OSCILLATION TESTS FOR CERTAIN SYSTEMS OF PARABOLIC DIFFERENTIAL EQUATIONS WITH NEUTRAL TYPE

WEI NIAN LI AND MAOAN HAN

Abstract

Sufficient conditions are established for the forced oscillation of a class of systems of neutral parabolic differential equations with deviating arguments. The main results are illustrated by some examples.

1. Introduction. In the past decades, the fundamental theory of partial functional differential equation(PFDE) has been investigated extensively. We refer the reader to the monograph by Wu [12]. Simultaneously, let us note that the oscillation theory for PFDE is an object of long standing interest.

In 1970, Domšlovk [2] introduced the concept of H-oscillation to study the oscillation of solutions of vector differential equations, where H is a unit vector in R^{n}. But there are only a few papers [9-11] dealing with H-oscillation of vector partial differential equations. On the other hand, in recent years, some results on the oscillation theory for systems of PFDE were established in $[\mathbf{3}-\mathbf{8}]$. However, using the approach in these papers, it is impossible to obtain the forced oscillation of systems of PFDE. In this paper, we use a new technique to study the forced oscillation of systems of neutral parabolic differential equations with deviating arguments of the form

$$
\begin{aligned}
& \frac{\partial}{\partial t}\left(\delta_{i}(t) u_{i}(x, t)+\sum_{r=1}^{s} \lambda_{i r}(t) u_{i}\left(x, \rho_{i r}(t)\right)\right) \\
& \quad=\sum_{k=1}^{m} a_{i k}(t) \Delta u_{k}(x, t)+\sum_{k=1}^{m} b_{i k}(t) \Delta u_{k}\left(x, \tau_{i k}(t)\right)
\end{aligned}
$$

[^0]\[

$$
\begin{aligned}
& -c_{i}\left(x, t,\left(u_{k}(x, t)\right)_{k=1}^{m},\left(u_{k}\left(x, \sigma_{i k}(t)\right)\right)_{k=1}^{m}\right) \\
& -\sum_{h=1}^{l} \int_{a}^{b} q_{i h}(x, t, \xi) u_{i}\left(x, g_{i h}(t, \xi)\right) d \sigma(\xi)+f_{i}(x, t) \\
& \quad(x, t) \in \Omega \times[0, \infty) \equiv G, \quad i=1,2, \ldots, m
\end{aligned}
$$
\]

where Ω is a bounded domain in R^{n} with a piecewise smooth boundary $\partial \Omega, \Delta u_{i}(x, t)=\sum_{r=1}^{n}\left(\partial^{2} u_{i}(x, t) / \partial x_{r}^{2}\right), i=1,2, \ldots, m$, and the integral in (1) is the Stieltjes integral.

We assume throughout this paper that
(H1) $\delta_{i}, \lambda_{i r} \in C^{1}([0, \infty) ;[0, \infty)), a_{i k}, b_{i k} \in C([0, \infty) ; R), a_{i i}(t)>0$, and $b_{i i}(t)>0, i=1,2, \ldots, m ; k=1,2, \ldots, m ; r=1,2, \ldots, s$;
(H2) $\rho_{i r}, \tau_{i k}, \sigma_{i k} \in C([0, \infty) ; R), \rho_{i r}(t) \leq t, \tau_{i k}(t) \leq t, \sigma_{i k}(t) \leq t$ and $\lim _{t \rightarrow \infty} \rho_{i r}(t)=\lim _{t \rightarrow \infty} \tau_{i k}(t)=\lim _{t \rightarrow \infty} \sigma_{i k}(t)=\infty, i=1,2, \ldots, m ;$ $r=1,2, \ldots, s ; k=1,2, \ldots, m$;
$(\mathrm{H} 3) c_{i} \in C\left(\bar{G} \times R^{2 m} ; R\right)$, and

$$
\begin{gathered}
c_{i}\left(x, t, \xi_{1}, \ldots, \xi_{i}, \ldots, \xi_{m}, \eta_{1}, \ldots, \eta_{i}, \ldots, \eta_{m}\right) \\
\begin{cases}\geq 0 & \text { if } \xi_{i} \text { and } \eta_{i} \in(0, \infty) \\
\leq 0 & \text { if } \xi_{i} \text { and } \eta_{i} \in(-\infty, 0) \\
i=1,2, \ldots, m\end{cases}
\end{gathered}
$$

(H4) $q_{i h} \in C(\bar{G} \times[a, b] ;[0, \infty)), q_{i h}(t, \xi)=\min _{x \in \bar{\Omega}} q_{i h}(x, t, \xi), i=$ $1,2, \ldots, m ; h=1,2, \ldots, l$;
(H5) $g_{i h} \in C([0, \infty) \times[a, b] ; R), g_{i h}(t, \xi) \leq t, \xi \in[a, b]$ and $g_{i h}(t, \xi)$ are nondecreasing functions with respect to t and ξ, respectively,

$$
\lim _{t \rightarrow \infty} \min _{\xi \in[a, b]}\left\{g_{i h}(t, \xi)\right\}=\infty, \quad i=1,2, \ldots, m ; \quad h=1,2, \ldots, l
$$

(H6) $\sigma \in([a, b] ; R)$ and $\sigma(\xi)$ are nondecreasing in ξ;
(H7) $f_{i} \in C(\bar{G} ; R), i=1,2, \ldots, m$.
Consider the following two kinds of boundary conditions:
(2) $\quad \frac{\partial u_{i}(x, t)}{\partial N}=\psi_{i}(x, t), \quad(x, t) \in \partial \Omega \times[0, \infty), \quad i=1,2, \ldots, m$,
where N is the unit exterior normal vector to $\partial \Omega$ and $\psi_{i}(x, t)$ is a continuous function on $\partial \Omega \times[0, \infty), i=1,2, \ldots, m$, and

$$
\begin{equation*}
u_{i}(x, t)=0, \quad(x, t) \in \partial \Omega \times[0, \infty), \quad i=1,2, \ldots, m \tag{3}
\end{equation*}
$$

Definition 1.1. The vector function $u(x, t)=\left\{u_{1}(x, t), u_{2}(x, t), \ldots\right.$, $\left.u_{m}(x, t)\right\}^{T}$ is said to be a solution of the problem (1), (2) (or (1), (3)) if it satisfies (1) in $G=\Omega \times[0, \infty)$ and boundary condition (2) (or (3)).

