariants as well as algebraic ones a classification
of all quadratic systems possessing the maximum number of invariant
straight lines taking into account their multiplicities have been made
in [19].

It is well known that for cubic system (1) there exist at most 4
different slopes for invariant affine straight lines, for more information
about the slopes of invariant straight lines for polynomial vector fields,
see [2].
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If a cubic system (1) possesses 9 distinct invariant straight lines we say
that these lines form a configuration of type (3, 3, 1, 1) if there exist two
triples of parallel lines and two additional lines every set with different
slopes. And we shall say that these lines form a configuration of type
(3, 2, 2, 1) if there exist one triple and two couple of parallel lines and
one additional line every set with different slopes. Note that in both
configurations the straight line which is omitted is the infinite one.

If a cubic system (1) possesses 9 invariant straight lines taking into
account their multiplicities we shall say that these lines form a potential
configuration of type (3, 3, 1, 1), respectively, (3, 2, 2, 1), if there exists a
sequence of vector fields Xk as in the definition of geometric multiplicity
having 9 distinct lines of type (3, 3, 1, 1), respectively, (3, 2, 2, 1).

Consider generic cubic systems of the form:

(2)

dx

dt
= p0 + p1(x, y) + p2(x, y) + p3(x, y) ≡ P (x, y),

dy

dt
= q0 + q1(x, y) + q2(x, y) + q3(x, y) ≡ Q(x, y),

with real homogeneous polynomials pi and qi, i = 0, 1, 2, 3, of degree i
in x, y. We introduce the following polynomials:

Ci = ypi(x, y) − xqi(x, y),

Dj =
∂pj

∂x
+

∂qj

∂y
,

for i = 0, 1, 2, 3 and j = 1, 2, 3 which in fact are GL-comitants, see [20].

In order to state our main theorem we need to construct some T -
comitants and CT -comitants (see [18] for detailed definitions) which
will be responsible for the existence of the maximum number of in-
variant straight lines for system (2). They are constructed by using
the polynomials Ci and Di via the differential operator (f, g)(k) called
transvectant of index k (see, for example, [7]) which acts on R[a, x, y]
as follows:

(f, g)(k) =
k∑

h=0

(−1)h

(
k

h

)
∂kf

∂xk−h∂yh

∂kg

∂xh∂yk−h
.

Here f(x, y) and g(x, y) are polynomials in x and y and a ∈ R20 is the
20-tuple formed by all the coefficients of system (2).
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First we construct the following comitants of second degree with
respect to the coefficients of the initial system:

T1 = (C0, C1)
(1)

, T10 = (C1, C3)
(1)

, T19 = (C2, D3)
(1)

,

T2 = (C0, C2)
(1) , T11 = (C1, C3)

(2) , T20 = (C2, D3)
(2) ,

T3 = (C0, D2)
(1) , T12 = (C1, D3)

(1) , T21 = (D2, C3)
(1) ,

T4 = (C0, C3)
(1) , T13 = (C1, D3)

(2) , T22 = (D2, D3)
(1) ,

T5 = (C0, D3)
(1) , T14 = (C2, C2)

(2) , T23 = (C3, C3)
(2) ,

T6 = (C1, C1)
(2) , T15 = (C2, D2)

(1) , T24 = (C3, C3)
(4) ,

T7 = (C1, C2)
(1)

, T16 = (C2, C3)
(1)

, T25 = (C3, D3)
(1)

,

T8 = (C1, C2)
(2)

, T17 = (C2, C3)
(2)

, T26 = (C3, D3)
(2)

,

T9 = (C1, D2)
(1)

, T18 = (C2, C3)
(3)

, T27 = (D3, D3)
(2)

.

Then we need the following polynomials:

D1(a) = 6T 3
24 −

[
(C3, T23)(4)

]2

,

D2(a, x, y) = −T23,

D3(a, x, y) = (T23, T23)(2) − 6C3(C3, T23)(4),

D4(a) = (C3, D2)(4),

V1(a, x, y) = T23 + 2D2
3,

V2(a, x, y) = T26,

V3(a, x, y) = 6T25 − 3T23 − 2D2
3 ,

V4(a, x, y) = C3

[
(C3, T23)

(4) + 36 (D3, T26)
(2)

]
,

L1(a, x, y) = 9C2 (T24 + 24T27) − 12D3 (T20 + 8T22)

− 12 (T16, D3)
(2) − 3 (T23, C2)

(2) − 16 (T19, C3)
(2)

+ 12 (5T20 + 24T22, C3)
(1)

,

L2(a, x, y) = 32 (13T19 + 33T21, D2)
(1) + 84 (9T11 − 2T14, D3)

(1)

+ 8D2 (12T22 + 35T18 − 73T20) − 448 (T18, C2)
(1)

− 56 (T17, C2)
(2) − 63 (T23, C1)

(2)
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+ 756D3T13 + 1944D1T26 + 112 (T17, D2)
(1)

− 378 (T26, C1)
(1) + 9C1 (48T27 − 35T24) ,

L3(a, x, y) = (T23, D3)
(2)

[
(D2, T22)

(1) − D1T27

]
,

L4(a, x, y) = T25,

N1(a, x, y) = 4C2(27D1D3 − 8D2
2) + 2C2(20T15 − 4T14 + 39T12)

+ 18C1(3T21 − D2D3) + 54D3(3T4 − T7) − 288C3T9

+ 54 (T7, C3)
(1) − 567 (T4, C3)

(1) + 135C0D
2
3,

N2(a, x, y) = 2C2D3 − 3C3D2,

N3(a, x, y) = C2D3 + 3T16,

N4(a, x, y) = D2D3 + 9T21 − 2T17,

N5(a, x, y) = T17 + 2T19,

N6(a, x, y) = 6C3(T12 + 6T11) − 9C1(T23 + T25) − 8 (T16, C2)
(1)

− C3D
2
2,

N7(a, x, y) = 6C3(12T11 − T12 − 6D1D3) − 21C1T23 − 24 (T16, C2)
(1)

+ 3C1T25 + 4D2(T16 + 2D2C3 − C2D3),

N8(a, x, y) = D2
2 − 4D1D3,

N9(a, x, y) = C2
2 − 3C1C3,

N10(a, x, y) = 2C2D1 + 3T4.

Main theorem. Any cubic system having invariant straight lines
with total multiplicity 9 via affine transformation and time rescaling can
be written as one of the following 23 systems. In the figure associated
to each system is presented the configuration of its invariant straight
lines in the Poincaré disc. Real invariant straight lines are represented
by continuous lines. Complex invariant straight lines are represented
by dashed lines. If an invariant straight line has multiplicity k > 1,
then the number k appears near the corresponding straight line and this
line is more thick. Moreover, every system has associated a set of affine
invariant conditions which characterize it.
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(1) ẋ = x(x2 − 1),
ẏ = y(y2 − 1) ⇐⇒

[
D1 > 0, D2 > 0, D3 > 0, L3 < 0,

V1 = V2 = L1 = L2 = N1 = 0

]
⇐⇒ Fig. 1;

(2) ẋ = x(x2 + 1),
ẏ = y(y2 + 1) ⇐⇒

[
D1 > 0, D2 > 0, D3 > 0, L3 > 0,

V1 = V2 = L1 = L2 = N1 = 0

]
⇐⇒ Fig. 2;

(3) ẋ = x3,
ẏ = y3 ⇐⇒

[
D1 > 0, D2 > 0, D3 > 0, L3 = 0,

V1 = V2 = L1 = L2 = N1 = 0

]
⇐⇒Fig. 3;

(30)

(4) ẋ=2x(x2−1),
ẏ=(3x−y)(y2−1) ⇐⇒

[
D1 > 0, D2 > 0, D3 > 0, L3 > 0,

V3 = V4 = L1 = L2 = N1 = 0

]
⇐⇒ Fig. 4;

(5) ẋ = 2x(x2+1),
ẏ = (3x−y)(y2+1) ⇐⇒

[
D1 > 0, D2 > 0, D3 > 0, L3 < 0,

V3 = V4 = L1 = L2 = N1 = 0

]
⇐⇒ Fig. 5;

(6) ẋ = 2x3,
ẏ = y2(3x − y) ⇐⇒

[
D1 > 0, D2 > 0, D3 > 0, L3 = 0,

V3 = V4 = L1 = L2 = N1 = 0

]
⇐⇒Fig. 6;

(44)

(7) ẋ = x(1 + x2),
ẏ = y(1 − y2) ⇐⇒

[
D1 < 0, L3 �= 0, L4 < 0,

V1 = V2 = L1 = L2 = N1 = 0

]
⇐⇒ Fig. 7;

(8) ẋ = x3,
ẏ = −y3,

⇐⇒
[

D1 < 0, L3 = 0, L4 < 0,

V1 = V2 = L1 = L2 = N1 = 0

]
⇐⇒ Fig. 8;

(52)

(9) ẋ = x(1+x2−3y2),
ẏ = y(1+3x2−y2) ⇐⇒

[
D1 < 0, L3 �= 0, L4 > 0,

V1 = V2 = L1 = L2 = N1 = 0

]
⇐⇒ Fig. 9;
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(10) ẋ = x(x2 − 3y2),
ẏ = y(3x2 − y2) ⇐⇒

[
D1 < 0, L3 = 0, L4 > 0,

V1 = V2 = L1 = L2 = N1 = 0

]
⇐⇒ Fig. 10;

(55)

(11) ẋ = 2x(x2 − 1),
ẏ = y(3x2+ y2+1) ⇐⇒

[
D1 < 0, L3 < 0,

V3 = V4 = L1 = L2 = N1 = 0

]
⇐⇒ Fig. 11;

(12) ẋ = 2x(x2 + 1),
ẏ = y(3x2+y2−1) ⇐⇒

[
D1 < 0, L3 > 0,

V3 = V4 = L1 = L2 = N1 = 0

]
⇐⇒ Fig. 12;

(13) ẋ = 2x3,
ẏ = y(3x2 + y2) ⇐⇒

[
D1 < 0, L3 = 0,

V3 = V4 = L1 = L2 = N1 = 0

]
⇐⇒ Fig. 13;

(62)

(14) ẋ = x(x2 − 1),
ẏ = 2y

⇐⇒
[

D1 =D3 =D4 = 0, D2 �=0, L4 < 0,

V1 =N1 =N2 =N3 =N7 =0, N8 < 0

]
⇐⇒ Fig. 14;

(71),(72)

(15) ẋ = x(x2 + 1),
ẏ = −2y

⇐⇒
[
D1 =D3 =D4 = 0, D2 �= 0, L4 < 0,

V1 =N1 =N2 =N3 =N7 =0, N8 > 0

]
⇐⇒Fig. 15;

(73),(74)

(16) ẋ = x(x2 − 1),
ẏ = −y

⇐⇒
[

D1 =D3 =D4 = 0, D2 �= 0, L4 < 0,

V1 =N1 =N2 =N3 =N6 = 0, N8 > 0

]
⇐⇒Fig. 16;

(76),(77);

(17) ẋ = x(x2 + 1),
ẏ = y

⇐⇒
[

D1 =D3 =D4 = 0, D2 �= 0, L4 < 0,

V1 =N1 =N2 =N3 =N6 = 0, N8 < 0

]
⇐⇒Fig. 17;

(78),(79)
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(18) ẋ = x3,
ẏ = 1 ⇐⇒

[
D1 =D3 =D4 = 0, D2 �= 0, L4 < 0,

V1 =N1 =N2 =N3 =N6 = 0, N8 = 0

]
⇐⇒Fig. 18;

(80),(81)

(19) ẋ = x(x2 − 1),
ẏ = y(3x2 − 1) ⇐⇒

[
D1 =D3 =D4 = 0, D2 �= 0, L4 > 0,

V1 =N1 =N4 =N5 =N6 = 0, N8 > 0

]
⇐⇒Fig. 19;

(88)

(20) ẋ = x(x2 + 1),
ẏ = y(3x2 + 1) ⇐⇒

[
D1 =D3 =D4 = 0, D2 �= 0, L4 > 0,

V1 =N1 =N4 =N5 =N6 =0, N8 < 0

]
⇐⇒Fig. 20;

(89);

(21) ẋ = 2x(x2 − 1),
ẏ = y(3x2 + 1) ⇐⇒

[
D1 =D3 =D4 = 0, D2 �= 0, L4 > 0,

V3 =N1 =N4 =N5 =N7 =0, N8 > 0

]
⇐⇒Fig. 21;

(95)

(22) ẋ = 2x(x2 + 1),
ẏ = y(3x2 − 1) ⇐⇒

[
D1 =D3 =D4 = 0, D2 �= 0, L4 > 0,

V3 =N1 =N4 =N5 =N7 =0, N8 < 0

]
⇐⇒Fig. 22;

(96)

(23) ẋ = x,
ẏ = y − x3 ⇐⇒

[
D1 = D2 = D3 = V1 = 0,

N2 = N3 = N9 = N10 = 0

]
⇐⇒Fig. 23.

(107),(108)

Here, a condition of the type S(a, x, y) > 0, respectively S(a, x, y) <
0, means that the respective homogeneous polynomial of even degree
in x and y is positive, respectively negative, defined. And equality
S(a, x, y) = 0 must be understood in R[x, y].

Note that, only in the case that some invariant straight lines have
multiplicity > 1, in the last column of the statement of the main theo-
rem appear some numbers under the figures indicating the correspond-
ing perturbed systems which show the potential configurations of the
considered cubic system.



PLANAR CUBIC POLYNOMIAL DIFFERENTIAL SYSTEMS 1309



1310 J. LLIBRE AND N. VULPE



PLANAR CUBIC POLYNOMIAL DIFFERENTIAL SYSTEMS 1311

2. Necessary conditions for the existence of parallel invari-
ant straight lines. We define the auxiliary polynomial U 1(a) =
T24 − 4T27.

Lemma 1. For cubic systems (2) the conditions V1 = V2 = U 1 = 0
are necessary for the existence of two triples of parallel invariant
straight lines with different slope.

Proof. Let Li(x, y) = αx + βy + γi = 0, i = 1, 2, 3, be three parallel
invariant straight lines for a cubic system (2). Then, we have

αP (x, y) + βQ(x, y) = ξ(αx + βy + γ1)(αx + βy + γ2)(αx + βy + γ3),

where the constant ξ can be considered 1 (rescaling the time, if
necessary). Therefore, from the cubic terms we obtain αp3(x, y) +
βq3(x, y) = (αx + βy)3. If we denote

p3(x, y) = px3 + 3qx2y + 3rxy2 + sy3,

q3(x, y) = tx3 + 3ux2y + 3vxy2 + wy3,

then, for the existence of 3 parallel invariant straight lines it is necessary
for the solvability of the following systems of cubic equations with
respect to the parameters α and β:

(3)
A1 ≡ αp + βt − α3 = 0, A2 ≡ αq + βu − α2β = 0,

A3 ≡ αr + βv − αβ2 = 0, A4 ≡ αs + βw − β3 = 0.

Without loss of generality we can consider αβ �= 0, otherwise a rotation
of the phase plane can be done. We have:

(4)
B1 ≡ αA2 − βA1 = qα2 + (u − p)αβ − tβ2 = 0,

B2 ≡ αA3 − βA2 = rα2 + (v − q)αβ − uβ2 = 0,

B3 ≡ αA4 − βA3 = sα2 + (w − r)αβ − vβ2 = 0.

Clearly, for the existence of two directions (α1, β1) and (α2, β2) such
that in each of them there are 3 parallel invariant straight lines of a
system (2) it is necessary that the rank (U) = 1, where

U =

⎡⎣ q u−p −t
r v−q −u
s w−r −v

⎤⎦ .
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We denote by U ij
kl the 2× 2-minor of the matrix U formed only by the

columns i and j and by the rows k and l of U . We obtain

U12
12 =

[
q u−p
r v−q

]
, U13

12 =
[

q −t
r −u

]
, U23

12 =
[

u−p −t
v−q −u

]
,

U12
13 =

[
q u−p
s w−r

]
, U13

13 =
[

q −t
s −v

]
, U23

13 =
[

u−p −t
w−r −v

]
,

U12
23 =

[
r v−q
s w−r

]
, U13

23 =
[

r −u
s −v

]
, U23

23 =
[

v−q −u
w−r −v

]
.

Hence, the rank (U) = 1 if and only if U ij
kl = 0 for all 1 ≤ i < j ≤ 3

and 1 ≤ k < l ≤ 3.

On the other hand, it is easy to calculate the values of the T -comitants

V1 = 16
[
U23

12 x4 +
(
U23

13 − 2U13
12

)
x3y +

(
U12

12 − 2U13
13 + U23

23

)
x2y2

+
(
U12

13 − 2U13
23

)
xy3 + U12

23 y4
]
,

V2 = 8
[− (

2U13
12 + U23

13

)
x2 + 2

(
U12

12 − U23
23

)
xy +

(
U12

13 + 2U13
23

)
y2

]
,

U 1 = 27
(
U12

12 + U13
13 + U23

23

)
.