Definition 1.2. The vector solution $u(x, t)=\left\{u_{1}(x, t), u_{2}(x, t), \ldots\right.$, $\left.u_{m}(x, t)\right\}^{T}$ of the problem (1), (2) (or (1), (3)) is said to oscillate in the domain $G=\Omega \times[0, \infty)$ if at least one of its nontrivial component oscillates in G. Otherwise, the vector solution $u(x, t)$ is said to be nonoscillatory.

Definition 1.3. The vector solution $u(x, t)=\left\{u_{1}(x, t), u_{2}(x, t), \ldots\right.$, $\left.u_{m}(x, t)\right\}^{T}$ of the problem (1), (2) (or (1), (3)) is said to oscillate strongly in the domain $G=\Omega \times[0, \infty)$ if each of its nontrivial component oscillates in G.
2. Main results. Firstly, we introduce the following fact [1]:

The smallest eigenvalue α_{0} of the Dirichlet problem

$$
\begin{cases}\Delta \omega(x)+\alpha \omega(x)=0 & \text { in } \Omega \\ \omega(x)=0 & \text { on } \partial \Omega\end{cases}
$$

is positive and the corresponding eigenfunction $\varphi(x)$ is positive in Ω.
For convenience, we will use the following notations:

$$
\begin{gathered}
U_{i}(t)=\int_{\Omega} u_{i}(x, t) d x, \quad \Psi_{i}(t)=\int_{\partial \Omega} \psi_{i}(x, t) d S, \quad F_{i}(t)=\int_{\Omega} f_{i}(x, t) d x \\
H_{i}(t)=F_{i}(t)+\sum_{k=1}^{m} a_{i k}(t) \Psi_{k}(t)+\sum_{k=1}^{m} b_{i k}(t) \Psi_{k}\left(\tau_{i k}(t)\right) \\
\widetilde{U}_{i}(t)=\int_{\Omega} u_{i}(x, t) \varphi(x) d x, \quad E_{i}(t)=\int_{\Omega} f_{i}(x, t) \varphi(x) d x \\
t \geq 0, \quad i=1,2, \ldots, m
\end{gathered}
$$

where $d S$ is the surface element on $\partial \Omega$.

Lemma 2.1. Suppose that $u(x, t)=\left\{u_{1}(x, t), u_{2}(x, t), \ldots, u_{m}(x, t)\right\}^{T}$ is a solution of the problem (1),(2) in G. If there exists some $i_{0} \in$ $\{1,2, \ldots, m\}$ such that $u_{i_{0}}(x, t)>0, t \geq t_{0} \geq 0$, then $U_{i_{0}}(t)$ satisfies the neutral differential inequality

$$
\begin{align*}
\left(\delta_{i_{0}}(t) V(t)\right. & \left.+\sum_{r=1}^{s} \lambda_{i_{0} r}(t) V\left(\rho_{i_{0} r}(t)\right)\right)^{\prime} \\
& +\sum_{h=1}^{l} \int_{a}^{b} q_{i_{0} h}(t, \xi) V\left(g_{i_{0} h}(t, \xi)\right) d \sigma(\xi) \leq H_{i_{0}}(t) \tag{4}
\end{align*}
$$

Proof. From the conditions (H2) and (H5), we easily obtain that there exists a number $t_{1} \geq t_{0}$ such that $u_{i_{0}}(x, t)>0, u_{i_{0}}\left(x, \rho_{i_{0} r}(t)\right)>0$, $u_{i_{0}}\left(x, \sigma_{i_{0}} k(t)\right)>0, u_{i_{0}}\left(x, \sigma_{i_{0} k}(t)\right)>0$ and $u_{i_{0}}\left(x, g_{i_{0} h}(t, \xi)\right)>0$ in $\Omega \times\left[t_{1}, \infty\right), k=1,2, \ldots, m ; r=1,2, \ldots, s, h=1,2, \ldots, l$.

Consider the following equation
(5)

$$
\begin{aligned}
& \frac{\partial}{\partial t}\left(\delta_{i_{0}}(t) u_{i_{0}}(x, t)+\sum_{r=1}^{s} \lambda_{i_{0} r}(t) u_{i_{0}}\left(x, \rho_{i_{0} r}(t)\right)\right) \\
& =\sum_{k=1}^{m} a_{i_{0} k}(t) \Delta u_{k}(x, t)+\sum_{k=1}^{m} b_{i_{0} k}(t) \Delta u_{k}\left(x, \tau_{i_{0} k}(t)\right)-c_{i_{0}}\left(x, t,\left(u_{k}(x, t)\right)_{k=1}^{m}\right. \\
& \left.\quad\left(u_{k}\left(x, \sigma_{i_{0} k}(t)\right)\right)_{k=1}^{m}\right)-\sum_{h=1}^{l} \int_{a}^{b} q_{i_{0} h}(x, t, \xi) u_{i_{0}}\left(x, g_{i_{0} h}(t, \xi)\right) d \sigma(\xi) \\
& \quad+f_{i_{0}}(x, t), \quad(x, t) \in \Omega \times[0, \infty) \equiv G
\end{aligned}
$$

Integrating (5) with respect to x over the domain Ω, we have
(6)

$$
\begin{aligned}
& \frac{d}{d t}\left(\delta_{i_{0}}(t) \int_{\Omega} u_{i_{0}}(x, t) d x+\sum_{r=1}^{s} \lambda_{i_{0} r}(t) \int_{\Omega} u_{i_{0}}\left(x, \rho_{i_{0} r}(t)\right) d x\right) \\
& \quad=\sum_{k=1}^{m} a_{i_{0} k}(t) \int_{\Omega} \Delta u_{k}(x, t) d x+\sum_{k=1}^{m} b_{i_{0} k}(t) \int_{\Omega} \Delta u_{k}\left(x, \tau_{i_{0} k}(t)\right) d x
\end{aligned}
$$

$$
\begin{aligned}
& -\int_{\Omega} c_{i_{0}}\left(x, t,\left(u_{k}(x, t)\right)_{k=1}^{m},\left(u_{k}\left(x, \sigma_{i_{0} k}(t)\right)\right)_{k=1}^{m}\right) d x \\
& -\sum_{h=1}^{l} \int_{\Omega} \int_{a}^{b} q_{i_{0} h}(x, t, \xi) u_{i_{0}}\left(x, g_{i_{0} h}(t, \xi)\right) d \sigma(\xi) d x+\int_{\Omega} f_{i_{0}}(x, t) d x \\
& t \geq t_{1}
\end{aligned}
$$

Green's formula and (2) yield

$$
\begin{equation*}
\int_{\Omega} \Delta u_{k}(x, t) d x=\int_{\partial \Omega} \frac{\partial u_{k}(x, t)}{\partial N} d S=\int_{\partial \Omega} \psi_{k}(x, t) d S=\Psi_{k}(t) \tag{7}
\end{equation*}
$$

and
(8)

$$
\begin{aligned}
\int_{\Omega} \Delta u_{k}\left(x, \tau_{i_{0} k}(t)\right) d x & =\int_{\partial \Omega} \frac{\partial u_{k}\left(x, \tau_{i_{0} k}(t)\right)}{\partial N} d S=\int_{\partial \Omega} \psi_{k}\left(x, \tau_{i_{0} k}(t)\right) d S \\
& =\Psi_{k}\left(\tau_{i_{0} k}(t)\right), \quad t \geq t_{1}, \quad k=1,2, \ldots, m
\end{aligned}
$$

Noting that

$$
\begin{gathered}
\int_{\Omega} \int_{a}^{b} q_{i_{0} h}(x, t, \xi) u_{i_{0}}\left(x, g_{i_{0} h}(t, \xi)\right) d \sigma(\xi) d x \\
=\int_{a}^{b} \int_{\Omega} q_{i_{0} h}(x, t, \xi) u_{i_{0}}\left(x, g_{i_{0} h}(t, \xi)\right) d x d \sigma(\xi) \\
t \geq t_{1}, \quad h=1,2, \ldots, l
\end{gathered}
$$

then from condition (H4), we have

$$
\begin{align*}
& \int_{\Omega} \int_{a}^{b} q_{i_{0} h}(x, t, \xi) u_{i_{0}}\left(x, g_{i_{0} h}(t, \xi)\right) d \sigma(\xi) d x \tag{9}\\
& \quad \geq \int_{a}^{b} q_{i_{0} h}(t, \xi) \int_{\Omega} u_{i_{0}}\left(x, g_{i_{0} h}(t, \xi)\right) d x d \sigma(\xi), \quad h=1,2, \ldots, l
\end{align*}
$$

Using the condition (H3), we have $c_{i_{0}}\left(x, t,\left(u_{k}(x, t)\right)_{k=1}^{m},\left(u_{k}(x\right.\right.$, $\left.\left.\left.\sigma_{i_{0} k}(t)\right)\right)_{k=1}^{m}\right)>0$, then combining (6)-(9), we have

$$
\begin{aligned}
& \left(\delta_{i_{0}}(t) U_{i_{0}}(t)+\sum_{r=1}^{s} \lambda_{i_{0} r}(t) U_{i_{0}}\left(\rho_{i_{0} r}(t)\right)\right)^{\prime} \\
& \quad+\sum_{h=1}^{l} \int_{a}^{b} q_{i_{0} h}(t, \xi) U_{i_{0}}\left(g_{i_{0} h}(t, \xi)\right) d \sigma(\xi) \\
& \quad \leq F_{i_{0}}(t)+\sum_{k=1}^{m} a_{i_{0} k}(t) \Psi_{k}(t)+\sum_{k=1}^{m} b_{i_{0} k}(t) \Psi_{k}\left(\tau_{i_{0} k}(t)\right), \quad t \geq t_{1}
\end{aligned}
$$

which shows that $U_{i_{0}}(t)>0$ is a positive solution of the inequality (4). The proof is complete.

Using a similar way, we easily obtain the following lemma.

Lemma 2.2. Suppose that $u(x, t)=\left\{u_{1}(x, t), u_{2}(x, t), \ldots, u_{m}(x, t)\right\}^{T}$ is a solution of the problem (1), (2) in G. If there exists some $i_{0} \in\{1,2, \ldots, m\}$ such that $u_{i_{0}}(x, t)<0, t \geq t_{0} \geq 0$, then $U_{i_{0}}(t)$ satisfies the neutral differential inequality

$$
\begin{align*}
\left(\delta_{i_{0}}(t) V(t)+\right. & \left.\sum_{r=1}^{s} \lambda_{i_{0} r}(t) V\left(\rho_{i_{0} r}(t)\right)\right)^{\prime} \tag{10}\\
& +\sum_{h=1}^{l} \int_{a}^{b} q_{i_{0} h}(t, \xi) V\left(g_{i_{0} h}(t, \xi)\right) d \sigma(\xi) \geq H_{i_{0}}(t)
\end{align*}
$$

Theorem 2.1. If there exists some $i_{0} \in\{1,2, \ldots, m\}$ such that the inequality (4) has no eventually positive solutions and the inequality (10) has no eventually negative solutions, then every solution of the problem (1), (2) is oscillatory in G.