Thus, it is obvious that U ij
kl = 0, 1 ≤ i < j ≤ 3, 1 ≤ k < l ≤ 3, if and

only if V1 = V2 = U1 = 0. This completes the proof of the lemma.

We assume that V2
1 +V2

2 +U2
1 �= 0. Then, by Lemma 1, there cannot

exist two triples of parallel invariant straight lines for system (2). Now,
we shall examine the case when a system (2) possesses only one triple of
parallel invariant straight lines. This means that system (4) can have
at most one solution (α0, β0). By using (4) and considering (3), we
construct the following linear system with respect to the parameters α
and β:

(5)

αB1 = qα3 + (u − p)α2β − tαβ2 = B11α + B12β = 0,

βB1 = qα2β + (u − p)αβ2 − tβ3 = B21α + B22β = 0,

αB2 = rα3 + (v − q)α2β − uαβ2 = B31α + B32β = 0,

βB2 = rα2β + (v − q)αβ2 − uβ3 = B41α + B42β = 0,

αB3 = sα3 + (w − r)α2β − vαβ2= B51α + B52β = 0,

βB3 = sα2β + (w − r)αβ2 − vβ3= B61α + B62β = 0,
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where

B11 =−U13
12 , B12 =−U23

12 , B21 =−U12
12 −U13

13 , B22 =−U13
12 −U23

13 ,

B31 =U12
12 , B32 =U13

12 , B41 =−U13
23 , B42 =−U23

23 ,

B51 =U12
13 +U13

23 , B52 =U13
13 +U23

23 , B61 =U12
23 , B62 =U13

23 .

We denote by B the 6 × 2-matrix of the linear system (5) and by Mij

its corresponding 2 × 2 minors:

B = (Bij){i=1,... ,6; j=1,2} , Mij =
[

Bi1 Bi2

Bj1 Bj2

]
, 1 ≤ i < j ≤ 6.

It is clear that the linear system (5) has a nontrivial solution if and
only if the rank (B) = 1, i.e., Mij = 0 for 1 ≤ i < j ≤ 6.

On the other hand, calculating the polynomial V3 as well as the
auxiliary polynomials

U 2(a, x, y) = 6 (T23 − 3T25, T26)
(1) − 3T23(T24 − 8T27) − 24T 2

26

+ 2C3 (C3, T23)
(4) + 24D3 (D3, T26)

(1) + 24D2
3T27,

U 3(a, x, y) = D3

[
(C3, T23)

(4) + 36 (D3, T26)
(2)

]
,

for system (2) we have

V4 = 210 · 35
[
(M12 + M13)x4 + 3 (M16 + M34)x2y2 + (M46 + M56) y4

+ (3M14 + M15 − M23)x3y + (M26 + 3M36 − M45) xy3
]
,

U 2 = 212 · 35 · 5 [
M13x

4 + (2M16 + M25 − M34) x2y2 + M46y
4

+ (M14 + M15 + M23)x3y + (M26 + M36 + M45) xy3
]
,

U 3 = 210 · 36
[
(M15 − M14 − M23)x2 + (M16 − 2M24 − M34)xy

+ (M36 − M26 + M45) y2
]
.

It is not difficult to observe that conditions V4 = U 2 = U 3 = 0 are
equivalent to Mij = 0 for 1 ≤ i < j ≤ 6. Moreover, taking into account
the expressions of the polynomials V4 and U 3, we can conclude that,
for C3 �= 0, the condition V4 = 0 implies U 3 = 0. Hence, the following
lemma was proved:



1314 J. LLIBRE AND N. VULPE

Lemma 2. For cubic system (2) the necessary conditions for the ex-
istence of one triple of parallel invariant straight lines are V4 = U 2 = 0.

The next step is to find some necessary conditions in order that
system (2) possesses three couples of parallel invariant straight lines.

Let Li(x, y) = αx + βy + γi = 0, i = 1, 2, be two parallel invariant
straight lines for a cubic system (2). Then, we have

αP (x, y) + βQ(x, y) = (αx + βy + γ1)(αx + βy + γ2)(μx + ηy + γ3).

Therefore, from the cubic terms we get

αp3(x, y) + βq3(x, y) = (αx + βy)2(μx + ηy).

Thus, for the existence of 2 parallel invariant straight lines the solvabil-
ity is necessary of the following system of cubic equations with respect
to parameters α, β, μ and η:

(6)

E1 ≡ αp + βt − α2μ = 0,

E2 ≡ 3αq + 3βu − α2η − 2αβμ = 0,

E3 ≡ 3αr + 3βv − 2αβη + β2μ = 0,

E4 ≡ αs + βw − β2η = 0.

Without loss of generality we may consider αβ �= 0, otherwise a rotation
of the phase plane can be done. We have

F1 ≡ Resη

(
Resμ(E1, E2), E4

)
/α

= sα4 + wα3β − 3qα2β2 + (2p − 3u)αβ3 + 2tβ3 = 0,

F2 ≡ Resη

(
Resμ(E1, E3), E4

)
/β

= 2sα4 + (2w − 3r)α3β − 3vα2β2 + pαβ3 + tβ3 = 0,

where Resz(f, g) denotes the resultant of the polynomials f and g with
respect to the variable z, for more details on the resultant, see [11].
Then

G1(α, β) ≡ 2F2 − F1

3α
= sα3 + (w − 2r)α2β + (q − 2v)αβ2 + uβ3 = 0,

G2(α, β) ≡ 2F1 − F2

3β
= rα3 + (v − 2q)α2β + (p − 2u)αβ2 + tβ3 = 0.



PLANAR CUBIC POLYNOMIAL DIFFERENTIAL SYSTEMS 1315

Now, it is clear that for the existence of three distinct solutions (αi, βi),
i = 1, 2, 3, of the system (6), it is necessary that the polynomials
G1(α, β) and G2(α, β) be proportional, i.e., the following identity holds:

G =
[

(∂G1)/(∂α) (∂G1)/(∂β)
(∂G2)/(∂α) (∂G2)/(∂β)

]
= 3

(
K0α

4 + K1α
3β + K2α

2β2 + K3αβ3 + K4β
4
)

= 0,

where

K0 = − rw + 2r2 − 2qs + vs,

K1 = 2ps − 4us − 2qr + 4vr,

K2 = 2q2 + 2v2 + 3ts − 2pr + ur + pw − 2uw − 5qv,

K3 = − 4tr + 2tw + 4uq − 2uv,

K4 = 2u2 + tq − 2tv − pu.

On the other hand, the comitant V3 calculated for system (2) gives

V3 = 25 · 32
(
K4x

4 − K3x
3y + K2x

2y2 − K1xy3 + K0y
4
)
.

Consequently, condition G = 0 is equivalent to V3 = 0. Hence, we get
the next result.

Lemma 3. For cubic systems (2) the condition V3 = 0 is necessary
for the existence of three distinct couples of parallel invariant straight
lines.

Taking into account Lemmas 2 and 3, we obtain the next result.

Lemma 4. If a cubic system (2) possesses the configuration or the
potential configuration of parallel invariant straight lines of the type
(3, 2, 2, 1), then it is necessary that V3 = V4 = U 2 = 0.

3. Infinite singular points and associated homogeneous cubic
canonical systems. From [12], see also [5], we have the following
result. Here a ∈ C is imaginary if a /∈ R.
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Lemma 5. The number of distinct roots (real and imaginary) of the
homogeneous polynomial C3 = yp3(x, y) − xq3(x, y) �= 0 is determined
by the following conditions:

(i) 4 real if D1 > 0, D2 > 0, D3 > 0;

(ii) 2 real and 2 imaginary if D1 < 0;

(iii) 4 imaginary if D1 > 0 and for every (x, y) where D2D3 �= 0
either D2 < 0 or D3 < 0;

(iv) 3 real (1 double, 2 simple) if D1 = 0, D3 > 0;

(v) 1 real and 2 imaginary (1 real double) if D1 = 0, D3 < 0;

(vi) 2 real (1 triple and 1 simple) if D1 = D3 = 0, D2 �= 0, D4 = 0;

(vii) 2 real (2 double) if D1 = D3 = 0, D2 > 0, D4 �= 0;

(viii) 2 imaginary (2 double) if D1 = D3 = 0, D2 < 0, D4 �= 0;

(ix) 1 real (of the multiplicity 4) if D1 = D2 = D3 = 0.

where Di for i = 1, 2, 3, 4 are the T-comitants defined in the Introduc-
tion.

We consider the polynomial C3(a, x, y) �= 0 as a quartic binary form.
It is well known that there exists g ∈ GL(2,R), g(x, y) = (u, v), such
that the transformed binary form gC3(a, x, y) = C3(a, g−1(u, v)) is one
of the following 9 canonical forms:

(i) xy(x−y)(rx+sy), rs(r+s) �= 0; (iv) x2y(x − y); (vii) x2y2;

(ii) x(sx+y)(x2+y2); (v) x2(x2+y2); (viii) (x2+y2)2;

(iii) (px2+ qy2)(x2+ y2), pq > 0; (vi) x3y; (ix) x4.

We note that each of such canonical forms corresponds to one of the
cases enumerated in the statement of Lemma 5.

On the other hand, applying the same transformation g to the initial
system and calculating for the transformed system its polynomial
C3(a(g), u, v) the following relation holds:

C3(a(g), u, v) = det(g) C3(a, x, y) = det(g) C3(a, g−1(u, v))
= λC3(a, g−1(u, v)),

where we may consider λ = 1 (via a time rescaling).



PLANAR CUBIC POLYNOMIAL DIFFERENTIAL SYSTEMS 1317

Taking into account that C3(x, y) = yP3(x, y) − xQ3(x, y), we con-
struct the canonical forms of the cubic homogeneous systems having
their polynomials C3 the indicated canonical forms (i) (ix):

(7) x′ = (p + r)x3 + (s + v)x2y + qxy2, C3 = xy(x − y)(rx + sy),
y′ = px2y + (r + v)xy2 + (q + s)y3, rs(r + s) �= 0

(8) x′ = (u + 1)x3 + (s + v)x2y + rxy2, C3 = x(sx + y)(x2 + y2),
y′ = − sx3 + ux2y + vxy2 + (r − 1)y3,

(9) x′ = ux3+(p+q+v)x2y+rxy2+qy3, C3 = (px2+qy2)(x2+y2),
y′ = − px3 + ux2y + vxy2 + ry3, pq > 0

(10) x′ = 3(u + 1)x3 + (v − 1)x2y + rxy2, C3 = x2y(x − y),
y′ = ux2y + vxy2 + ry3,

(11) x′ = ux3 + (v + 1)x2y + rxy2, C3 = x2(x2 + y2),
y′ = −x3 + ux2y + vxy2 + ry3,

(12) x′ = (u + 1)x3 + vx2y + rxy2, C3 = x3y,

y′ = ux2y + vxy2 + ry3,

(13) x′ = ux3 + qx2y + rxy2, C3 = (q − v)x2y2,

y′ = ux2y + vxy2 + ry3, q − v �= 0

(14) x′ = ux3 + (v + 1)x2y + rxy2 + y3, C3 = (x2 + y2)2,
y′ = −x3 + ux2y + 3(v − 1)xy2 + ry3,

(15) x′ = ux3 + vx2y + rxy2, C3 = x4,

y′ = −x3 + ux2y + vxy2 + ry3.
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4. Criteria for the existence of an invariant straight line
with a given multiplicity. We consider a cubic system (2) and the
associated four polynomials Ci(x, y) for i = 0, 1, 2, 3.

Proposition 6. The straight line L̃(x, y) = ux + vy = 0 is invariant
for a cubic system (2) with p2

0 + q2
0 �= 0 if and only if for i = 0, 1, 2, 3

the following relations hold:

either Ci(− v, u) = 0,(16)

or Resγ(C0, Ci) = 0
(
γ =

y

x
or γ =

x

y

)
.(17)

Proof. The line L̃(x, y)=0 is invariant for system (2) if and only if

u(p0 + p1 + p2 + p3) + v(q0 + q1 + q2 + q3) = (ux + vy)(S0 + S1 + S2),

for some homogeneous polynomials Si of degree i. The last equality is
equivalent to

up0 + vq0 = 0,

up1(x, y) + vq1(x, y) = (ux + vy)S0,

up2(x, y) + vq2(x, y) = (ux + vy)S1(x, y),
up3(x, y) + vq3(x, y) = (ux + vy)S2(x, y).

If x = −v, y = u, then the left-hand sides of the previous equalities
become C0(−v, u), C1(−v, u), C2(−v, u)) and C3(−v, u)), respectively.
At the same time the right-hand sides of these identities vanish. Thus,
we obtain equations (16) in which C0 (respectively, C1; C2; C3) is
a homogeneous polynomial of degree 1 (respectively 2; 3; 4) in the
parameters u and v, and C0(x, y) �= 0 because p2

0 + q2
0 �= 0. Hence,

the necessary and sufficient conditions for the existence of a common
solution of systems (16) are conditions (17).

Let (x0, y0) ∈ R2 be an arbitrary point on the phase plane of systems
(2). Consider a translation τ bringing the origin of coordinates to the
point (x0, y0). We denote by (2τ ) the system obtained after applying
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the transformation τ , and by ã = a(x0, y0) ∈ R20 the 20-tuple of its
coefficients. If γ = y/x or γ = x/y, then, for i = 1, 2, 3 we denote

(18)
Ωi(a, x0, y0) = Resγ

(
Ci

(
ã, x, y

)
, C0

(
ã, x, y

)) ∈ R[a, x0, y0];

Gi(a, x, y) = Ωi(a, x0, y0)|{x0=x, y0=y} ∈ R[a, x, y].

Remark 7. For j = 1, 2, 3, the polynomials Gj(x, y) = Gj(a, x, y) are
affine comitants and are homogeneous in the coefficients of system (2)
and nonhomogeneous in the variables x and y. Additionally,

deg aG1 = 3, deg aG2 = 4, deg aG3 = 5,

deg (x,y)G1 = 8, deg (x,y)G2 = 10, deg (x,y)G3 = 12.

The geometrical meaning of these affine comitants is given by the
following lemma.

Lemma 8. The straight line L(x, y) = ux + vy + w = 0 is invariant
for a cubic system (2) if and only if the polynomial L(x, y) is a common
factor of the polynomials G1, G2 and G3 over C.

Proof. Let (x0, y0) ∈ R2 be a nonsingular point of system (2), i.e.,
P (x0, y0)2 + Q(x0, y0)2 �= 0, which lies on the line L(x, y) = 0, i.e.,
ux0 + vy0 +w = 0. Denote by L̃(x, y) = (L ◦ τ ) (x, y) = ux+ vy (τ is a
translation) and consider the line ux + vy = 0. By Proposition 6,
the straight line L̃(x, y) = 0 will be an invariant line of systems
(2τ ) if and only if conditions (17) are satisfied for these systems,
i.e., for i = 1, 2, 3, Ωi(a, x0, y0) = 0, for each point (x0, y0) on the
line L(x, y) = ux + vy + w = 0. Thus, we have Ωi(a, x0, y0) =
(ux0 + vy0 + w)Ω̃i(a, x0, y0). Taking into account relations (18), the
lemma follows.

Lemma 9. If L(x, y) = ux+vy+w = 0 is an invariant straight line
of (geometric) multiplicity k for a cubic system (2), then, for i = 1, 2, 3,
we have that

Gi = (ux + vy + w)k Wi(x, y).
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Proof. By the definition of geometric multiplicity, we denote by (2δ)
the perturbed system from the system (2), which has k invariant lines
of multiplicity 1: Liδ(x, y) for i = 1, . . . , k.

By Lemma 8, for i = 1, 2, 3, system (2δ) satisfies Giδ = L1δ · · ·Lkδ ×
W̃i(x, y), and when δ → 0, then Liδ(x, y) → L(x, y). At the same time
Giδ → Gi = L(x, y)kWi.

Taking into account Remark 7 and Lemmas 8 and 9 we conclude the
following result.

Lemma 10. If a cubic system (2) possesses the maximum num-
ber of invariant straight lines (counted with their multiplicities), then
G1(x, y) | G2(x, y) and G1(x, y) | G3(x, y).

In order to determine the degree of the common factor of the poly-
nomials Gi(x, y) for i = 1, 2, 3, we shall use the notion of the kth subre-
sultant of two polynomials with respect to a given indeterminate (see
for instance, [8, 11]).

We consider two polynomials

f(z) = a0z
n + a1z

n−1 + · · · + an,

g(z) = b0z
m + b1z

m−1 + · · · + bm,

in variable the z of degree n and m, respectively.

We say that the kth subresultant with respect to variable z of the
two polynomials f(z) and g(z) is the (m + n − 2k) × (m + n − 2k)
determinant, see equation (19), in which there are m − k rows of a’s
and n − k rows of b’s, and ai = 0 for i > n, and bj = 0 for j > m.