Proof. Suppose to the contrary that there is a nonoscillatory solution $u(x, t)=\left\{u_{1}(x, t), u_{2}(x, t), \ldots, u_{m}(x, t)\right\}^{T}$ of the problem (1), (2). It is obvious that $\left|u_{i}(x, t)\right|>0$ for $t \geq t_{0} \geq 0, i=1,2, \ldots, m$; then $u_{i_{0}}(x, t)>0$ or $u_{i_{0}}(x, t)<0, t \geq t_{0}$.

If $u_{i_{0}}(x, t)>0, t \geq t_{0}$, using Lemma 2.1 we obtain that $U_{i_{0}}(t)>0$ is a solution of inequality (4), which is a contradiction.

If $u_{i_{0}}(x, t)<0, t \geq t_{0}$, using Lemma 2.2 we obtain that $U_{i_{0}}(t)<0$ is a solution of inequality (10), which is a contradiction. This completes the proof.

Theorem 2.2. If there exists some $i_{0} \in\{1,2, \ldots, m\}$ such that

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} \int_{t_{1}}^{t} H_{i_{0}}(s) d s=-\infty, \quad t_{1} \geq t_{0} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \int_{t_{1}}^{t} H_{i_{0}}(s) d s=\infty, \quad t_{1} \geq t_{0} \tag{12}
\end{equation*}
$$

hold. Then every solution of the problem (1), (2) is oscillatory in G.

Proof. We prove that the inequality (4) has no eventually positive solutions and the inequality (10) has no eventually negative solutions.

Assume to the contrary that (4) has a positive solution $U_{i_{0}}(t)$; then there exists $t_{0} \geq 0$ such that $U_{i_{0}}(t)>0, U_{i_{0}}\left(\rho_{i_{0} r}(t)\right)>0$, $U_{i_{0}}\left(g_{i_{0} h}(t, \xi)\right)>0, t \geq t_{0}, h=1,2, \ldots, l, r=1,2, \ldots, s$. Then from (4) we have

$$
\begin{equation*}
\left(\delta_{i_{0}}(t) U_{i_{0}}(t)+\sum_{r=1}^{s} \lambda_{i_{0} r}(t) U_{i_{0}}\left(\rho_{i_{0} r}(t)\right)\right)^{\prime} \leq H_{i_{0}}(t) \tag{13}
\end{equation*}
$$

Integrating (13) over the interval $\left[t_{1}, t\right], t_{1} \geq t_{0}$, we have

$$
\begin{equation*}
\delta_{i_{0}}(t) U_{i_{0}}(t)+\sum_{r=1}^{s} \lambda_{i_{0} r}(t) U_{i_{0}}\left(\rho_{i_{0} r}(t)\right) \leq C+\int_{t_{1}}^{t} H_{i_{0}}(s) d s \tag{14}
\end{equation*}
$$

where C is a constant. Taking $t \rightarrow \infty$, from (14) we have

$$
\liminf _{t \rightarrow \infty}\left[\delta_{i_{0}}(t) U_{i_{0}}(t)+\sum_{r=1}^{s} \lambda_{i_{0} r}(t) U_{i_{0}}\left(\rho_{i_{0} r}(t)\right)\right]=-\infty
$$

which contradicts the assumption that $U_{i_{0}}(t)>0$.
Assume that (10) has a negative solution $\bar{U}_{i_{0}}(t)$. Noting that condition (12) and using the above mentioned method, we easily obtain a contradiction. The proof is complete.

Using the above oscillation results, it is not difficult to derive the following strong oscillation conclusions.

Theorem 2.3. Suppose that for all $i \in\{1,2, \ldots, m\}$,

$$
\begin{align*}
\left(\delta_{i}(t) V(t)\right. & \left.+\sum_{r=1}^{s} l a_{i r}(t) V\left(\rho_{i r}(t)\right)\right)^{\prime} \\
& +\sum_{h=1}^{l} \int_{a}^{b} q_{i h}(t, \xi) V\left(g_{i h}(t, \xi)\right) d \sigma(\xi) \leq H_{i}(t) \tag{15}
\end{align*}
$$

has no eventually positive solutions and

$$
\begin{align*}
\left(\delta_{i}(t) V(t)\right. & \left.+\sum_{r=1}^{s} \lambda_{i r}(t) V\left(\rho_{i r}(t)\right)\right)^{\prime} \\
& +\sum_{h=1}^{l} \int_{a}^{b} q_{i h}(t, \xi) V\left(g_{i h}(t, \xi)\right) d \sigma(\xi) \geq H_{i}(t) \tag{16}
\end{align*}
$$

has no eventually negative solutions.
Then every solution of the problem (1), (2) oscillates strongly in G.

Theorem 2.4. Suppose that for all $i \in\{1,2, \ldots, m\}$,

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} \int_{t_{1}}^{t} H_{i}(s) d s=-\infty, \quad t_{1} \geq t_{0} \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \int_{t_{1}}^{t} H_{i}(s) d s=\infty, \quad t_{1} \geq t_{0} \tag{18}
\end{equation*}
$$

hold. Then every solution of the problem (1), (2) oscillates strongly in G.

Next, we study the oscillation of the problem (1), (3).