For k = 0 we obtain the standard resultant of two polynomials. In
other words we can say that the kth subresultant with respect to the
variable z of the two polynomials f(z) and g(z) can be obtained by
deleting the first and the last k rows and columns from its resultant
written in the form (19) when k = 0.
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(19)

R(k)
z (f, g) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 a2 . . . . . . am+n−2k−1

0 a0 a1 . . . . . . am+n−2k−2

0 0 a0 . . . . . . am+n−2k−3

. . . . . . . . . . . . . . . . . . . . . . . .

0 0 b0 . . . . . . bm+n−2k−3

0 b0 b1 . . . . . . bm+n−2k−2

b0 b1 b2 . . . . . . bm+n−2k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣

}
(m−k)-times⎫⎪⎬⎪⎭ (n−k)-times

The geometrical meaning of the subresultants is based on the follow-
ing lemma.

Lemma 11 (see [8, 11]). Polynomials f(z) and g(z) have precisely
k roots in common (counting their multiplicities) if and only if the
following conditions hold:

R(0)
z (f, g) = R(1)

z (f, g) = R(2)
z (f, g) = · · ·

= R(k−1)
z (f, g) = 0 �= R(k)

z (f, g).

For the polynomials in more than one variable it is easy to deduce
from Lemma 11 the following result.

Lemma 12. Two polynomials f̃(x1, x2, . . . , xn) and g̃(x1, x2, . . . , xn)
have a common factor of degree k with respect to variable xj if and only
if the following conditions are satisfied:

R(0)
xj

(f̃ , g̃) = R(1)
xj

(f̃ , g̃) = R(2)
xj

(f̃ , g̃) = · · ·

= R(k−1)
xj

(f̃ , g̃) = 0 �= R(k)
xj

(f̃ , g̃),

where R
(i)
xj (f̃ , g̃) = 0 in R[x1, . . . xj−1, xj+1, . . . , xn].
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5. Cubic systems with 4 real simple roots of C3. As it was
shown above, a cubic homogeneous system having 4 real distinct infinite
singular points via a linear transformation becomes in the canonical
form (7). Therefore, in what follows we consider the system

(20)
x′ = p0 + p1(x, y) + p2(x, y) + (p + r)x3 + (s + v)x2y + qxy2,

y′ = q0 + q1(x, y) + q2(x, y) + px2y + (r + v)xy2 + (q + s)y3,

where the parameters r and s satisfy the condition rs(r + s) �= 0.
For system (20) we obtain C3 = xy(x− y)(rx+ sy), and hence, infinite
singular points are situated at the “ends” of the following straight lines:
x = 0, y = 0, x − y = 0 and rx + sy = 0.

The goal of this section is to construct the cubic systems of the
form (20) which have 8 invariant straight lines with the configuration
(3, 3, 1, 1) or (3, 2, 2, 1).

5.1. Systems with the configuration (3, 3, 1, 1). In this subsec-
tion we construct the cubic system with 4 real infinite singular points
which possesses 8 invariant affine straight lines in the configuration
or potential configuration (3, 3, 1, 1), having total multiplicity 9; as
always the invariant straight line of the infinity is considered.

According to Lemma 1, if a cubic system possesses 8 invariant straight
lines in the configuration (3, 3, 1, 1), then necessarily the conditions
V1 = V2 = U 1 = 0 hold.

A straightforward computation of the values of V1 and V2 for system
(20) yields:

V1 = 16
4∑

j=0

V1jx
4−jyj , V2 = 8

2∑
j=0

V2jx
2−jyj ,

where

V10 = p(2p + 3r),
(21)

V11 = 2ps + 4pv + 2pr + 3r2 + 3rv,

V12 = 4rs + 4pq + 3ps + 3rq + 2sv + 2rv − s2 − r2 + 2v2,

V13 = 2sq + 4qv + 3sv + 2rq + 3s2,

V14 = q(2q + 3s),
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V20 = − 3rv − 3r2 + 2ps − 2pr,

V21 = 6rq − 2s2 − 4sv + 4rv + 2r2 − 6ps,

V22 = 2qs + 3s2 − 2rq + 3sv.

Consequently, relations V1 = V2 = 0 provide the following equalities:
(22)

V10 = p(2p+3r) = 0, V14 = q(2q+3s) = 0,

V11 + V20 = 4p(s+v) = 0, V13 − V22 = 4q(r+v) = 0,

V11 − V20 = 2(r+v)(2p+3r) = 0, V13 + V22 = 2(s+v)(2q+3s) = 0.

Thus, we shall consider three cases: (1) pq �= 0; (2) pq = 0, p2 +q2 �= 0;
(3) p = q = 0.

Case p q �= 0. Then, from (22), we obtain v = −s, r = s,
p = q = −3s/2 �= 0, and consequently V1 = V2 = 0. Therefore, by
changing the time, t → −2t/(3s), we obtain the following system:

x′ = p0 + p1 + p2 + x3 + 3xy2,

y′ = q0 + q1 + q2 + 3x2y + y3,

for which U 1(a) = 0.

Case p q = 0, p2 + q2 �= 0. Then, without loss of generality, we can
consider p = 0 and q �= 0 via the transformation x ↔ y and the changes
p ↔ q and r ↔ s. From (22) we have v = −r, q = −3s/2 �= 0, and

V1i = 0, i = 0, 1, 3, 4, V2j = 0, j = 0, 2,

V12 = 4V11 = −V21 = −4(r + 2s)(2r + s).

Consequently, we obtain either s = −2r or r = −2s. The first case
after a suitable time rescaling writes the system as

(24) x′ = p0 + p1 + p2 + x3 − 3x2y + 3xy2, y′ = q0 + q1 + q2 + y3,

whereas the second one goes over to the system

(25) x′ = p0 + p1 + p2 +4x3 − 6x2y +3xy2, y′ = q0 + q1 + q2 + y3.
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We note that for both systems we have U 1(a) = 0.

Case p = q = 0. Then, by (22), we have r(r + v) = s(s + v) = 0.
We claim that rs �= 0. Indeed, we suppose r = 0 (case s = 0 can be
reduced to this one by changing x ↔ y). Then, taking into account
(21), we obtain

V13 + 6V21 = 12s2 = 0 =⇒ V12 = 16v2 = 0.

Thus r = s = v = 0 and we obtain p3(x, y) = q3(x, y) = 0. Hence, the
claim is proved. Considering (22), we obtain t = −r = −s, and after a
suitable time rescaling the system becomes

(26) x′ = p0 + p1 + p2 + x3, y′ = q0 + q1 + q2 + y3,

for which U 1(a) = 0.

Lemma 13. All systems (23), (24) and (25) can be written via some
affine transformations to system (26).

Proof. It is sufficient to check by straightforward computation that
the transformation x1 = x − y, y1 = y writes system (26) into system
(24), and the transformation x1 = x, y1 = x−y writes system (23) into
system (25). It remains to observe that the transformation x1 = x,
y1 = y/2 and t1 = 4t writes system (25) into system (24).

Let L(x, y) = Ux+V y+W = 0 be an invariant straight line of system
(2), which we write explicitly as:

ẋ = a + cx + dy + gx2 + 2hxy + ky2 + px3 + 3qx2y + 3rxy2 + sy3,

ẏ = b + ex + fy + lx2 + 2mxy + ny2 + tx3 + 3ux2y + 3vxy2 + wy3.

Then, we have

UP (x, y)+V Q(x, y) = (Ux+V y+W )(Ax2+2Bxy+Cy2+Dx+Ey+F ),
and this identity provides the following 10 relations:

Eq1 = pU+tV = 0, Eq6 = (2h−E)U+(2m−D)V−2BW =0,

Eq2 = (3q−2B)U+(3u−A)V = 0, Eq7 = kU+(n−E)V −CW = 0,

Eq3 = (3r−CU)+(3v−2B)V = 0, Eq8 = (c−F )U+eV −DW = 0

Eq4 = (s−C)U + V W = 0, Eq9 = dU+(f−F )V −EW = 0,

Eq5 = (g−D)U+lV −AW = 0, Eq10 = aU+bV −FW = 0.
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We concentrate our attention on the system with 4 real distinct
infinite singular points. According to Lemma 13 we can only work
with system (26). It is clear that, via a translation of the origin of
coordinates at the point (−g/3,−n/3), we can consider the parameter
g = 0, respectively n = 0, in the polynomial p2, respectively q2. Thus,
we shall work with the following system

(28)
ẋ = a + cx + dy + 2hxy + ky2 + x3,

ẏ = b + ex + fy + lx2 + 2mxy + y3,

for which C3(x, y) = xy(x+y)(x−y). Therefore, there are the following
4 directions for the possible invariant straight lines: x = 0, y = 0,
y = −x, y = x.

We claim that, in the direction y = −x as well as in the direction
y = x, there can be only one invariant straight line. Indeed, for the
directions y = −x and y = x, we have U = 1, V = ±1 and then, from
the first 6 equations (27), we obtain

A± = C± = 1, B± = ∓1, D± = ±l−W, E± = ±2W+2h−l±2m,

and Eq7 = −3W ∓ 2h + k ± l − 2m = 0. Here, the values with a
superindex +, respectively −, correspond to V = +1, respectively
V = −1. So, from system (27), we can obtain at most one solution
W±

0 . Consequently, if system (28) possesses two couples of triples of
parallel invariant straight lines, then their directions only can be in
the directions x = 0 and y = 0. So, the claim is proved. Now we
shall investigate the conditions in order to have two couples of triples
of parallel invariant straight lines.

Direction x = 0. Then, U = 1, V = 0 and, from (27), we obtain

A = 1, B = C = 0, D = −W, E = 2h, F = W 2 + c,

Eq7 = k, Eq9 = 2hW + d, Eq10 = −W 3 − cW + a.

Thus, for the existence of three solutions Wi counted with their multi-
plicity, it is necessary and sufficient that k = h = d = 0.

Direction y = 0. In this case U = 0, V = 1 and, from (27), we obtain

A = B = 0, C = 1, D = 2m, E = −W, F = W 2 + f,

Eq5 = l, Eq8 = −2mW + e, Eq10 = −W 3 − fW + b.
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Hence, for the existence of three solutions Wi counted with their
multiplicity, it is necessary and sufficient that l = m = e = 0.

Taking into account the conditions obtained, we have the following
system

(29) ẋ = a + cx + x3, ẏ = b + fy + y3.

Now it remains to find out the conditions for the existence of one
invariant straight line in each of the directions y = −x and y = x.

Direction y ± x = 0. Considering equations (27) for system (29) in
the directions y ± x = 0, i.e., U = 1, V = ±1, we obtain:

A±= C±= 1, B±= ∓1, D±= −W, E±= ±2W, F±= W 2 + c,

Eq±7 = − 3W, Eq±9 = ∓3W 2 ± (f − c), Eq±10 = −W 3 + a ± b.

Thus, for both directions, the unique solution can be W± = 0, and in
order to have in each direction an invariant straight line it is necessary
and sufficient that f − c = a = b = 0. Thus, we have obtained the
system

(30) ẋ = cx + x3, ẏ = cy + y3,

which possesses the invariant straight lines x = 0, x = ±√−c, y = 0,
y = ±√−c, y = ±x. It is clear that the lines x = ±√−c, respectively
y = ±√−c, are real for c < 0, imaginary for c > 0, and coincide with
the axes for c = 0. Hence we obtain Figure 1 (respectively, 2; 3) for
c < 0 (respectively, c > 0; c = 0).

Remark 14. Assume α ∈ R. Then the transformation x = |α|1/2x1,
y = |α|1/2y1 and t = |α|−1t1 does not change the coefficients of the
cubic part of the generic cubic system. Whereas each coefficient of
the quadratic (respectively, linear; constant) part will be multiplied by
|α|−1/2 (respectively, by |α|−1; |α|−3/2).

By Remark 14 for system (30) we can consider c ∈ {−1, 0, 1}.
In order to obtain equivalent invariant conditions, we shall use the

constructed T-comitants Li, i = 1, 2, 3, and N1. We note that the
T-comitants Li, i = 1, 2, 3, were constructed by Calin [3].
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For system (28) we have L1 = −28 34
(
lx3 + 2mx2y − 2hxy2 − ky3

)
.

Thus, the conditions k = h = l = m = 0 are equivalent to L1 = 0.
Moreover, if for system (28) the condition L1 = 0 holds, then we obtain
L2 = 27 35x2y2

[−ex2 + 6(f − c)xy + dy2
]
, L3 = 29 35(c+f)

(
x2 + y2

)
.

This means that the condition L2 = 0 is equivalent to d = e = c−f = 0
and, hence, since f = c we obtain sign (L3) = sign (c). Therefore, for
V1 = V2 = L1 = L2 = 0, we obtain the system

(31) ẋ = a + cx + x3, ẏ = b + cy + y3

for which N1 = −2335xy(x2 + y2)(ax − by).

Remark 15. It is necessary to underline that the GL-comitants Li,
i = 1, 2, 3 in fact are T -comitants for the initial system, i.e., their
coefficients are absolute invariants under translations. But this is not
the case for the GL-comitant N1. However, for the system (31), N1 is
a CT -comitant, see [18] for detailed definitions.

Proof. Indeed, we consider the system:

(32)
ẋ1 = a + cγ + γ3 + (c + 3γ2)x1 + 3γx2

1 + x3
1,

ẏ1 = b + cδ + δ3 + (c + 3δ2)y1 + 3δy2
1 + y3

1

which is obtained from system (31) via the translation x = x1 + γ,
y = y1 + δ, where (γ, δ) is an arbitrary point of the phase plane.
For system (32) we calculate the value of the GL-comitant N1 =
−2335x1y1(x2

1 + y2
1)(ax1 − by1). As we can observe, the value of this

polynomial does not depend on the coordinates of the arbitrary point
(γ, δ) and, consequently, for system (31) condition N1 = 0 is equivalent
to a = b = 0; this is an affine invariant condition.

In short, we have the following result.

Proposition 16. A cubic system (28) possesses invariant straight
lines with total multiplicity 9 if and only if L1 = L2 = N1 = 0.
Moreover, the configuration or the potential configuration of the lines
corresponds with (3, 3, 1, 1) given in Figure 1 (respectively, 2; 3) for L3

negative (respectively, positive; zero).
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5.2 Systems with configuration (3, 2, 2, 1). In this subsection
we construct the cubic systems with 4 real infinite singular points
which possess 8 distinct invariant affine straight lines with configuration
or potential configuration (3, 2, 2, 1), having total multiplicity 9, as
always the invariant straight line of the infinity is considered.

For the configuration (3, 2, 2, 1) a cubic system has to possess three
couples of parallel invariant lines and, moreover, one couple must
increase up to a triplet. Thus, according to Lemma 4, if a cubic system
possesses 8 invariant straight lines in the configuration (3, 2, 2, 1), then
necessarily the conditions V3 = V4 = U2 = 0 hold.

A straightforward computation of the value of V3 for system (20)
yields:

V3 = 32
4∑

j=0

V3jx
4−jyj ,

where

(33)
V30 = −p(p + 3r), V31 = 2p(r − 2s − v),
V32 = 4rs + 3rq − sv − vr + 3ps − 2pq + 2s2 + 2r2 − v2,

V33 = −2q(2r − s + v), V34 = −q(q + 3s).

If pq �= 0, by (33), the conditions V3i = 0, i = 0, 1, 3, 4, yield
p = q = −3r = −3s = 3v �= 0, and then the condition V32 = −27v2 = 0
implies v = 0, a contradiction. Thus, the condition pq = 0 occurs, and
we can suppose q = 0; otherwise, we interchange x ↔ y, p ↔ q and
r ↔ s. We consider two cases: p = 0 and p �= 0.

Case p = 0. Then, we have V30 = V31 = 0, and from (33) we obtain
V32 = (2s + 2r + v)(s + r − v) = 0.

Subcase v = s + r. For system (20) we obtain

(34) V4 = 210 32(s−r)(2r + s)(2s + r)xy(x−y)(rx + ys) = − 1
20

U 2.

Via the transformation x ↔ y, r ↔ s and v ↔ v, we can consider only
two subcases: r = s and r = −2s.
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(a) We assume r = s. Then, v = 2s, and after a suitable time
rescaling we obtain the following system:

(35) x′ = p0 + p1 + p2 + x3 + 3x2y, y′ = q0 + q1 + q2 + 3xy2 + y3.

(b) If r = −2s, then v = −s and, as above, we obtain the system

(36) x′ = p0 + p1 + p2 + 2x3, y′ = q0 + q1 + q2 + 3xy2 − y3.

Subcase v = −2(s + r). Then, for system (20) we again obtain the
values of the comitants V4 and U 2 indicated in (34). Thus, we consider
only two subcases: r = s and r = −2s.

(a) If r = s, then v = −4s and, after a suitable time rescaling, we
obtain the system:

(37) x′ = p0 + p1 + p2 + x3− 3x2y, y′ = q0 + q1 + q2− 3xy2 + y3.

(b) Assume that r = −2s. Then, v = 2s, and this leads to the system

(38) x′ = p0 + p1 + p2 − 2x3 + 3x2y, y′ = q0 + q1 + q2 + y3.

Case p �= 0. From (33) we obtain p = −3r, v = r − 2s. Then, for
system (20) we again obtain the values of the comitants V4 and U 2

indicated in (34). However, as q = 0 and p �= 0 we consider three
subcases: r = s, r = −2s and s = −2r.

Subcase r = s. Then, we have v = −s, p = −3s �= 0, and this
provides the system:

(39) x′ = p0 + p1 + p2 + 2x3, y′ = q0 + q1 + q2 + 3x2y − y3.

Subcase r = −2s. Then v = −4s, p = 6s �= 0, and via a suitable
change of the time we obtain the system:

(40) x′ = p0 + p1 + p2 + 4x3− 3x2y, y′ = q0 + q1 + q2 + 3x2y − y3.
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Subcase s = −2r. Then v = 5r, p = −3r �= 0, and we get the system:

(41) x′ = p0+p1+p2+2x3−3x2y, y′ = q0+q1+q2+3x2y−6xy2+2y3.

Lemma 17. Canonical systems(35) (40) can be written via some
affine transformations to systems (41).

Proof. To prove this assertion it is sufficient to verify that the
following changes go over to the systems as it is indicated:

[x = x1 − y1, y = −y1] : (39) ⇒ (41);
[x = y1, y = 2x1, t = t1/2] : (38) ⇒ (36);
[x = x1 − 2y1, y = −2y1, t = t1/2] : (35) ⇒ (41);
[x = y1 − x1, y = −x1] : (36) ⇒ (41);
[x = x1, y = −y1] : (37) ⇒ (35);
[x = x1, y = 2y1, t = t1/2] : (40) ⇒ (41).

Remark 18. We note that for system (35) the comitant V1 =
xy(x + y)2 �= 0, and according to Lemma 1 this system cannot possess
two triples of parallel invariant lines.

Remark 19. As it follows from (33) and (34) for the system with 4
real distinct infinite singular points the conditions V3 = V4 = 0 imply
U 2 = 0, as well as U 3 = 0, because for systems (35) (41) we have
U 3 = 0.

According to Lemma 17 we can work toward studying the configura-
tion (3, 2, 2, 1) with the system (36). It is clear that, via translation of
the origin of coordinates at the point (−g/6,−m/3), we can consider
g = m = 0. Thus, we only need to consider the system

(42)
ẋ = a + cx + dy + 2hxy + ky2 + 2x3,

ẏ = b + ex + fy + lx2 + ny2 + 3xy2 − y3,
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for which C3(x, y) = xy(x − y)(2x − y). Therefore, there are the
following 4 directions for the possible invariant straight lines: x = 0,
y = 0, y = x, y = 2x.

Direction y = x. We show that in this direction it can be only one
invariant straight line. Indeed, for U = 1 and V = −1 from the first 6
equations (27) we obtain

A = B = 2, C = −1, D = −2W − l, E = −4W + 2h − l,

and Eq7 = −3W + 2h + k − l − n. So, from system (27) we can obtain
at most one solution W0.

Direction x = 0. Then U = 1, V = 0 and, from (28), we obtain

A = 2, B = C = 0, D = −W, E = 2h, F = 2W 2 + c,

Eq7 = k, Eq9 = −2hW + d, Eq10 = −2W 3 − cW + a.

Thus, for the existence of at least two solutions Wi, it is necessary
k = h = d = 0. Then there exist 3 invariant straight lines, which can
coincide, in the direction x = 0. So, in what follows we shall suppose
k = h = d = 0.

Direction y = 0. In this case U = 0, V = 1 and, from (27), we obtain

A = 0, B = 3, C = −1, D = −3W, E = W + n,

F = −W 2 − nW + f,

Eq5 = l, Eq9 = 3W 2 + e, Eq10 = W 3 + nW 2 − fW + b.

Thus, we obtain l = 0, and

Eq9 = 3W 2 + e = 0, Eq10 = W 3 + nW 2 − fW + b = 0.

For two common solutions Wi, according to Lemma 11, we obtain the
relations:

R
(0)
W (Eq9, Eq10) = − 3(3b − en)2 − e(e + 3f)2 = 0,

R
(1)
W (Eq9, Eq10) = 3(e + 3f) = 0.
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Hence, we obtain e = −3f and b = en/3, and the system (we set
n1 = n/3)

(43) ẋ = a + cx + 2x3, ẏ = en1 − 3fx + fy + 3n1y
2+ 3xy2− y3.

Direction 2x−y = 0. Then U = 2, V = −1 and, from (27), we obtain

A = 2, B = 1, C = −1, D = −W + 6n1, E = −W + 3n1,

F = −W 2 + 3n1W + f,

Eq5 = −12n1, Eq9 = 3W 2 − 12n1W + 2c + f,

Eq10 = W 3 − 3n1W
2 − fW + 2a − en1.

So, n1 = 0, and we obtain the following system of equations

Eq9 = 3W 2 + 2c + f = 0, Eq10 = W 3 − fW + 2a = 0.

For two common solutions Wi, by Lemma 11, we obtain the relations:

R
(0)
W (Eq9, Eq10) = − 4

[
27a2 + (2c + f)(c + 2f)2

]
= 0,

R
(1)
W (Eq9, Eq10) = 6(c + 2f) = 0.

Hence, we obtain c + 2f = a = 0 and, from (43), the following system

(44) ẋ = − 2fx + 2x3, ẏ = − 3fx + fy + 3xy2 − y3,

which possesses the invariant straight lines x = 0, x = ±√
f , y = ±√

f ,
y = x, 2x − y = ±√

f .

We note that, by Remark 14, we can consider f =∈ {−1, 0, 1}. Thus,
we obtain that system (42) possesses the indicated invariant straight
lines if and only if h = k = l = n = 0, d = c + 2f = e + 3f = 0,
a = b = 0. We shall prove that these conditions are equivalent
to L1 = L2 = N1 = 0. Indeed, for system (42) we have L1 =
29 34

[
lx3 + 2(h + n)x2y − 3hxy2 − ky3

]
. Thus, the conditions k = h =

l = n = 0 are equivalent to L1 = 0. Next, for system (42) with L1 = 0
we obtain L2 = 28 35

[
(5e − 8c − f)x2+ (3c + 7d + 6f)xy − 5dy2

]
and

L3 = −210 36(x − y)2(c + f). Therefore, the condition L2 = 0 is
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equivalent to d = c + 2f = e + 3f = 0, and for c = −2f we obtain that
sign (L3) = sign (f).

Finally, for system (42) with L1 = L2 = 0, we calculate

N1 = 2235xy(2x − y)
[
(2a + 5b)x2 − (5a + 2b) + (b − a)y2

]
,

and hence, the conditions a = b = 0 are equivalent to N1 = 0. In the
same manner as above, see Remark 15, it can be verified that the value
of the CT -comitant N1 will not be changed after a translation of the
origin of coordinates of the phase plane of the system

ẋ = a − 2fx + 2x3, ẏ = b − 3fx + fy + 3xy2 − y3,

at an arbitrary point (γ, δ). Thus, considering Remark 19, we obtain
the next result.

Proposition 20. Cubic system (42) possesses invariant straight
lines with total multiplicity 9 if and only if L1 = L2 = N1 = 0.
Moreover, the configuration or the potential configuration of the lines
corresponds with (3, 2, 2, 1) given in Figure 4 (respectively, 5; 6) for L3

positive (respectively, negative; zero).

From Lemma 5 and Propositions 16 and 20, the next theorem follows.

Theorem 21. For cubic system (2) we assume that the conditions
D1 > 0, D2 > 0, D3 > 0 hold, i.e., the system has 4 real infinite
singular points. Then, this system will possess the maximum number
of invariant straight lines (with total multiplicity 9) if and only if one
of the following sequences of conditions holds:

V1 = V2 = L1 = L2 = N1 = 0;(A1)
V3 = V4 = L1 = L2 = N1 = 0.(A2)

Moreover, the configuration of the straight lines corresponds to Figure
1, 2 or 3 for (A1) if L3 is negative, positive or zero, respectively; and to
Figure 4, 5 or 6 for (A2) if L3 is positive, negative or zero, respectively.
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6. Cubic systems with 2 simple real and 2 simple imaginary
roots of C3. In this case, from (8), the cubic system after a linear
transformation becomes:

(45)
x′ = p0 + p1(x, y) + p2(x, y) + (u + 1)x3 + (s + v)x2y + rxy2,

y′ = q0 + q1(x, y) + q2(x, y) − sx3 + ux2y + vxy2 + (r − 1)y3.

For system (45) we obtain C3 = x(sx + y)(x2 + y2), and hence, infinite
singular points are situated at the “ends” of the straight lines: x = 0,
y = −sx and y = ± ix.

In this section we shall construct the cubic systems of the form
(45) which can possess 8 invariant straight lines with the configuration
(3, 3, 1, 1) or (3, 2, 2, 1).

6.1 Systems with the configuration (3, 3, 1, 1). In this sub-
section we construct the cubic system with 2 real and 2 imaginary
infinite singular points which possess 8 invariant affine straight lines
with configuration or potential configuration (3, 3, 1, 1), having total
multiplicity 9, as always the invariant straight line of the infinity is
considered.

By Lemma 1, if a cubic system possesses 8 invariant straight lines in
the configuration (3, 3, 1, 1), then the conditions V1 = V2 = U 1 = 0
hold. A straightforward computation of the values of V1 and V2 for
system (45) yields:

V1 = 16
4∑

j=0

V1jx
4−jyj , V2 = 8

2∑
j=0

V2jx
2−jyj ,

where
(46)

V10 = 3s2 + 2u2 + 3u, V14 = r(2r − 3),
V11 = 2su + 4uv + 9s + 3v, V20 = 12sr − 9s − 3v + 2su,

V12 = 2sv + 4ur − s2 + 3r − 3u + 2v2, V21 = 6r − 2s2 − 4sv + 6u,

V13 = 2r(s + 2v) − 3(s + v), V22 = 2sr − 3s − 3v.

Consequently, relations V1 = V2 = 0 imply

(47)
V14 = r(2r − 3) = 0, V13 − V22 = 4rv = 0,

V11 + V20 = 2(2r − 3)(s + v) = 0.
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Thus, we shall consider two cases: r = 0 and r �= 0.

Case r = 0. From (47) we obtain v = −s, and then the equation
V10 + V12 = 2(u2 + s2) = 0 implies u = s = 0, and after the time
rescaling t → t/3, we get the system:

(48) x′ = p0 + p1 + p2 + x3, y′ = q0 + q1 + q2 − y3,

for which U 1(a) = 0.

Case r �= 0. Then, from (47) we obtain v = 0, r = 3/2 and then we
have 2V10 + V21 = (2u + 3)2 + s2 = 0. Hence, s = 0, u = −3/2, and
after the time rescaling t → −2t/3, we obtain the system

(49) x′ = p0 + p1 + p2 + x3 − 3xy2, y′ = q0 + q1 + q2 + 3x2y − y3,

for which U 1(a) = 0. It is easy to check that systems (48) and (49) are
not linearly equivalent. This immediately follows from the following
remark.

Remark 22. For systems (48) and (49) we have L4 = α(x4 + 6x2y2 +
y4), where α = −6 for system (48) and α = 24 for system (49). Since
the T-comitant L4 is of degree 2 in the coefficients of the initial system
(2) and is of zero weight, i.e., is an absolute T-comitant, when the
conditions V1 = V2 = 0 are satisfied we obtain system (48) for L4 < 0
and system (49) for L4 > 0.

As it has been proved above, we must examine systems (48) and (49).

System (48). Evidently via translation of the origin of coordinates at
the point (−g/3,−n/3) we can consider g = n = 0. Thus, we examine
the system

(50)
ẋ = a + cx + dy + 2hxy + ky2 + x3,

ẏ = b + ex + fy + lx2 + 2mxy − y3,

for which C3(x, y) = xy(x2 + y2). Therefore, there are the following
4 directions for the possible invariant straight lines: x = 0, y = 0,
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y = ±ix. We show that in each imaginary direction y = ±ix there is
only one invariant straight line. Indeed, to show this it is sufficient to
examine only the direction x+ iy = 0, i.e., U = 1 and V = i. From the
first 6 equations (27) we obtain

A = 1, B = −i, C = −1, D = −W−1, E = 2h+i(2W+2m+1),

and Eq7 = 3W + 2m + k + 1 − 2ih. So, from (27) we obtain at most
one solution W0. We examine other directions in each of which it has
to be one triple of parallel lines.

Direction x = 0. Then, U = 1, V = 0 and, from (27), we obtain

A = 1, B = C = 0, D = −W, E = 2h, F = W 2 + c,

Eq7 = k, Eq9 = −2hW + d, Eq10 = −W 3 − cW + a.

Thus, for the existence of three solutions Wi we must have k = h =
d = 0; these three solutions can coincide in the direction x = 0. So, in
what follows we shall suppose k = h = d = 0.

Direction y = 0. In this case U = 0, V = 1 and, again from (27), we
obtain

A = B = 0, C = −1, D = 2m, E = W, F = −W 2 + f,

Eq5 = l, Eq8 = −2mW + e, Eq10 = W 3 − fW + b.

Hence, for the existence of one triple of parallel lines in this direction
it is necessary that l = m = e = 0. Thus, we obtain the system

(51) ẋ = a + cx + x3, ẏ = b + fy − y3,

for which it is necessary to examine the imaginary directions.

Direction y + ix = 0. We have U = 1, V = i and, from (27), we
obtain

A = 1, B = −i, C = −1, D = −W, E = 2iW, F = W 2+W +c,

Eq7 = 3W, Eq8 = 3W 2 + c − f, Eq10 = 2W 3 − fW + a + ib.
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So, there can exist a unique solution W0 = 0. Hence, since the system
is real we get up the conditions c − f = a = b = 0. Thus, we obtain
the system

(52) ẋ = cx + x3, ẏ = cy − y3,

which possesses the invariant lines: x = 0, y = 0, x = ±√−c, y = ±√
c,

y = ±ix.

We can consider c ∈ {0, 1}. Indeed, firstly we can suppose c ≥ 0,
otherwise the transformation x ↔ y, t ↔ −t can be used. Then,
for c > 0, we can apply Remark 14. Thus, we obtain that system
(50) possesses the indicated invariant straight lines if and only if the
following conditions hold: h = k = l = m = 0, d = e = c − f =
0, a = b = 0. We prove that these conditions are equivalent to
L1 = L2 = N1 = 0. Indeed, for system (50) we have L1 =
28 34

(
lx3 + 2mx2y − 2hxy2 − ky3

)
. Hence, the conditions k = h =

l = m = 0 are equivalent to L1 = 0. Next, for system (50)
with L1 = 0 we obtain L2 = 27 35

[
ex2 + 6(c − f)xy − dy2

]
, L3 =

29 35(c+ f)
(
x2 − y2

)
. Therefore, the condition L2 = 0 is equivalent to

d = e = c − f = 0, and for f = c we obtain that the condition c = 0 is
equivalent to L3 = 0.

Finally, if for system (50) the conditions L1 = L2 = 0 hold, then we
obtain the system

(53) ẋ = a + cx + x3, ẏ = b + cy − y3,

for which we calculate N1 = 23 35xy
(
x2 − y2

)
(ax − by) . Moreover, for

the system

ẋ = a + cγ + γ3 + (c + 3γ2)x1 + 3γx2
1 + x3

1,

ẏ = b + cδ − δ3 + (c + 3δ2)y1 − 3δy2
1 − y3

1 ,

which is obtained from system (53) via translation x = x1 + γ,
y = y1 + δ, where (γ, δ) is an arbitrary point of the phase plane of
system (53), we have

N1 (a(γ, δ), x1, y1)) = 23 35x1y1

(
x2

1 − y2
1

)
(ax1 − b1y) .

We can observe that the value of this polynomial does not depend
on the coordinates of the arbitrary point (γ, δ) and, consequently for
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system (53) condition N1 = 0 is equivalent to a = b = 0, and this
condition is affine invariant. Thus, we have the next result.

Proposition 23. A cubic system (48) possesses invariant straight
lines with total multiplicity 9 if and only if L1 = L2 = N1 = 0.
Moreover, the configuration or the potential configuration of the lines
corresponds with (3, 3, 1, 1) given in Figure 7 for L3 �= 0, and in Figure 8
for L3 = 0.

System (49). Doing a translation of the origin of coordinates at the
point (−g/3,−n/3), we can consider g = n = 0. Thus, we have the
system

(54)
ẋ = a + cx + dy + 2hxy + ky2 + x3 − 3xy2,

ẏ = b + ex + fy + lx2 + 2mxy + 3x2y − y3,

for which C3(x, y) = −2xy(x2 + y2). Therefore, there are the following
4 directions for possible invariant straight lines: x = 0, y = 0, y = ±ix.
We shall show that in the direction x = 0 as well as in the direction
y = 0 there can exist at most one invariant straight line. Indeed, for
the direction x = 0, i.e., U = 1, V = 0, from the first 7 equations (27)
we obtain A = 1, B = 0, C = −3, D = −W , E = 2h, Eq7 = 3W + k.
Whereas for the direction y = 0, i.e., U = 0, V = 1, we have A = 3,
B = 0, C = −1, D = 2m, E = W , Eq5 = −3W + l. Thus, in both
cases there can exist only one line in each direction considered.