Lemma 2.3. Assume that $u(x, t)=\left\{u_{1}(x, t), u_{2}(x, t), \ldots, u_{m}(x, t)\right\}^{T}$ is a solution of the problem (1), (3) in G, and the following hypothesis (H8) is satisfied:
(H8) $a_{i k}(t)=b_{i k}(t)=0, i \neq k, i=1,2, \ldots, m ; k=1,2, \ldots, m$.
If there exists some $i_{0} \in\{1,2, \ldots, m\}$ such that $u_{i_{0}}(x, t)>0$, $t \geq t_{0} \geq 0$, then $\widetilde{U}_{i_{0}}(t)$ satisfies the neutral differential inequality

$$
\begin{align*}
\left(\delta_{i_{0}}(t) V(t)\right. & \left.+\sum_{r=1}^{s} \lambda_{i_{0} r}(t) V\left(\rho_{i_{0} r}(t)\right)\right)^{\prime} \\
& +\alpha_{0} a_{i_{0} i_{0}}(t) V(t)+\alpha_{0} b_{i_{0} i_{0}}(t) V\left(\tau_{i_{0} i_{0}}(t)\right) \tag{19}\\
& +\sum_{h=1}^{l} \int_{a}^{b} q_{i_{0} h}(t, \xi) V\left(g_{i_{0} h}(t, \xi)\right) d \sigma(\xi) \leq E_{i_{0}}(t)
\end{align*}
$$

Proof. As in the proof of Lemma 2.1, consider equation (5). Multiplying both sides of (5) by $\varphi(x)$ and integrating with respect to x over the domain Ω, and noting the hypothesis (H8), we have

$$
\begin{align*}
& \frac{d}{d t}\left(\delta_{i_{0}}(t) \int_{\Omega} u_{i_{0}}(x, t) \varphi(x) d x+\sum_{r=1}^{s} \lambda_{i_{0} r}(t) \int_{\Omega} u_{i_{0}}\left(x, \rho_{i_{0} r}(t)\right) \varphi(x) d x\right) \tag{20}\\
&= a_{i_{0} i_{0}}(t) \int_{\Omega} \Delta u_{i_{0}}(x, t) \varphi(x) d x+b_{i_{0} i_{0}}(t) \int_{\Omega} \Delta u_{i_{0}}\left(x, \tau_{i_{0} i_{0}}(t)\right) \varphi(x) d x \\
&-\int_{\Omega} c_{i_{0}}\left(x, t,\left(u_{k}(x, t)\right)_{k=1}^{m},\left(u_{k}\left(x, \sigma_{i_{0} k}(t)\right)\right)_{k=1}^{m}\right) \varphi(x) d x \\
&-\sum_{h=1}^{l} \int_{\Omega} \int_{a}^{b} q_{i_{0} h}(x, t, \xi) u_{i_{0}}\left(x, g_{i_{0} h}(t, \xi)\right) d \sigma(x i) \varphi(x) d x \\
&+\int_{\Omega} f_{i_{0}}(x, t) \varphi(x) d x, \quad t \geq t_{1}
\end{align*}
$$

Using Green's formula and the boundary condition (3), we obtain

$$
\begin{align*}
\int_{\Omega} \Delta u_{i_{0}}(x, t) \varphi(x) d x & =\int_{\Omega} u_{i_{0}}(x, t) \Delta \varphi(x) d x \tag{21}\\
& =-\alpha_{0} \int_{\Omega} u_{i_{0}}(x, t) \varphi(x) d x
\end{align*}
$$

and
(22)

$$
\begin{aligned}
\int_{\Omega} \Delta u_{i_{0}}\left(x, \tau_{i_{0} i_{0}}(t)\right) \varphi(x) d x & =\int_{\Omega} u_{i_{0}}\left(x, \tau_{i_{0} i_{0}}(t)\right) \Delta \varphi(x) d x \\
& =-\alpha_{0} \int_{\Omega} u_{i_{0}}\left(x, \tau_{i_{0} i_{0}}(t)\right) \varphi(x) d x, \quad t \geq t_{1}
\end{aligned}
$$

It is easy to see that

$$
\begin{align*}
& \int_{\Omega} \int_{a}^{b} q_{i_{0} h}(x, t, \xi) u_{i_{0}}\left(x, g_{i_{0} h}(t, \xi)\right) \varphi(x) d \sigma(\xi) d x \tag{23}\\
& \quad=\int_{a}^{b} \int_{\Omega} q_{i_{0} h}(x, t, \xi) u_{i_{0}}\left(x, g_{i_{0} h}(t, \xi)\right) \varphi(x) d x d \sigma(\xi) \\
& \quad \geq \int_{a}^{b} q_{i_{0} h}(t, \xi) \int_{\Omega} u_{i_{0}}\left(x, g_{i_{0} h}(t, \xi)\right) \varphi(x) d x d \sigma(\xi), \quad h=1,2, \ldots, l
\end{align*}
$$

and

$$
\begin{equation*}
c_{i_{0}}\left(x, t,\left(u_{k}(x, t)\right)_{k=1}^{m},\left(u_{k}\left(x, \sigma_{i_{0} k}(t)\right)\right)_{k=1}^{m}\right) \varphi(x)>0 \tag{24}
\end{equation*}
$$

Therefore,

$$
\begin{aligned}
\left(\delta_{i_{0}}(t) \widetilde{U}_{i_{0}}(t)\right. & \left.+\sum_{r=1}^{s} \lambda_{i_{0} r}(t) \widetilde{U}_{i_{0}}\left(\rho_{i_{0} r}(t)\right)\right)^{\prime} \\
& +\alpha_{0} a_{i_{0} i_{0}}(t) \widetilde{U}_{i_{0}}(t)+\alpha_{0} b_{i_{0} i_{0}}(t) \widetilde{U}_{i_{0}}\left(\tau_{i_{0} i_{0}}(t)\right) \\
& +\sum_{h=1}^{l} \int_{a}^{b} q_{i_{0} h}(t, \xi) \widetilde{U}_{i_{0}}\left(g_{i_{0} h}(t, \xi)\right) d \sigma(\xi) \leq E_{i_{0}}(t)
\end{aligned}
$$

which shows that $\widetilde{U}_{i_{0}}(t)>0$ is a positive solution of the inequality (19). This completes the proof.

Similarly, we also have the following lemma.