We examine the imaginary directions, and since the system is real it
is sufficient to consider only one direction.

Direction x + iy = 0. Then U = 1, V = i and, from (27) we obtain

A = 1, B = 2i, C = −1, D = −W + il, E = −i(W + k),
F = W 2 − ilW + c + ie,

Eq6 = l + 2h + i(k + 2m), Eq9 = (ik − l)W + i(f − c) + d + e,

Eq10 = −W 3 + ilW 2 − (c + ie)W + a + ib.

Thus, for the existence of three solutions Wi, it is necessary that
l + 2h = k + 2m = k = l = c − f = d + e = 0, i.e., l = k = h = m = 0,
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f = c and d = −e. In this case we get the system

ẋ = a + cx − ey + x3 − 3xy2, ẏ = b + ex + cy + 3x2y − y3,

and we have to examine the real directions.

Direction x = 0. In this case U = 1, V = 0, and from (27), we obtain

A = 1, B = 0, C = −3, D = −W, E = 0, F = W 2 + c,

Eq7 = 3W, Eq9 = −e, Eq10 = −W 3 − cW + a.

So, there can exist only one solution W0 = 0, and for the existence of
one invariant straight line with the direction x = 0, it is necessary and
sufficient that e = a = 0.

Direction y = 0. Then U = 0, V = 1 and, from (27), we obtain

A = 3, B = 0, C = −1, D = 2m, E = W, F = −W 2 + c,

Eq5 = −3W, Eq10 = W 3 − cW + b.

So, again, there is only one solution W0 = 0, and for the existence of
the invariant straight line with the direction y = 0, it is necessary and
sufficient that b = 0. Thus, we obtain the system

(55) ẋ = cx + x3 − 3xy2, ẏ = cy + 3x2y − y3,

which possesses the invariant straight lines: x = 0, y = 0, x + iy =
±√−c, x − iy = ±√−c, x ± iy = 0. We can consider c ∈ {0, 1}.
Indeed, first we can suppose c ≥ 0, otherwise the transformation
x ↔ y, t ↔ −t can be used. Then, for c > 0 we can apply
Remark 14. Thus, we obtain that system (54) possesses the indicated
invariant straight lines if and only if h = k = l = m = 0, d = e =
c − f = 0, a = b = 0. We shall prove that these conditions are
equivalent to L1 = L2 = N1 = 0. Indeed, for system (54) we have
L1 = 28 34

[
(2h + 3l)x3 + (k + 6m)x2y − (6h + l)xy2 − (3k + 2m)y3

]
.

Hence, the conditions k = h = l = m = 0 are equivalent to L1 = 0.
Next, for system (54) with L1 = 0, we obtain

L2 = 28 35
[
(7d − 5e)x2 + 2(c − f)xy + (5d − 7e)y2

]
,

L3 = 214 35(c + f)
(
x2 − y2

)
.
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Therefore, the condition L2 = 0 is equivalent to d = e = c−f = 0, and
for f = c the condition c = 0 is equivalent to L3 = 0.

Finally, system (54) for L1 = L2 = 0 becomes the system

(56) ẋ = a + cx + x3 − 3xy2, ẏ = b + cy + 3x2y − y3,

for which we calculate N1 = 24 35
(
x4 − y4

)
(ax + by). Moreover, for

the system

ẋ=(a + cγ + γ3−3γδ2) + (c + 3γ2−3δ2)x1−6γδ

+ 3γx2
1−6δx1y1−3γy2

1 + x3
1−3x1y

2
1 ,

ẏ=(b + cδ + 3γ2δ − δ3) + (c + 3γ2 − 3δ2)y1 + 3δx2
1

+ 6γx1y1 − 3δy2
1 + 3x2

1y1 − y3
1 ,

which is obtained from system (56) via the translation x = x1 + γ,
y = y1 + δ, where (γ, δ) is an arbitrary point of the phase plane of
system (56), we have N1(a(γ, δ), x1, y1) = 24 35

(
x4

1 − y4
1

)
(ax1 + by1).

So, the value of this polynomial does not depend on the coordinates
of the arbitrary point (γ, δ) and, consequently, for system (56) the
condition N1 = 0 is equivalent to a = b = 0, and this condition is affine
invariant. Thus, we get the following result.

Proposition 24. A cubic system (49) possesses invariant straight
lines with total multiplicity 9 if and only if L1 = L2 = N1 = 0.
Moreover, the configuration or the potential configuration of the lines
corresponds with (3, 3, 1, 1) given in Figure 9 for L3 �= 0 or in
Figure 10 for L3 = 0.

6.2 Systems with configuration (3, 2, 2, 1). In this subsection we
construct the cubic systems with 2 real and 2 imaginary infinite singular
points which possess 8 invariant affine straight lines with configuration
or potential configuration (3, 2, 2, 1), having total multiplicity 9.

By Lemma 4 if a cubic system possesses 8 invariant straight lines
with configuration (3, 2, 2, 1), then the conditions V3 = V4 = U 2 = 0
hold.
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We consider again system (45). A straightforward computation of
the value of V3 for this system yields:

V3 = 32
4∑

j=0

V3jx
4−jyj ,

where

(57)

V30 = − 3s2 − 3u + 3sv − u2,

V31 = 6sr − 4su − 2uv − 18s,

V32 = − sv − 2ur − 9 + 2s2 + 3r − 3u − v2,

V33 = 2r(s − v), V34 = r(3 − r).

So, we need to consider the cases: r �= 0 and r = 0.

If r �= 0 then, from (57), we have v = s, r = 3, and then

V30 = −u(u + 3) = 0, V31 = − 6su = 0, V32 = − 9u = 0.

Hence, u = 0 and for system (45) we have:

(58) V4 = 211 32s(s2 + 9)x(x2 + y2)(sx + y) = − 1
20

U 2.

Consequently condition V4 = 0 implies s = 0, and this provides, after
the rescaling of the time t → t/3, the system

(59) x′ = p0 + p1 + p2 + x3 + 3xy2, y′ = q0 + q1 + q2 + 2y3.

For r = 0, from (57), we obtain V32 = −sv − 9 + 2s2 − 3u − v2 = 0.
Hence u = (2s2 − sv − v2 − 9)/3. Then, by (57), we obtain

V30 = − 1
9

(s − v)2
[
(2s + v)2 + 9

]
= 0,

V31 = − 2
3

(s − v)
[
(2s + v)2 + 9

]
= 0,

that implies v = s, and then u = −3. Now, calculating the polynomials
V4 = 211 32s(s2 +9)x(x2 +y2)(sx+y) = −U 2/20 = 0, we obtain s = 0.
Thus, via the time rescaling t → −t/3, we obtain the system

(60) x′ = p0 + p1 + p2 + 2x3, y′ = q0 + q1 + q2 + 3x2y + y3.
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Evidently, systems (59) and (60) are affine equivalent via the transfor-
mation x ↔ y.

We consider system (60). It is clear that, via translation of the origin
of coordinates at the point (−g/6,−n/3), we can consider g = n = 0.
Thus, we shall examine the system

(61)
ẋ = a + cx + dy + 2hxy + ky2 + 2x3,

ẏ = b + ex + fy + lx2 + 2mxy + 3x2y + y3,

for which C3(x, y) = −xy(x2 + y2). Therefore, there are the following
4 directions for the possible invariant straight lines: x = 0, y = 0,
y = ±ix. Since we are looking for the configuration (3, 2, 2, 1) in
system (61), it follows that the two couples of parallel invariant lines
must be in the imaginary directions.

First we show that in the direction y = 0 there cannot be a triple
of parallel lines. Indeed, for U = 0 and V = 1, from the first five
equations of (27), we obtain

A = 3, B = 0, C = 1, Eq5 = −3W + l = 0

and, hence, there can exist at most one solution of system (27).

Direction x = 0. Then U = 1, V = 0 and, from (27), we obtain

A = 2, B = C = 0, D = −2W, E = 2h, F = 2W 2 + c,

Eq7 = k, Eq9 = −2hW + d, Eq10 = −2W 3 − cW + a.

Thus, for the existence of three solutions Wi, which can coincide, it is
necessary and sufficient k = h = d = 0, and in what follows we shall
assume that these conditions hold.

Direction y + ix = 0. We have U = 1, V = i and, from (27), we
obtain

A = 2, B = i, C = 1, D = − 2W + il, E = iW, F = −W 2 + f,

Eq6 = l + 2im, Eq8 = 3W 2 − ilW + c − f + ie,

Eq10 = W 3 − fW + a + ib.
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Thus, since the considered cubic system is real, for the existence of
two solutions Wi it is necessary that l = m = 0. Then, according
to Lemma 11, having two common solutions Wi it is necessary that
R

(1)
W (Eq8, Eq10) = 3(c+2f+ie) = 0. Hence, since the system is real, the

last condition yields e = 0, c = −2f . Therefore, R
(0)
W = 27(a+ ib)2 = 0,

that gives a = b = 0. It remains to note that the obtained conditions
are sufficient for the existence of an invariant straight line in the real
direction y = 0, as it is observed below. Thus, we obtain the system

(62) ẋ = − 2fx + 2x3, ẏ = fy + 3x2y + y3,

which possesses the invariant straight lines: x = 0, y = 0, x = ±√
f ,

x − iy = ±√
f , x + iy = ±√

f . It is clear that the lines x = ±√
f ,

respectively y = ±√
f , are real for f > 0, imaginary for f < 0, and

coincide for f = 0. Hence, we obtain Figure 11, respectively 12 and
13, for f > 0, respectively for f < 0 and f = 0. We note, that by
Remark 14 we can consider f ∈ {−1, 0, 1}.

In short, we obtain that system (61) possesses the indicated invariant
straight lines if and only if h = k = l = m = 0, d = e =
c + 2f = 0 and a = b = 0. We shall prove that these conditions
are equivalent to L1 = L2 = N1 = 0. Indeed, for system (61), we have
L1 = 29 34

[
(h − l)x3 − 2mx2y + 3hxy2 + ky3

]
. Thus, the conditions

k = h = l = m = 0 are equivalent to L1 = 0. Next, for system (61)
with L1 = 0, we obtain

L2 = 28 35
[
(7d−5e)x2− 3(c+2f)xy+5dy2

]
, L3 = 210 36(c +f)y2.

Hence, the condition L2 = 0 is equivalent to d = c + 2f = e + 3f = 0
and, for c = −2f , we obtain sign (L3) = −sign (f).

Finally, for system (61) with L1 = L2 = 0, we calculate N1 =
−2335x(x2+y2)(4bx2−7axy−by2), and hence, the conditions a = b = 0
are equivalent to N1 = 0. Moreover, the GL-comitant N1 is a CT -
comitant for system (61) when the conditions L1 = L2 = 0 are satisfied.
Thus, the following result holds.
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Proposition 25. A cubic system (61) possesses invariant straight
lines with total multiplicity 9 if and only if L1 = L2 = N1 = 0.
Moreover, the configuration or the potential configuration of the lines
corresponds with (3, 2, 2, 1) given in Figure 11 (respectively 12; 13) for
L3 negative (respectively, positive; zero).

From Lemma 5 and Propositions 23, 24 and 25, the next theorem
follows.

Theorem 26. We assume that, for a cubic system (2), the condition
D1 < 0 holds, i.e., there are 2 real and 2 imaginary infinite singular
points. Then, this system possesses the maximum number of invariant
straight lines, with total multiplicity 9, if and only if one of the following
sequences of conditions holds:

V1 = V2 = L1 = L2 = N1 = 0;(B1)

V3 = V4 = L1 = L2 = N1 = 0.(B2)

Moreover, the configuration of the lines corresponds to Figures 7, 8,
9 or 10 for (B1) if |L3|L4 < 0, L3 = 0 and L4 < 0, |L3|L4 > 0, or
L3 = 0 and L4 > 0, respectively; to Figures 11, 12 or 13 for (B2) if L3

negative, positive or zero, respectively.

From Theorems 21 and 26, and the fact that the GL-comitants L1

and L2 are T -comitants for the initial cubic system (2), we obtain the
next result.

Lemma 27. The conditions L1 = L2 = 0 are necessary in order that
a cubic system possesses the maximum number of the invariant straight
lines counted with their multiplicities.

Proof. The lemma is obvious for cubic systems having a generic
behavior at infinity, i.e., the multiplicity of all singular points at infinity
as roots of the polynomial C3 is one. Then, by continuity, it follows for
the cubic systems having non-generic behavior at infinity.
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7. Cubic systems with 1 triple and 1 simple real roots of C3.
By (12) a cubic system having one triple and one real distinct infinite
singular points via a linear transformation becomes the system:

(63)
x′ = p0 + p1(x, y) + p2(x, y) + 3(u + 1)x3 + 3vx2y + 3rxy2,

y′ = q0 + q1(x, y) + q2(x, y) + 3ux2y + 3vxy2 + 3ry3.

For system (63) we have C3 = 3x3y. Hence, the infinite singular points
are situated at the “ends” of the following straight lines: x = 0 and
y = 0.

The aim of this section is to construct cubic systems of the form (63)
which possess invariant straight lines with total multiplicity 9, having
8 affine lines with potential configuration (3, 3, 1, 1) or (3, 2, 2, 1).

7.1 Systems with the potential configuration (3, 3, 1, 1). By
Lemma 1, if a cubic system possesses 8 invariant straight lines with
configuration or potential configuration (3, 3, 1, 1), then the conditions
V1 = V2 = U 1 = 0 hold.

A straightforward computation of the value of V1 for system (63)
provides that V1 is equal to

16
4∑

j=0

V1jx
4−jyj ,

where

V10 = u(2u + 3), V12 = 4ru + 3r + 2v2,

V11 = v(4u + 3), V13 = 4vr, V14 = 2r2.

Consequently, the relation V1 = 0 implies v = r = 0 and u(2u+3) = 0,
and we have to consider two subcases u = 0 and u = −3/2.

For u = 0, by the time rescaling t → t/3, we obtain the system

(64) x′ = p0 + p1 + p2 + x3, y′ = q0 + q1 + q2,

whereas, for u = −3/2, after the time rescaling t → −2t/3, we have
the system

(65) x′ = p0 + p1 + p2 + x3, y′ = q0 + q1 + q2 + 3x2y.
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It has to be underlined that for systems (64) and (65) the relations
V2(a) = U 1(a) = 0 hold. On the other hand, by calculating the
value of the T -comitant L4 for system (64), respectively (65), we obtain
L4 = −6x4, respectively L4 = 24x4. Hence, we get the next result.

Proposition 28. If, for a cubic system the conditions D1 = D3 =
D4 = 0, D2 �= 0 and V1 = 0 hold, then via a linear transformation and
time rescaling this system becomes the form (64) for L4 < 0, and the
system (65) for L4 > 0.

Remark 29. We note that, for system (64), the relations V3 = V4 =
U 2 = 0 are also satisfied. By Lemma 4 this system can present the
potential configuration (3, 2, 2, 1).

As it was proved above, we must examine systems (64) and (65).

System (64). Via the translation of the origin of coordinates at the
point (−g/3, 0), we can consider g = 0 and, hence, we get the system

(66)
ẋ = a + cx + dy + 2hxy + ky2 + x3,

ẏ = b + ex + fy + lx2 + 2mxy + ny2.

For this system we have C3(x, y) = x3y, and therefore, there exist two
directions for the possible invariant straight lines: x = 0 and y = 0.

Direction x = 0. In this case U = 1, V = 0 and, from (27), we obtain

A = 1, B = C = 0, D = −W, E = 2h, F = W 2 + c,

Eq7 = k, Eq9 = −2hW + d, Eq10 = −W 3 − cW + a.

So, in order to have the maximum number of invariant straight lines
we obtain the conditions: k = h = d = 0.

Direction y = 0. In this case U = 0, V = 1 and, from (27), we obtain

A = B = C = 0, D = 2m, E = n, F = −nW + f,

Eq5 = l, Eq8 = −2mW + e, Eq10 = nW 2 − fW + b.



PLANAR CUBIC POLYNOMIAL DIFFERENTIAL SYSTEMS 1347

So, we get the conditions: l = m = e = 0. Thus, system (66) becomes

ẋ = a + cx + x3, ẏ = b + fy + ny2,

for which we calculate L1 = 0, L2 = −2835n2xy. Hence, since in order
to reach the total multiplicity 9, by Lemma 27, it is necessary that
L2 = 0, we obtain the additional condition: n = 0. Therefore, system
(64) goes over to

(67) ẋ = a + cx + x3, ẏ = b + fy.

By Lemmas 8 and 9, in order to determine the possible invariant
straight lines we shall use the affine comitants Gi, i = 1, 2, 3. We
consider the homogenized system

(68) Ẋ = aZ3 + cXZ2 + X3, Ẏ = bZ3 + fY Z2,

associated to system (67) and calculate the following polynomial:

H(a, X, Y, Z) = gcd(G1,G2,G3) = 2Z2(fY + Zb)(aZ3 + cXZ2 + X3).

Therefore, by Lemmas 8 and 9, we obtain that system (68) has 7
invariant straight lines (counted with their multiplicities) Z = 0,
fY + Zb = 0, aZ3 + cXZ2 + X3 = 0. We observe that Z = 0 has
multiplicity 3. So, for the total multiplicity 9, by Lemmas 8 and 9, the
polynomial H(a, X, Y, Z) must have degree 8. In order to find out the
conditions to reach this situation we shall calculate for system (68) the
polynomials:

(69)
G1/H = 3X2 + (c − f)Z2 = T (X, Z),
G3/H = 12(aZ3 + cXZ2 + X3)2 = 12S2(X, Z).

From Lemma 10, in order to have the maximum number of invariant
straight lines, it is necessary that T (X, Z) | S2(X, Z). We consider two
subcases: c − f �= 0 and c − f = 0.

Case c−f �= 0. In this case polynomial T (X, Z) has two distinct fac-
tors, and hence, it is necessary that T (X, Z) | S(X, Z). By Lemma 12,
we have

R
(1)
X (T, S) = 3(2c + f)Z2 = 0,

R
(0)
X (T, S) = − [

27a2 + (2c + f)2(c − f)
]

= 0,
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and these conditions yield 2c + f = a = 0. Thus, f = −2c �= 0 (by
condition c − f �= 0), and then we can consider b = 0 via a translation
of the origin of coordinates at the point (0, b/(2c)). As a result, we
obtain the system

(70) ẋ = cx + x3, ẏ = − 2cy,

which possesses the invariant straight lines: x = 0, y = 0, x = ±√−c.
It is clear that x = ±√−c are real for c < 0 and imaginary for c > 0.
Hence, we obtain Figure 14 for c < 0 and Figure 15 for c > 0.

By Remark 14 we can consider c ∈ {−1, 1}. Since, for system
(70), the conditions V1 = V2 = 0 hold as well as the conditions
V3 = V4 = 0, we conclude that this system has invariant straight lines
with total multiplicity 9 and presents both potential configurations:
(3, 3, 1, 1) and (3, 2, 2, 1). This is proved by the four perturbed
systems constructed below.

Subcase c = −1. The system

(71) ẋ = −x + x3, ẏ = 2y + 3εy2 + ε2y3,

with the invariant straight lines x = 0, y = 0, x = ±1, εy + 1 = 0,
εy + 2 = 0 and εy ± x + 1 = 0, has the configuration (3, 3, 1, 1); and
the system

(72) ẋ = −x + x3 − 3ε2xy2, ẏ = 2y − 2ε2y3,

with the invariant straight lines x = 0, y = 0, εy = ±1, x + εy = ±1
and x − εy = ±1, has the configuration (3, 2, 2, 1).

Subcase c = 1. The system

(73) ẋ = x + x3, ẏ = −2y + 3εy2 − ε2y3,

with the invariant straight lines x = 0, y = 0, εy = 1, εy = 2 and
εy ± ix = 1, x = ±i, has the configuration (3, 3, 1, 1); and the system

(74) ẋ = x + x3 − 3ε2xy2, ẏ = − 2y − 2ε2y3,
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with the invariant straight lines x = 0, y = 0, εy = ±1, εy + ix = ±i,
εy − ix = ±i has the configuration (3, 2, 2, 1).

Case c − f = 0. From (69) it follows that polynomial R(X, Z) has
the double root X = 0 and, by virtue of condition R(X, Z) | S2(X, Z),
it is necessary that a = 0. Thus, we obtain the system

(75) ẋ = cx + x3, ẏ = b + cy,

and, by Remark 14, we can consider c ∈ {−1, 0, 1}. Moreover, if c �= 0,
then the translation of the origin of coordinates at the point (0,−b/c)
implies b = 0; and, for c = 0, by replacing y → by, we can set b = 1.
So, we obtain Figure 16 (respectively, Figure 17; 18) for c = −1, b = 0
(respectively for c = 1, b = 0; c = 0, b = 1).

Since for system (75) the conditions V1 = V2 = 0 hold as well
as the conditions V3 = V4 = 0, we conclude that this system has
invariant straight lines with total multiplicity 9 and presents both
potential configurations: (3, 3, 1, 1) and (3, 2, 2, 1). It remains to
construct the six perturbed systems which will prove the realization
of all possibilities.

Subcase c = −1. The system

(76) ẋ = −x + x3, ẏ = − y + ε2y3,

with the invariant straight lines x = 0, y = 0, x = ±1, εy = ±1,
x − εy = 0 and x + εy = 0, has the configuration (3, 3, 1, 1); and the
system

(77)
ẋ = (4ε2 − 1)x − 6εxy + x3 − 12ε2xy2,

ẏ = − 2ε − (8ε2 + 1)y − 6εy2 − 8ε2y3,

with the invariant straight lines x = 0, 4εy = −1, 2x + 4εy + 1 =
±√

1 − 16ε2, 2εy2 + y = −2ε, 2x − 4εy − 1 = ±√
1 − 16ε2, has the

configuration (3, 2, 2, 1).

Subcase c = 1. The system

(78) ẋ = x + x3, ẏ = y + ε2y3,
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with the invariant straight lines x = 0, y = 0, x = ±i, εy = ±i,
x − εy = 0 and x + εy = 0, has the configuration (3, 3, 1, 1); and the
system

(79) ẋ = x + 6εxy + x3 + 12ε2xy2, ẏ = y + 6εy2 + 8ε2y3,

with the invariant straight lines x = 0, y = 0, 4εy = −1, 2εy = −1,
2εy ± ix = 0 and 2εy ± ix = −1, has the configuration (3, 2, 2, 1).

Subcase c = 0. The system

(80)
ẋ = 18ε2x + 9εx2 + x3,

ẏ = 1 − 6ε2y − 24ε4y2 + 64ε6y3,

with the invariant straight lines x = 0, x = −3ε, x = −6ε, x + 8ε3y =
−2ε, 8ε2y = 1, 4ε2y = −1, 2ε2y = 1 and x − 8ε3y = −4ε, has the
configuration (3, 3, 1, 1); and the system

(81)
ẋ = ε(1 − 4ε)x + 12ε3xy + x3 − 12ε4xy2,

ẏ = 1 − 2ε(1 + 2ε)y + 12ε3y2 − 8ε4y3,

with the invariant straight lines x = 0, 2εy = 1, x − 2ε2y + ε =
±√

ε2 − ε, ε(2εy − 1)2 = ε − 1 and x + 2ε2y − ε = ±√
ε2 − ε has

the configuration (3, 2, 2, 1).

We construct necessary and sufficient affine invariant conditions for
the realization of each possible configuration given in Figures 14 18 for
system (66).

As it was proved above, system (66) possesses 9 invariant straight
lines (counted with their multiplicities) if and only if h = k = l = m =
n = 0, d = e = (c − f)(2c + f) = 0, a = 0. First, we shall show that
the conditions h = k = l = m = n = 0 are equivalent to the conditions
N2 = N3 = 0. To get this goal we consider the system:

(82)
ẋ1 = pτ

0 + pτ
1 + 3γx2

1 + 2hx1y1 + ky2
1 + x3

1,

ẏ1 = qτ
0 + qτ

1 + lx2
1 + 2mx1y1 + ny2

1 ,

which is obtained from system (66) via the translation x = x1 + γ,
y = y1 + δ, where (γ, δ) is an arbitrary point of the phase plane of
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system (66) and pτ
i (a(γ, δ), x1, y1), qτ

i (a(γ, δ), x1, y1), i = 0, 1, are the
corresponding homogeneous polynomials of degree i in x1 and y1.

For system (82) we calculate the values of the GL-comitants N2 and
N3 which depend only on the coefficients of the quadratic and cubic
parts of the system:

N2 = − 6x2
1

[
lx3

1 + 3mx2
1y1 + (2n − h)x1y

2
1 − ky3

1

]
,

N3 = − 12x2
1

[
lx3

1 + (2h − n)x1y
2
1 + 2ky3

1

]
.

As we can observe, the values of these polynomials do not depend
on the coordinates of the arbitrary point (γ, δ) and, consequently, the
conditions N2 = 0 and N3 = 0 are affine invariant ones. It is obvious
to find out that these conditions yield h = k = l = m = n = 0, i.e., all
quadratic coefficients vanish. Thus, system (82) becomes the system

ẋ1 = (a + cγ + dδ + γ3) + (c + 3γ2)x1 + dy1 + 3γx2
1 + x3

1,

ẏ1 = (b + eγ + fδ) + ex1 + fy1,

for which we have:

N6 = − 36x4
1

[
6ex2

1 + (c − f)x1y1 − 16dy2
1

]
,

N7 = − 72x4
1

[
5ex2

1 + (2c + f)x1y1 − 18dy2
1

]
,

N8 = − 12(c + f)x2
1.

N1 = − 2335x3
1y1 [ax1 + d(δx1 − 3γy1)] .

As above, the condition N6 = 0, respectively N7 = 0, is an affine
invariant one and implies d = e = c − f = 0, respectively d = e =
2c+f = 0. Moreover, in both cases the GL-comitant N1 will not depend
on the coordinates of the arbitrary point (γ, δ), i.e., it becomes a T -
comitant and the condition N1 = 0 yields a = 0. On the other hand, for
f = c, respectively for f = −2c, we obtain that sign (N8) = −sign (c),
respectively sign (N8) = sign(c). Thus, we obtain the next result.

Lemma 30. System (64) possesses invariant straight lines with total
multiplicity 9 if and only if

(C) N1 = N2 = N3 = N6N7 = 0.
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Moreover, the configurations of the lines correspond to Figures 14 or
15 for (C) with N7 = 0 and N8 < 0 or N8 > 0, respectively; to Figures
16, 17 or 18 for (C) with N6 = 0 and N8 positive, negative or zero,
respectively.

System (65). It is clear that, via a translation of the origin of
coordinates at the point (−g/3,−l/3), we can consider g = l = 0 and,
hence, we must examine the system

(83)
ẋ = a + cx + dy + 2hxy + ky2 + x3,

ẏ = b + ex + fy + 2mxy + ny2 + 3x2y.

For this system we have C3(x, y) = −2x3y and, therefore, there exist
two directions for the possible invariant straight lines: x = 0 and y = 0.

Direction x = 0. In this case U = 1, V = 0 and, from (27), we obtain

A = 1, B = C = 0, D = −W, E = 2h, F = W 2 + c,

Eq7 = k, Eq9 = −2hW + d, Eq10 = −W 3 − cW + a.

So, in order to have the maximum number of invariant straight lines,
we obtain the conditions: k = h = d = 0.

Direction y = 0. In this case U = 0, V = 1 and, from (27) we obtain

A = 3, B = C = 0, D = 2m, E = n, F = −nW + f,

Eq5 = 3W, Eq8 = −2mW + e, Eq10 = nW 2 − fW + b.

So, in this direction there can only be one simple invariant straight line
with W0 = 0, and the necessary conditions are e = b = 0.

In short, system (83) becomes

ẋ = a + cx + x3, ẏ = fy + 2mxy + ny2 + 3x2y,

for which we calculate L1 = 2834nx3, L2 = 2834nx(mx + 9ny). Hence,
in order to reach the total multiplicity 9, by Lemma 27, it is necessary
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that L1 = L2 = 0, and we obtain the additional condition: n = 0. This
provides the system:

(84) ẋ = a + cx + x3, ẏ = fy + 2mxy + 3x2y.

By Lemmas 8 and 9, in order to determine the possible invariant
straight lines we shall use the affine comitants Gi, i = 1, 2, 3. We
consider the homogenized system

(85) Ẋ = aZ3 + cXZ2 + X3, Ẏ = fY Z2 + 2mXY Z + 3X2Y,

corresponding to system (84) and calculate the following polynomial:

H(a, X, Y, Z) = gcd(G1,G2,G3) = 2Y (aZ3 + cXZ2 + X3),

and

(86)

G1/H = − 6X4 − 8mX3Z − (3f + 4m2 + 3c)X2Z2

− 2(3a + 2fm)XZ3 − (2am + f2 − cf)Z4 = T (X, Z),
G2/H = − 3(3aZ3 + 2mfZ3 + 4Z2m2X + 3Z2Xf + 3cXZ2

+ 12mX2Z + 12X3)(aZ3 + cXZ2 + X3) = S(X, Z).

By Lemma 10, in order to have the maximum number of invariant
straight lines, it is necessary that T (X, Z) | S(X, Z). Hence, by
Lemma 12, the conditions R

(i)
X (T, S) = 0, i = 0, 1, 2, 3, have to

be satisfied, where R
(0)
X (T, S) = ResX (T, S). So, we can calculate:

R
(3)
X (T, S) = 72(27a + 18cm + 8m3)Z3 = 0, and, hence, we obtain the

condition: a = −(18cm + 8m3)/27. Then, we have

R
(2)
X (R, S) = − 36(9c − 3f + 4m2)2(3c − 3f + 20m2)2Z8 = 0,

and this implies the necessity to examine the two subcases: 9c − 3f +
4m2 = 0 and 9c − 3f + 4m2 �= 0.

Case 9c − 3f + 4m2 = 0. Then f = (9c + 4m2)/3, and we have
R

(1)
X (T, S) = R

(0)
X (T, S) = 0, but at the same time this provides the

degenerated system:

ẋ = − (2m − 3x)(4m2 + 6xm + 9c + 9x2)/27,

ẏ = y(4m2 + 6xm + 9c + 9x2)/3.
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Case 9c− 3f + 4m2 �= 0. Then, the condition R
(2)
X (T, S) = 0 implies

f = (20m2 + 3c)/3, and we can calculate R
(1)
X (T, S) = 21132m3(3c +

28m2)3(3c− 8m2)3Z15 = 0, and since the condition 9c− 3f + 4m2 �= 0
yields 3c − 8m2 �= 0, we obtain the condition m(3c + 28m2) = 0.

If m �= 0, then c = −28m2/3 �= 0, and this provides the degenerated
system:

ẋ = (3x + 10m)(−3x + 8m)(−3x + 2m)/27,

ẏ = − y(4m + 3x)(−3x + 2m)/3.

Thus, m = 0, and we get the system:

(87) ẋ = cx + x3, ẏ = cy + 3x2y,

with c �= 0 (otherwise the system becomes degenerated). We note that,
by Remark 14, we can consider c ∈ {−1, 1}. So, we obtain Figure 19 for
c = −1, and Figure 20 for c = 1. It remains to construct two perturbed
systems.

For c = −1, the perturbed system

(88) ẋ = −x + x3, ẏ = − y + 3x2y − 18εxy2 + 36ε2y3,

possesses the invariant straight lines x = 0, x = ±1, y = 0, x−3εy = 0,
x−6εy = 0, x−6εy = ±1 in the configuration (3, 3, 1, 1); and for c = 1,
the system

(89) ẋ = x + x3, ẏ = y + 3x2y − 18εxy2 + 36ε2y3,

possesses the invariant straight lines x = 0, x = ±i, y = 0, x−3εy = 0,
x − 6εy = 0, x − 6εy = ±i in the same configuration (3, 3, 1, 1).

We construct necessary and sufficient affine invariant conditions for
the realization of the two possible configurations for system (83), see
Figures 19 and 20.

As it was proved above, system (83) possesses 9 invariant straight
lines (counted with their multiplicities) if and only if h = k = m = n =
0, d = e = c−f = 0, a = b = 0. First, we shall show that the conditions
h = k = m = n = 0 are equivalent to the conditions N4 = N5 = 0. To
get this goal we shall consider the system:

(90)
ẋ1 = pτ

0 + pτ
1 + 3γx2

1 + 2hx1y1 + ky2
1 + x3

1,

ẏ1 = qτ
0 + qτ

1 + 3δx2
1 + 2(m + 3γ)x1y1 + ny2

1 + 3x1
1y1,
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which is obtained from system (83) via the translation x = x1 + γ,
y = y1 + δ, where (γ, δ) is an arbitrary point of the phase plane of
system (83) and pτ

i (a(γ, δ), x1, y1), qτ
i (a(γ, δ), x1, y1), i = 0, 1, are the

corresponding homogeneous polynomials of degree i in x1 and y1.

For system (90), we calculate the values of the GL-comitants N4 and
N5 which depend only on the coefficients of the quadratic and cubic
parts of the system:

N4 = 24x1

[
3mx2

1 + 5(h + n)x1y1 + 6ky2
1

]
,

N5 = − 48x1y1 [(2h − n)x1 + 3ky1] .