Lemma 2.4. Assume that $u(x, t)=\left\{u_{1}(x, t), u_{2}(x, t), \ldots, u_{m}(x, t)\right\}^{T}$ is a solution of the problem (1), (3) in G, and the hypothesis (H8) holds. If there exists some $i_{0} \in\{1,2, \ldots, m\}$ such that $u_{i_{0}}(x, t)<0$, $t \geq t_{0} \geq 0$, then $\widetilde{U}_{i_{0}}(t)$ satisfies the neutral differential inequality

$$
\begin{align*}
\left(\delta_{i_{0}}(t) V(t)\right. & \left.+\sum_{r=1}^{s} \lambda_{i_{0} r}(t) V\left(\rho_{i_{0} r}(t)\right)\right)^{\prime} \\
& +\alpha_{0} a_{i_{0} i_{0}}(t) V(t)+\alpha_{0} b_{i_{0} i_{0}}(t) V\left(\tau_{i_{0} i_{0}}(t)\right) \tag{25}\\
& +\sum_{h=1}^{l} \int_{a}^{b} q_{i_{0} h}(t, \xi) V\left(g_{i_{0} h}(t, \xi)\right) d \sigma(\xi) \geq E_{i_{0}}(t)
\end{align*}
$$

Using Lemmas 2.3 and 2.4, we easily establish the following results.

Theorem 2.5. Assume that the hypothesis (H8) holds. If there exists some $i_{0} \in\{1,2, \ldots, m\}$ such that the inequality (19) has no eventually
positive solutions and the inequality (25) has no eventually negative solutions, then every solution of the problem (1), (3) is oscillatory in G.

Theorem 2.6. Assume that the hypothesis (H8) holds. If there exists some $i_{0} \in\{1,2, \ldots, m\}$ such that

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} \int_{t_{1}}^{t} E_{i_{0}}(s) d s=-\infty, \quad t_{1} \geq t_{0} \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \int_{t_{1}}^{t} E_{i_{0}}(s) d s=\infty, \quad t_{1} \geq t_{0} \tag{27}
\end{equation*}
$$

hold. Then every solution of the problem (1), (3) is oscillatory in G.

Theorem 2.7. Assume that the hypothesis (H8) holds. If for all $i \in\{1,2, \ldots, m\}$,

$$
\begin{align*}
\left(\delta_{i}(t) V(t)\right. & \left.+\sum_{r=1}^{s} \lambda_{i r}(t) V\left(\rho_{i r}(t)\right)\right)^{\prime} \\
& +\alpha_{0} a_{i i}(t) V(t)+\alpha_{0} b_{i i}(t) V\left(\tau_{i i}(t)\right) \tag{28}\\
& +\sum_{h=1}^{l} \int_{a}^{b} q_{i h}(t, \xi) V\left(g_{i h}(t, \xi)\right) d \sigma(\xi) \leq E_{i}(t)
\end{align*}
$$

has no eventually positive solutions and

$$
\begin{align*}
\left(\delta_{i}(t) V(t)\right. & \left.+\sum_{r=1}^{s} \lambda_{i r}(t) V\left(\rho_{i r}(t)\right)\right)^{\prime} \\
& +\alpha_{0} a_{i i}(t) V(t)+\alpha_{0} b_{i i}(t) V\left(\tau_{i i}(t)\right) \tag{29}\\
& +\sum_{h=1}^{l} \int_{a}^{b} q_{i h}(t, \xi) V\left(g_{i h}(t, \xi)\right) d \sigma(\xi) \geq E_{i}(t)
\end{align*}
$$

has no eventually negative solutions.

Then every solution of the problem (1), (3) oscillates strongly in G.

Theorem 2.8. Suppose that the hypothesis (H8) holds, and for all $i \in\{1,2, \ldots, m\}$

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} \int_{t_{1}}^{t} E_{i}(s) d s=-\infty, \quad t_{1} \geq t_{0} \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \int_{t_{1}}^{t} E_{i}(s) d s=\infty, \quad t_{1} \geq t_{0} \tag{31}
\end{equation*}
$$

hold. Then every solution of the problem (1), (3) oscillates strongly in G.
3. Examples. In this section, we give some illustrative examples.

Example 3.1. Consider the system of neutral parabolic differential equations

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial t}\left[u_{1}(x, t)+u_{1}(x, t-\pi)\right]=\Delta u_{1}(x, t)+\frac{1}{3} \Delta u_{1}(x, t-\pi)+e^{t} \Delta u_{2}(x, t) \tag{32}\\
+\frac{2}{3} \Delta u_{2}\left(x, t-\left(3 \frac{\pi}{2}\right)\right) \\
-\left(u_{1}(x, t)+u_{1}(x, t-\pi)\right) \exp \left\{u_{2}(x, t)+u_{2}(x, t-\pi)\right\} \\
-\int_{-\pi}^{-\pi / 2} e^{t} u_{1}(x, t+\xi) d \xi-e^{t} \sin t \cos x-e^{t}(\sin t+\cos t) \\
\frac{\partial}{\partial t}\left[u_{2}(x, t)+u 2(x, t-\pi)\right]=2 \Delta u_{1}(x, t)+\frac{5}{3} \Delta u_{1}(x, t-\pi)+e^{t} \Delta u_{2}(x, t) \\
+\frac{1}{3} \Delta u_{2}\left(x, t-\left(3 \frac{\pi}{2}\right)\right) \\
-\left(u_{2}(x, t)+u_{2}(x, t-\pi)\right) \exp \left\{u_{1}(x, t)+u_{1}(x, t-\pi)\right\} \\
-\int_{-\pi}^{-\pi / 2} e^{t} u_{2}(x, t+\xi) d \xi+e^{t} \sin t \cos x+e^{t}(\sin t-\cos t) \\
(x, t) \in(0, \pi) \times[0, \infty)
\end{array}\right.
$$

with boundary condition

$$
\begin{equation*}
\frac{\partial u_{i}(0, t)}{\partial x}=\frac{\partial u i(\pi, t)}{\partial x}=0, \quad t \geq 0, \quad i=1,2 \tag{33}
\end{equation*}
$$

Here $\Omega=(0, \pi), n=1, m=2, s=1, l=1, \delta_{1}(t)=\delta_{2}(t)=1$, $\lambda_{11}(t)=\lambda_{21}(t)=1, \rho_{11}(t)=\rho_{21}(t)=t-\pi, a_{11}(t)=1, a_{12}(t)=e^{t}$, $a_{21}(t)=2, a_{22}(t)=e^{t}, b_{11}(t)=1 / 3, b_{12}(t)=2 / 3, b_{21}(t)=5 / 3$, $b_{22}(t)=1 / 3, \tau_{11}(t)=\tau_{21}(t)=t-\pi, \tau_{12}(t)=\tau_{22}(t)=t-(3 \pi / 2)$,

$$
\begin{aligned}
& c_{1}\left(x, t, u_{1}(x, t), u_{2}(x, t), u_{1}\left(x, \sigma_{11}(t)\right), u_{2}\left(x, \sigma_{12}(t)\right)\right) \\
& \quad=\left(u_{1}(x, t)+u_{1}\left(x, \sigma_{11}(t)\right)\right) \exp \left\{u_{2}(x, t)+u_{12}\left(x, \sigma_{12}(t)\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& c_{2}\left(x, t, u_{1}(x, t), u_{2}(x, t), u_{1}\left(x, \sigma_{21}(t)\right), u_{2}\left(x, \sigma_{22}(t)\right)\right) \\
& \quad=\left(u_{2}(x, t)+u_{2}\left(x, \sigma_{22}(t)\right)\right) \exp \left\{u_{1}(x, t)+u_{1}\left(x, \sigma_{21}(t)\right)\right\}
\end{aligned}
$$

$\sigma_{11}(t)=\sigma_{12}(t)=\sigma_{21}(t)=\sigma_{22}(t)=t-\pi, q_{11}(x, t, \xi)=q_{21}(x, t, \xi)=e^{t}$, $a=-\pi, b=-\pi / 2, g_{11}(t, \xi)=g_{21}(t, \xi)=t+\xi, \psi_{1}(x, t)=\psi_{2}(x, t)=0$, $f_{1}(x, t)=-e^{t} \sin t \cos x-e^{t}(\sin t+\cos t), f_{2}(x, t)=e^{t} \sin t \cos x+$ $e^{t}(\sin t-\cos t)$.

It is obvious that $\Psi_{1}(t)=\Psi_{2}(t)=0, \Psi_{1}\left(\tau_{11}(t)\right)=\Psi_{1}\left(\tau_{21}(t)\right)=0$, $\Psi_{2}\left(\tau_{12}(t)\right)=\Psi_{2}\left(\tau_{22}(t)\right)=0, \Phi_{1}(t)=\Phi_{2}(t)=0, \Phi_{1}\left(\tau_{11}(t)\right)=$ $\Phi_{1}\left(\tau_{21}(t)\right)=0, \Phi_{2}\left(\tau_{12}(t)\right)=\Phi_{2}\left(\tau_{22}(t)\right)=0$, then

$$
\begin{aligned}
& H_{1}(t)=F_{1}(t)=\int_{\Omega} f_{1}(x, t) d x=\int_{0}^{\pi} f_{1}(x, t) d x=-\pi e^{t}(\sin t+\cos t) \\
& H_{2}(t)=F_{2}(t)=\int_{\Omega} f_{2}(x, t) d x=\int_{0}^{\pi} f_{2}(x, t) d x=\pi e^{t}(\sin t-\cos t)
\end{aligned}
$$

Hence

$$
\liminf _{t \rightarrow \infty} \int_{t_{1}}^{t} H_{1}(s) d s=-\infty, \quad \limsup \int_{t \rightarrow \infty}^{t} H_{t_{1}}(s) d s=\infty
$$

and

$$
\liminf _{t \rightarrow \infty} \int_{t_{1}}^{t} H_{2}(s) d s=-\infty, \quad \limsup _{t \rightarrow \infty} \int_{t_{1}}^{t} H_{2}(s) d s=\infty
$$

which shows that all the conditions of Theorem 2.4 are fulfilled. Then every solution of the problem (32), (33) oscillates strongly in $(0, \pi) \times$ $[0, \infty)$. In fact, $u_{1}(x, t)=(1+\cos x) \sin t, u_{2}(x, t)=(1+\cos x) \cos t$ is such a solution.

Example 3.2. Consider the system of neutral parabolic differential equations

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial t}\left[u_{1}(x, t)+u_{1}(x, t-\pi)\right]=\left(e^{t}+1\right) \Delta u_{1}(x, t)+\Delta u_{1}(x, t-\pi) \tag{34}\\
+\Delta u_{2}(x, t)+(-1) \Delta u_{2}\left(x, t-\left(\frac{\pi}{2}\right)\right)-u_{1}(x, t)-u_{1}(x, t-\pi) \\
-\int_{-\pi}^{-\pi / 2} e^{t} u_{1}(x, t+\xi) d \xi+\left(\left(\frac{\pi}{2}\right)-e^{t} \cos t\right) \cos x-e^{t}(\sin t+\cos t) \\
\frac{\partial}{\partial t}\left[t u_{2}(x, t)+2 u_{2}\left(x, t-\left(\frac{\pi}{4}\right)\right)\right]=\Delta u_{1}(x, t)+\Delta u_{1}(x, t-\pi) \\
+\Delta u_{2}(x, t)+3 \Delta u_{2}\left(x, t-\left(\frac{\pi}{3}\right)\right)-u_{2}(x, t)-u_{2}\left(x, t-\left(\frac{\pi}{3}\right)\right) \\
-\int_{-\pi}^{-\pi / 2} \frac{8}{\pi} u_{2}(x, t+\xi) d \xi+\left(12 t-\left(13 \frac{\pi}{3}\right)+3\right) \cos x \\
(x, t) \in(0, \pi) \times[0, \infty)
\end{array}\right.
$$

with the boundary condition (33).
It is easy to see that $H_{1}(t)=-\pi e^{t}(\sin t+\cos t), H_{2}(t)=0$. Therefore,

$$
\begin{aligned}
& \liminf _{t \rightarrow \infty} \int_{t_{1}}^{t} H_{1}(s) d s=-\infty \\
& \limsup _{t \rightarrow \infty} \int_{t_{1}}^{t} H_{1}(s) d s=\infty
\end{aligned}
$$

Then, using Theorem 2.2, we obtain that every solution of the problem $(34),(33)$ oscillates in $(0, \pi) \times[0, \infty)$. In fact, $u_{1}(x, t)=(1+\cos x) \sin t$, $u_{2}(x, t)=t \cos x$ is such a solution.