The values of these polynomials do not depend on the coordinates of the
arbitrary point (γ, δ) and, consequently, conditions N4 = 0 and N5 = 0
are affine invariant. These conditions yield h = k = m = n = 0, i.e.,
all quadratic coefficients vanish. Thus, system (90) becomes

ẋ1 = (a + cγ + dδ + γ3) + (c + 3γ2)x1 + dy1 + 3γx2
1 + x3

1,

ẏ1 = (b + eγ + fδ + 3γ2δ) + (e + 6γδ)x1 + (f + 3γ2)y1

+ 3δx2
1 + 6γx1y1 + 3x2

1y1,

for which we have:

N6 = − 144x4
1

[
3ex2

1 + 2(c − f)x1y1 − 17dy2
1

]
,

N8 = − 24(c + f)x2
1,

N1 = − 216x3
1 [−18x1(bx1 + ay1) + (c − f)(23δx1 + 25γy1)x1

− 12eγx2
1 + 2dy1(19γy1 − 13δx1)

]
.

As above, N6 = 0 is an affine invariant condition and implies d = e =
c − f = 0. Moreover, for N6 = 0 we obtain that the GL-comitant N1

does not depend on the coordinates of the arbitrary point (γ, δ), i.e., it
becomes a T -comitant and the condition N1 = 0 yields a = b = 0. On
the other hand, for f = c, we obtain that sign (N8) = −sign (c). Thus,
the next lemma follows.

Lemma 31. Canonical system (65) possesses invariant straight lines
with total multiplicity 9 if and only if N1 = N4 = N5 = N6 = 0.
Moreover, the potential configuration of the lines corresponds with
(3, 3, 1, 1) given in Figure 19 for N8 > 0 and in Figure 20 for N8 < 0.



1356 J. LLIBRE AND N. VULPE

7.2 Systems with the potential configuration (3, 2, 2, 1). By
Lemma 4 if a cubic system possesses 8 invariant straight lines in the
potential configuration (3, 2, 2, 1), then the conditions V3 = V4 = U 2 =
0 hold.

We consider again (63). A straightforward computation of the value
of V3 yields:

V3 = 2532
4∑

j=0

V3jx
4−jyj ,

where

V30 = −u(u + 3), V32 = − 2ru + 3r − v2,

V31 = − 2uv, V33 = − 2vr, V34 = − r2.

Hence r = v = 0 and u(u + 3) = 0. So, we have to examine two cases:
u = −3 and u = 0.

For u = −3, by the time rescaling t → −t/3, we obtain the system

(91)
x′ = p0 + p1(x, y) + p2(x, y) + 2x3,

y′ = q0 + q1(x, y) + q2(x, y) + 3x2y,

whereas for u = 0, after the time rescaling t → t/3, we get system
(64), see Remark 29. It remains to note that, for system (89) we have
L4 = −6x4 < 0, whereas for system (91), we have L4 = 18x4 > 0.
Moreover, for the last system, V4 = U 2 = 0. So, for additional
investigations, we must consider only system (91).

It is clear that, via the translation of the origin of coordinates at the
point (−g/6,−l/3), we can consider g = l = 0 and, hence, we must
examine the system

(92)
ẋ = a + cx + dy + 2hxy + ky2 + 2x3,

ẏ = b + ex + fy + 2mxy + ny2 + 3x2y.

For this system we have C3(x, y) = −x3y. Therefore, there exist two
directions for possible invariant straight lines: x = 0 and y = 0.

Direction x = 0. In this case U = 1, V = 0 and, from (27), we obtain

A = 2, B = C = 0, D = −2W, E = 2h, F = 2W 2 + c,

Eq7 = k, Eq9 = −2hW + d, Eq10 = −2W 3 − cW + a.
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So, in order to have the maximum number of invariant straight lines
we obtain the conditions: k = h = d = 0.

Direction y = 0. In this case U = 0, V = 1 and, from (27), we obtain

A = 3, B = C = 0, D = 2m, E = n, F = −nW + f,

Eq5 = −3W, Eq8 = −2mW + e, Eq10 = nW 2 − fW + b.

Hence, in this direction there can only be one simple invariant straight
line with W0 = 0, and the necessary conditions are e = b = 0. Thus,
system (92) becomes

ẋ = a + cx + 2x3, ẏ = fy + 2mxy + ny2 + 3x2y,

for which we calculate L1 = 2934nx3, L2 = 2934nx(mx + 3ny). Hence,
in order to reach the total multiplicity 9, by Lemma 27, it is necessary
that L1 = L2 = 0. Then we obtain the additional condition n = 0.
This provides the system:

(93) ẋ = a + cx + 2x3, ẏ = fy + 2mxy + 3x2y.

We consider the homogenized system

Ẋ = aZ3 + cXZ2 + 2X3,

Ẏ = fY Z2 + 2mXY Z + 3X2Y,

corresponding to system (93) and calculate the polynomial:

H(a, X, Y, Z) = gcd(G1,G2,G3) = 2Y (aZ3 + cXZ2 + 2X3),

and

G1/H = − 3X4 − 4mX3Z − (3c + 4m2)X2Z2 − 2(3a + 2fm)XZ3

− (2am − cf + f2)Z4 = T̃ (X, Z),
G2/H = − 3(3aZ3 + 2mfZ3 + 3cXZ2 + 4Z2m2X + 6mX2Z + 6X3)·

× (aZ3 + cXZ2 + 2X3) = S̃(X, Z).
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By Lemma 10, in order to have the maximum number of invariant
straight lines, it is necessary that T̃ (X, Z) | S̃(X, Z), i.e., the conditions
R

(i)
X

(
T̃ , S̃

)
= 0, i = 0, 1, 2, 3, have to be satisfied. So, we can calculate:

R
(3)
X

(
T̃ , S̃

)
= − 18(54a − 45cm + 54fm − 40m3)Z3 = 0,

and obtain that a = (45cm − 54fm + 40m3)/54. Then, we have

R
(2)
X

(
T̃ , S̃

)
= − 81(9c − 6f + 8m2)2(c + 2f + 3m2)2Z8 = 0,

and this implies the necessity to examine two cases: 9c− 6f +8m2 = 0
and 9c − 6f + 8m2 �= 0.

Case 9c − 6f + 8m2 = 0. Then f = (9c + 8m2)/6, and we have
R

(1)
X

(
T̃ , S̃

)
= R

(0)
X

(
T̃ , S̃

)
= 0, but at the same time this provides the

degenerated system:

ẋ = − (2m − 3x)(8m2 + 12xm + 9c + 18x2)/27,

ẏ = y(8m2 + 12xm + 9c + 18x2)/6.

Case 9c− 6f +8m2 �= 0. Then the condition R
(2)
X

(
T̃ , S̃

)
= 0 implies

f = −(c+3m2)/2, and we have R
(1)
X

(
T̃ , S̃

)
= −9m3(6c+13m2)3(12c+

17m2)3Z15 = 0, and since the condition 9c − 6f + 8m2 �= 0 yields
12c + 17m2 �= 0, we obtain the condition m(6c + 13m2) = 0.

If m �= 0 then c = −13m2/6 �= 0, and this provides the degenerated
system:

ẋ = − (6x + 5m)(−6x + 7m)(3x + m)/54,

ẏ = − y(6x + 5m)(m − 6x)/12.

Thus, m = 0 and we obtain the system (we set c = 2p):

(94) ẋ = 2px + 2x3, ẏ = − py + 3x2y,

with p �= 0 (otherwise system becomes degenerated). We note that by
Remark 14 we can consider p ∈ {−1, 1}. So, we obtain Figure 21 for
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p = −1 and Figure 22 for p = 1. It remains to construct two perturbed
systems.

For p = −1 the perturbed system

(95) ẋ = − 2x + 2x3, ẏ = y + 3x2y − ε2y3,

possesses the invariant straight lines x = 0, y = 0, x = ±1, x+εy = ±1
and x − εy = ±1 in the configuration (3, 2, 2, 1); and for p = 1, the
system

(96) ẋ = 2x + 2x3, ẏ = − y + 3x2y + ε2y3,

possesses the invariant straight lines x = 0, y = 0, x = ±i, εy+ix = ±1
and εy − ix = ±1 in the same configuration (3, 2, 2, 1).

We construct necessary and sufficient affine invariant conditions for
the realization of Figures 21 and 22 for system (92). As it was
proved above, system (92) possesses 9 invariant straight lines (counted
with their multiplicities) if and only if h = k = m = n = 0,
d = e = c+2f = 0, a = b = 0. First, we shall show that the conditions
h = k = m = n = 0 are equivalent to the conditions N4 = N5 = 0. To
get this goal we consider the system:

(97)
ẋ1 = pτ

0 + pτ
1 + 6γx2

1 + 2hx1y1 + ky2
1 + 2x3

1,

ẏ1 = qτ
0 + qτ

1 + 3δx2
1 + 2(m + 3γ)x1y1 + ny2

1 + 3x1
1y1,

which is obtained from system (92) via the translation x = x1 + γ,
y = y1 + δ, where (γ, δ) is an arbitrary point of the phase plane of
system (92), and pτ

i (a(γ, δ), x1, y1), qτ
i (a(γ, δ), x1, y1), i = 0, 1, are the

corresponding homogeneous polynomials of degree i in x1 and y1.

For system (97), we calculate the values of the GL-comitants

N4 = 24x1

[
2mx2

1 + 3(h + n)x1y1 + 3ky2
1

]
,

N5 = 24x1

[
2mx2

1 + 3(n − 2h)x1y1 − 6ky2
1

]
.

As we can observe, the values of these polynomials do not depend on
the coordinates of the arbitrary point (γ, δ) and, consequently N4 = 0
and N5 = 0 are affine invariant conditions. These conditions yield
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h = k = m = n = 0, i.e., all quadratic coefficients vanish. Thus,
system (97) becomes

ẋ1 = (a + cγ + dδ + 2γ3) + (c + 6γ2)x1 + dy1 + 6γx2
1 + 2x3

1,

ẏ1 = (b + eγ + fδ + 3γ2δ) + (e + 6γδ)x1 + (f + 3γ2)y1 + 3δx2
1

+ 6γx1y1 + 3x2
1y1,

for which we have:

N7 = − 216x4
1

[
2ex2

1 − (c + 2f)x1y1 − 5dy2
1

]
,

N8 = − 36(c + f)x2
1,

N1 = − 648x3
1 [3x1(4bx1 − 7ay1) + 7(c + 2f)(δx1 − γy1)x1

+6eγx2
1 + 22dy1(γy1 − δx1)

]
.

As above the condition N7 = 0 is affine invariant and implies d = e =
c + 2f = 0. Moreover, for N7 = 0 we obtain that the GL-comitant N1

does not depend on the coordinates of the arbitrary point (γ, δ), i.e.,
it becomes a T -comitant and the condition N1 = 0 yields a = b = 0.
On the other hand, for c = −2f , we obtain that sign (N8) = sign (f).
Thus, the following lemma holds.

Lemma 32. Canonical system (92) possesses invariant straight lines
with total multiplicity 9 if and only if N1 = N4 = N5 = N7 = 0.
Moreover, the potential configuration of the lines corresponds with
(3, 2, 2, 1) given in Figure 21 for N8 > 0 and in Figure 22 for N8 < 0.

By Lemmas 5, 30, 31 and 32, the next theorem follows.

Theorem 33. We assume that, for cubic system (2), the conditions
D1 = D3 = D4 = 0, D2 �= 0 hold, i.e., C3 has 1 triple and 1 simple real
roots. Then, this system will possess the maximum number of invariant
straight lines (with total multiplicity 9) if and only if at least one of the
following sets of conditions is fulfilled:

V1 = N1 = N2 = N3 = N7 = 0, L4 < 0;(F1)
V1 = N1 = N2 = N3 = N6 = 0, L4 < 0;(F2)
V1 = N1 = N4 = N5 = N6 = 0, L4 > 0;(F3)
V3 = N1 = N4 = N5 = N7 = 0.(F4)
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Moreover, the configuration of the lines corresponds to Figures 14 or
15 for (F1) if N8 negative or positive, respectively; to Figures 16, 17
or 18 for (F2) if N8 positive, negative or zero, respectively; to Figures
19 or 20 for (F3) if N8 positive or negative, respectively; to Figures 21
or 22 for (F4) if L4 > 0 and N8 positive or negative, respectively.

8. Cubic systems with 1 real root of C3 with multiplicity
4. The objective of this section is to construct the cubic systems with
one real infinite singular point of multiplicity 4 which have invariant
straight lines with total multiplicity 9.

First we obtain the form for the homogeneous part of degree 3 for
these cubic systems.

Lemma 34. Every cubic system with one real infinite singular point
of multiplicity 4 which can admit invariant straight lines with total
multiplicity 9 via a linear transformation can be written as

(98)
x′ = p0 + p1(x, y) + p2(x, y),
y′ = q0 + q1(x, y) + q2(x, y) − x3.

Proof. As it was shown in Section 3 the cubic system having one
real infinite singular point of multiplicity 4 via a linear transformation
becomes:

(99)
x′ = p0 + p1(x, y) + p2(x, y) + ux3 + vx2y + rxy2,

y′ = q0 + q1(x, y) + q2(x, y) − x3 + ux2y + vxy2 + ry3,

For system (99) we obtain C3 = x4, and hence, the infinite singular
point is situated on the “end” of the line x = 0.

By Lemmas 1 and 4, we need to consider two cases.

Case 1. V1 = V2 = U 1 = 0. Then, a straightforward computation of
the value of V1 for system (99) yields:

V1 = 25
4∑

j=0

V1jx
4−jyj ,
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where V10 = u2, V11 = 2uv, V12 = 2ur + v2, V13 = 2rv and V14 = r2.
Consequently, the relation V1 = 0 yields v = r = u = 0, and hence, we
obtain system (98) for which the relations V2 = U 1 = 0 are satisfied.

Case 2. V3 = V4 = U 2 = 0. Now calculating the value of V3 for
system (99), we obtain:

V3 = 2532
4∑

j=0

V3jx
4−jyj ,

where V30 = −u2 +3v, V31 = −2uv+6r, V32 = −2ur−v2, V33 = −2rv,
V34 = −r2. Hence, condition V3 = 0 yields r = v = u = 0 (then
V4 = U2 = 0), and consequently, we obtain again system (98).

We examine system (98). It is clear that, via the translation of the
origin of coordinates at the point (0, l/3), we can consider parameter
l = 0 in the polynomial q2(x, y). Thus, we must examine the system

(100)
ẋ = a + cx + dy + gx2 + 2hxy + ky2,

ẏ = b + ex + fy + 2mxy + ny2 − x3,

for which C3(x, y) = x4. Therefore, there exists only one direction for
the possible invariant straight lines: x = 0. In this case U = 1, V = 0
and from (27) we obtain

A = B = C = 0, D = g, E = 2h, F = −gW + c,

Eq7 = k, Eq9 = −2hW + d, Eq10 = gW 2 − cW + a.

So, for the maximum number of invariant straight lines, it is necessary
that k = h = d = 0, and then, we have L1 = 0, L2 = −21034n2x2.
Hence, in order to reach the total multiplicity 9, by Lemma 27, it is
necessary that L1 = L2 = 0. Therefore, we obtain the additional
condition: n = 0. This provides the system:

(101) ẋ = a + cx + 2gx2, ẏ = b + ex + fy + 2mxy − x3.

We consider the homogenized system

(102)
Ẋ = aZ3 + cXZ2 + 2gX2Z,

Ẏ = bZ3 + eXZ2 + fY Z2 + 2mXY Z − X3,
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corresponding to system (101) and calculate the following polynomial:

H(a, X, Y, Z) = gcd(G1,G2,G3) = 2Z2(aZ2 + cXZ + 2gX2).

By Lemmas 8 and 9, we obtain that system (102) has 4 invariant
straight lines (counted with their multiplicities) Z = 0 and aZ2 +
cXZ +2gX2 = 0. So, for having the total multiplicity 9, by Lemmas 8
and 9, the polynomial H(a, X, Y, Z) must be of the degree 8. In order
to find out the conditions to reach this situation we shall calculate for
system (102) the following polynomials:

(103)
G1/H = Y Ũ(X, Z) + Ṽ (X, Z) = T (X, Y, Z),
G3/H = 12(Z2a + cZX + 2gX2)3Z2 = 12Z2S3(X, Z),

where

Ũ(X, Z) = Z
[
4m(g − m)X2 + 4f(g − m)XZ − (2am + f2 − fc)Z2

]
,

Ṽ (X, Z) = 2(g + m)X4 + (f + 2c)X3Z + (3a + 2ge − 2me)X2Z2

+ (−2mb + 4gb − fe)XZ3 − (ae − bc + fb)Z4.

By Lemma 10, in order to have the maximum number of invariant
straight lines, it is necessary T (X, Y, Z) | Z2S3(X, Z). However, the
second polynomial does not depend on the variable Y , so we obtain the
condition Ũ(X, Z) = 0 in R[X, Z], i.e.,

(104) m(g − m) = 0, f(g − m) = 0, 2am + f2 − fc = 0.

Thus, we have to consider two cases: g − m �= 0 and g − m = 0.