Example 3.3. Consider the system of neutral parabolic differential equations

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial t}\left[2 u_{1}(x, t)+\frac{1}{3} u_{1}(x, t-\pi)\right]=e^{t} \Delta u_{1}(x, t)+\frac{5}{3} \Delta u_{1}\left(x, t-\left(\frac{\pi}{2}\right)\right) \tag{35}\\
-\left(u_{1}(x, t)+u_{1}(x, t-\pi)\right) \exp \left\{u_{2}(x, t)+u_{2}\left(x, t-\left(\frac{\pi}{2}\right)\right)\right\} \\
-\int_{-\pi}^{-\pi / 2} e^{t} u_{1}(x, t+\xi) d \xi+e^{t} \sin t \sin x \\
\frac{\partial}{\partial t}\left[\frac{1}{3} u_{2}(x, t)+\left(7 \frac{\pi}{4}\right) u_{2}\left(x, t-\left(\frac{\pi}{3}\right)\right)\right] \\
=2 \Delta u_{2}(x, t)+4 \Delta u_{2}\left(x, t-\left(\frac{\pi}{4}\right)\right) \\
-\left(u_{2}(x, t)+u_{2}\left(x, t-\frac{1}{3}\right)\right) \exp \left\{u_{1}(x, t)+u_{1}(x, t-\pi)\right\} \\
-\int_{-\pi}^{-\pi / 2} \frac{2}{\pi} u_{2}(x, t+\xi) d \xi+9 t \sin x \\
(x, t) \in(0, \pi) \times[0,1)
\end{array}\right.
$$

with the boundary condition

$$
\begin{equation*}
u_{i}(0, t)=u_{i}(\pi, t)=0, \quad t \geq 0, \quad i=1,2 \tag{36}
\end{equation*}
$$

Here $f_{1}(x, t)=e^{t} \sin t \sin x, f_{2}(x, t)=9 t \sin x$. We easily see that $\alpha_{0}=1, \varphi(x)=\sin x$. Let $i_{0}=1$, then

$$
E_{i_{0}}(t)=E_{1}(t)=\int_{\Omega} f_{1}(x, t) \varphi(x) d x=\int_{0}^{\pi} e^{t} \sin t \sin ^{2} x d x=\frac{\pi}{2} e^{t} \sin t
$$

Hence,

$$
\liminf _{t \rightarrow \infty} \int_{t_{1}}^{t} E_{1}(s) d s=-1, \quad \limsup _{t \rightarrow \infty} \int_{t_{1}}^{t} E_{1}(s) d s=\infty
$$

then using Theorem 2.6, we obtain that every solution of the problem (35), (36) oscillates in $(0, \pi) \times[0, \infty)$. In fact, $u_{1}(x, t)=\cos t \sin x$, $u_{2}(x, t)=t \sin x$ is such a solution.

Acknowledgment. The authors are very grateful to the referee for his valuable comments and suggestions.

REFERENCES

1. R. Courant and D. Hilbert, Methods of mathematical physics, Vol. I, Interscience, New York, 1966.
2. Ju.I. Domšlovk, On the oscillation of solutions of vector differential equations, Soviet Math. Dokl. 11 (1970), 839-841.
3. Y.K. Li, Oscillation of systems of hyperbolic differential equations with deviating arguments, Acta Math. Sinica 40 (1997), 100-105 (in Chinese).
4. W.N. Li, Oscillation properties for systems of hyperbolic differential equations of neutral type, J. Math. Anal. Appl. 248 (2000), 369-384.
5. W.N. Li and B.T. Cui, Oscillation for systems of parabolic equations of neutral type, Southeast Asian Bull. Math. 23 (1999), 447-456.
6. Oscillation for systems of neutral delay hyperbolic differential equations, Indian J. Pure Appl. Math. 31 (2000), 933-948.
7. W.N. Li and L. Debnath, Oscillation of a system of delay hyperbolic differential equations, Int. J. Appl. Math. 2 (2000), 417-431.
8. W.N. Li and F.W. Meng, Oscillation for systems of neutral partial differential equations with continuous distributed deviating arguments, Demonstratio Math. $\mathbf{3 4}$ (2001), 619-633.
9. E. Minchev and N. Yoshida, Oscillation of solutions of vector differential equations of parabolic type with functional arguments, J. Comput. Appl. Math. 151 (2003), 107-117.
10. E.S. Noussair and C.A. Swanson, Oscillation theorems for vector differential equations, Util. Math. 1 (1972), 97-109.
11. Appl. 109 (1976), 305-315.
12. J. Wu, Theory and applications of partial functional differential equations, Springer-Verlag, New York, 1996.

Department of Mathematics, Binzhou University, Shandong 256603, China
E-mail address: wnli@263.net
Department of Mathematics, Shanghai Normal University, Shanghai 200234, China

[^0]: Received by the editors on April 17, 2003.
 2000 AMS Mathematics Subject Classification. Primary 35B05, 35R10.
 Key words and phrases. Oscillation, system, parabolic differential equation, deviating argument, neutral type.

 This work is supported by the Natural Science Foundation of Shandong Province (Y2005A05) and the Project of Science and Technology of the Education Department of Shandong Province.