Case g − m �= 0. Then, by (104), we obtain m = f = 0, g �= 0, and
then

T (X, Z) = 2gX4 + 2cX3Z + (3a + 2ge)X2Z2

+ 4gbXZ3 − (ae − bc)Z4,

S(X, Z) = Z2a + cZX + 2gX2.

Since g �= 0, obtaining the maximum number of invariant straight lines,
it is necessary that polynomial T be proportional to polynomial S2.
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By Lemma 12, we have R
(3)
X

(
T, S2

)
= 0, R

(2)
X

(
T, S2

)
= −4g2(2ag −

c2 + 4eg2)2Z4 = 0, and since g �= 0, we can consider g = 1 (via the
transformation x = x1, y = y1/g and t = t1/g to system (101)). Thus,
we obtain 2a = c2 − 4e, and by setting c = 2p and a = 2(p2 − e), we
get R

(1)
X

(
T, S2

)
= 512(pe − p3 + b)3Z9 = 0. Therefore, the condition

b = p3 − pe holds. Then we obtain:

G1 = 8Z2(Z2p2 + XZp − eZ2 + X2)3,
G2 = 48Z3(2X + Zp)(Z2p2 + XZp − eZ2 + X2)3,
G3 = 384Z4(Z2p2 + XZp − eZ2 + X2)4.

Polynomials Gi, i = 1, 2, 3, have the common factor of degree 8, but
system (101) becomes degenerated:

ẋ = 2(p2 − e + px + x2), ẏ = (p − x)(p2 − e + px + x2).

So, in the case g − m �= 0 the system cannot possess invariant straight
lines with total multiplicity 9.

Case g − m = 0. We take m = g. Then, conditions (104) yield
2ag + f(f − c) = 0, and we need to examine two subcases: g �= 0 and
g = 0.

Subcase g �= 0. Then, via the transformation x = x1, y = y1/g
and t = t1/g to system (101), we can consider g = 1, hence m = 1.
Therefore, by setting f = 2p, we obtain the condition a = p(c − 2p).
Thus, we can calculate:

R
(3)
X

(
T, S2

)
= 8(c − p)Z,

R
(2)
X

(
T, S2

)
= 64(p − c)(−ep + p3 + b)Z4,

R
(1)
X

(
T, S2

)
= 128(−ep + p3 + b)2

× (4b + 20p3 − c3 − 24cp2 − 4ep + 9c2p)Z9.

Hence, c = p and then

R
(3)
X

(
T, S2

)
= R

(2)
X

(
T, S2

)
= 0,

R
(1)
X

(
T, S2

)
= 512(−ep + p3 + b)3Z9 = 0,
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that implies b = pe − p3. In this case we obtain:

G1 = − 2Z2(X + Zp)3(−2X + Zp)3,
G2 = − 18Z3X(X + Zp)3(−2X + Zp)3,
G3 = 24Z4(X + Zp)4(−2X + Zp)4,

i.e., G1 | G2 and G1 | G3 but the system becomes degenerated:

ẋ = (p + x)(2x − p), ẏ = − (p + x)(p2 − px − e − 2y + x2).

Subcase g = 0. Then, conditions (104) yield m = 0, f(f − c) = 0,
and we have to examine 2 subcases: f = 0 and f �= 0.

For f = 0, system (102) becomes

(105) Ẋ = aZ3 + cXZ2, Ẏ = bZ3 + eXZ2 − X3,

and we obtain

H(a, X, Y, Z) = gcd(G1,G2,G3) = 2(Za + cX)Z4,

and

G1/H = 2cX3 + 3aX2Z + (bc − ae)Z3 = T̂ (X, Z),

G3/H = 12(Za + cX)3Z4 = 12Z4Ŝ3(X, Z).

Thus, in order to obtain the maximum number of invariant straight
lines, it is necessary that the polynomial T̂ divides Z4Ŝ3. This implies
c �= 0, otherwise the second polynomial does not depend on X and,
hence, it would be necessary a = 0, that yields the degenerated system
(105) with c = a = 0. So, c �= 0 and then the polynomial T̂ must be
proportional to Ŝ3. As above, we calculate

R
(2)
X

(
T̂ , Ŝ3

)
= 36ac3Z = 0,

R
(1)
X

(
T̂ , Ŝ3

)
= − 432ac4(a3 − c2ae + c3b)Z4 = 0,

R
(0)
X

(
T̂ , Ŝ3

)
= 1728c3(a3 − c2ae + c3b)3Z9 = 0,
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and, hence, by c �= 0, we obtain a = b = 0 that also provides a
degenerated system.

For f �= 0, from conditions (104), we obtain f = c �= 0, and we can
consider c = 1 via the transformation x = x1, y = y1/c and t = t1/c.
Then, system (102) becomes

Ẋ = aZ3 + XZ2, Ẏ = bZ3 + eXZ2 + Y Z2 − X3,

for which we have

H(a, X, Y, Z) = gcd(G1,G2,G3) = 2(Za + X)2Z4,

and

G1/H = 3X2 − eZ2 = T̄ (X, Z),
G3/H = 12(Za + X)2Z4 = 12Z4S̄2(X, Z).

We calculate the resultant of the polynomials T and S
2

and its first
subresultant:

R
(1)
X

(
T̄ , S̄2

)
= 6aZ = 0,

R
(0)
X

(
T̄ , S̄2

)
= − (e − 3a2)2Z4 = 0.

Consequently, we obtain a = e = 0, and after translation of the origin
of coordinates at the point (0,−b), we obtain the system:

(106) ẋ = x, ẏ = y − x3,

which is not degenerated. For the respective homogenized system
we have H(a, X, Y, Z) = gcd(G1,G2,G3) = X4Z4. Thus, we obtain
Figure 23. Since for system (106) the conditions V1 = V2 = 0 hold
as well as the conditions V3 = V4 = 0, we conclude that this system
has invariant straight lines with total multiplicity 9 of both potential
configurations: (3, 3, 1, 1) and (3, 2, 2, 1). Indeed, the system

(107) ẋ = x − 4ε2x3, ẏ = y − x3 − 3ε2x2y + 9ε4xy2 − 9ε6y3,

with the invariant straight lines x = 0, 2εx = ±1, x − ε2y = 0,
εx − 3ε3y = ±1, 3ε2y ± x = 0, has the configuration (3, 3, 1, 1); and
the system

(108)
ẋ = x + 6εx2 + 8ε2x3,

ẏ = y + 6εxy − x3 + 9ε2x2y + 9ε4xy2 − 9ε6y3,
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with the invariant straight lines

x = 0, 2εx = − 1, ε2y = x, 3ε2y ± x = 0,

4εx = − 1, 3ε(ε2y − x) = 1, ε(3ε2y + x) = − 1,

has the configuration (3, 2, 2, 1). As above, system (100) has the
maximum number of invariant straight lines with the configuration
given by Figure 23 if and only if

(109) h = k = m = n = g = 0, d = f = c − f = 0, a = 0.

We give the respective affine invariant conditions in order to be able to
distinguish this class of cubic systems directly in the space R20 of all
cubic systems. To get this goal we consider the system:

(110)
ẋ1 = pτ

0 + pτ
1 + gx2

1 + 2hx1y1 + ky2
1 ,

ẏ1 = qτ
0 + qτ

1 − 3γx2
1 + 2mx1y1 + ny2

1 − x3
1,

which is obtained from system (100) via the translation x = x1 + γ,
y = y1 + δ, where (γ, δ) is an arbitrary point of the phase plane of
system (100) and pτ

i (a(γ, δ), x1, y1), qτ
i (a(γ, δ), x1, y1), i = 0, 1, are the

corresponding homogeneous polynomials of degree i in x1 and y1.

For system (110) we calculate the GL-comitants

N2 = − 6x4
1 [(g + m)x1 + (h + n)y1] ,

N3 = − 12x3
1

[
(g − 2m)x2

1 + 2(2h − n)x1y1 + 3ky2
1

]
.

The values of these polynomials do not depend on the coordinates of
the arbitrary point (γ, δ), and consequently, the conditions N2 = 0
and N3 = 0 are the affine invariant conditions. These conditions yield
g = h = k = m = n = 0, i.e., all quadratic coefficients vanish. Thus,
system (110) becomes the system

ẋ1 = (a + cγ + dδ) + cx1 + dy1,

ẏ1 = (b + eγ + fδ − γ3) + (e − 3γ2)x1 + fy1 − 3γx2
1 − x3

1,

for which we have:

N9 = 3x4
1

[
ex2

1 + (f − c)x1y1 − dy2
1

]
,

N10 = − 12ax3
1 + 6(f − c)γx3

1 − 12dδx3
1.
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As above N9 = 0 is the affine invariant condition and implies d = e =
c − f = 0. Moreover, in this case the GL-comitant N10 is independent
of the coordinates of the arbitrary point (γ, δ), i.e., it becomes a T -
comitant and the condition N10 = 0 yields a = 0. Thus, it was
proved, that for system (100) the conditions (109) are equivalent to
N2 = N3 = N9 = N10 = 0. Hence, taking into account Lemma 5 we
obtain:

Theorem 35. We assume that for a cubic system (2) the conditions
D1 = D2 = D3 = 0, C3 �= 0 hold, i.e., there exists only one (real)
infinite singular point. Then, this system will possess the maximum
number of invariant straight lines (with total multiplicity 9) if and only
if V1 = N2 = N3 = N9 = N10 = 0. Moreover, there exists a unique
configuration given in Figure 23.

9. Cubic systems whose infinite point configuration do not
allow to possess invariant straight lines with total multiplic-
ity 9. The goal of this section is to prove that all other classes of
cubic systems enumerated in the statement of Lemma 5 cannot have
invariant straight lines with total multiplicity 9.

9.1 Systems with 4 imaginary simple roots of C3. If a
cubic system has 4 imaginary infinite singular points, via a linear
transformation they can written into the form (see Section 3):

(111)

x′ = p0 + p1(x, y) + p2(x, y) + ux3 + (p + q + v)x2y + rxy2 + qy3,

y′ = q0 + q1(x, y) + q2(x, y) − px3 + ux2y + vxy2 + ry3,

for which C3(x, y) = (px2 + qy2)(x2 + y2), pq > 0. By Lemma 1, in
order to apply the conditions V1 = V2 = U 1 = 0, it is sufficient to
calculate only the T-comitant:

V1 = 16
4∑

j=0

V1jx
4−jyj ,

and to examine the relation V10 = 2u2 + 3p2 + 3pq = 0. Indeed, since
pq > 0 the relation V10 = 0 cannot be satisfied, and therefore, the
conditions of Lemma 1 cannot be satisfied for system (111).
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We examine the conditions of Lemma 4: V3 = V4 = U2 = 0. For
system (111) we have

V3 = 32
4∑

j=0

V3jx
4−jyj ,

and we examine the following two coefficients: V30 = −3p2−3pq+3pv−
u2, V34 = −6q2 − 6pq − 3qv − r2. Thus, the conditions V30 = V34 = 0
imply 3pv = 3p2 + u2 + 3pq > 0, 3qv = −(6q2 + r2 + 6pq) < 0, and
hence, 9pqv2 < 0 in contradiction with pq > 0. So, the conditions of
Lemma 4 cannot be verified for system (111).

9.2 Systems with 1 double and 2 simple real roots of C3. As
it was shown in Section 3, in this case the cubic system via a linear
transformation can be written into the form:

(112)
x′ = p0 + p1(x, y) + p2(x, y) + (u + 1)x3 + (v − 1)x2y + rxy2,

y′ = q0 + q1(x, y) + q2(x, y) + ux2y + vxy2 + ry3,

for which C3(x, y) = x2y(x − y). By Lemma 1, we calculate:

V1 = 16
4∑

j=0

V1jx
4−jyj , V2 = 8

2∑
j=0

V2jx
2−jyj ,

where

V10 = u(3 + 2u), V14 = 2r2,

V11 = − 2u + 4uv + 3v, V20 = − 3v − 2u,

V12 = − 1 − 2v + 4ru + 3r + 2v2, V21 = 6r + 4v − 2,

V13 = 2r(−1 + 2v), V22 = − 2r.

Consequently, the condition V14 = 2r2 = 0 implies r = 0, and then
we obtain the following contradictory relations: V10 = u(2u + 3) = 0,
4V20 + 3V21 = −2(4u + 3) = 0. So, the conditions of Lemma 1 cannot
be satisfied for system (112).

We examine the conditions of Lemma 4. For system (112) we have

V3 = 32
4∑

j=0

V3jx
4−jyj ,
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where V30 = −u(3 + u), V32 = 2 + v − 2ru + 3r − v2, V31 = 2u(2 − v),
V33 = −2r(1 + v), V34 = −r2. Thus, the condition V34 = 0 implies
r = 0, and then we again obtain the following contradictory relations:
V32 = −(v + 1)(v − 2) = 0, V4 = 21032v(v − 1)x2y(y − x) = 0. So, the
conditions of Lemma 4 cannot be satisfied for system (112).

9.3 Systems with 1 real double and 2 imaginary simple roots
of C3. In this case the cubic system via a linear transformation can be
written into the form:

(113)
x′ = p0 + p1(x, y) + p2(x, y) + ux3 + (v + 1)x2y + rxy2,

y′ = q0 + q1(x, y) + q2(x, y) − x3 + ux2y + vxy2 + ry3,

for which C3(x, y) = x2(x2 + y2). By Lemma 1, in order to apply the
conditions V1 = V2 = U 1 = 0, it is sufficient to calculate only the
T-comitant:

V1 = 16
4∑

j=0

V1jx
4−jyj ,

and to observe the contradiction V10 = 2u2 + 3 = 0.

We examine the conditions of Lemma 4. For system (113) we have

V3 = 32
4∑

j=0

V3jx
4−jyj ,

where V30 = −u2−3+3v, V31 = −2uv−4u+6r, V32 = −2ur−v2−v+2,
V33 = −2r(v − 1) and V34 = −r2. Thus, condition V34 = 0 implies
r = 0, and then we again obtain the following contradictory relations:
V32 = −(v + 2)(v − 1) = 0, V4 = 21032v(v + 1)x2(x2 + y2) = 0. So, the
conditions of Lemma 4 cannot be satisfied for system (113).

9.4 Systems with 2 double real roots of C3. In this case the
cubic system via a linear transformation becomes:

(114)
x′ = p0 + p1(x, y) + p2(x, y) + ux3 + qx2y + rxy2,

y′ = q0 + q1(x, y) + q2(x, y) + ux2y + vxy2 + ry3,
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for which C3(x, y) = (q − v)x2y2, q − v �= 0. By Lemma 1, in order to
apply the conditions V1 = V2 = U 1 = 0, we calculate:

V1 = 16
4∑

j=0

V1jx
4−jyj ,

V2 = 16
2∑

j=0

V2jx
2−jyj ,

where V10 = 2u2, V11 = 2u(q + v), V12 = 4ur − q2 + 4qv − v2, V13 =
2r(q+v), V14 = 2r2, V20 = u(q−v), V21 = (v−q)(v+q), V22 = r(q−v).
Consequently, the conditions V10 = V14 = 0 imply u = r = 0, and
then from q − v �= 0, we obtain the following contradictory relations:
V21 = (v−q)(v+q) = 0, V12−3V21 = 2v(2q−v) = 0. So, the conditions
of Lemma 1 cannot be satisfied for system (114).

We examine the conditions of Lemma 4. For system (114) we have

V3 = 32
4∑

j=0

V3jx
4−jyj ,

where V30 = −u2, V31 = 2u(v − 2q), V32 = −2ur + 2q2 − 5qv + 2v2,
V33 = 2r(q − 2v), V34 = −r2. Thus, the conditions V30 = V34 = 0
imply u = r = 0, and then by the condition q − v �= 0 we again obtain
the following contradictory relations:

V32 = (2q − v)(q − 2v) = 0, V4 = 21032qv(q − v)2x2y2 = 0.

So, the conditions of Lemma 4 also cannot be verified for system (114).

9.5 Systems with 2 double imaginary roots of C3. In this case
the cubic system via a linear transformation goes over to

(115)
x′ = p0 + p1(x, y) + p2(x, y) + ux3 + 3(v + 1)x2y + rxy2 + y3,

y′ = q0 + q1(x, y) + q2(x, y) − x3 + ux2y + (v − 1)xy2 + ry3,

for which C3(x, y) = (x2 + y2)2. By Lemma 1, in order to apply the
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conditions V1 = V2 = U 1 = 0, it is sufficient to calculate only the
T-comitant:

V1 = 16
4∑

j=0

V1jx
4−jyj

and to observe the contradiction V10 = u2 + 3 = 0.

We examine the conditions of Lemma 4. For system (115) we have

V3 = 32
4∑

j=0

V3jx
4−jyj ,

and we examine only the following two coefficients: V30 = −u2−9+3v,
V34 = −r2 − 9 − 3v. Therefore, we obtain the following contradictory
condition: V30 + V34 = −(u2 + r2 + 18) = 0, and hence, the conditions
of Lemma 4 do not hold for system (115).
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