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OSCILLATION TESTS FOR CERTAIN SYSTEMS
OF PARABOLIC DIFFERENTIAL EQUATIONS

WITH NEUTRAL TYPE

WEI NIAN LI AND MAOAN HAN

ABSTRACT. Sufficient conditions are established for the
forced oscillation of a class of systems of neutral parabolic
differential equations with deviating arguments. The main
results are illustrated by some examples.

1. Introduction. In the past decades, the fundamental theory of
partial functional differential equation(PFDE) has been investigated
extensively. We refer the reader to the monograph by Wu [12].
Simultaneously, let us note that the oscillation theory for PFDE is
an object of long standing interest.

In 1970, Doms̆lovk [2] introduced the concept of H-oscillation to
study the oscillation of solutions of vector differential equations, where
H is a unit vector in Rn. But there are only a few papers [9 11] dealing
with H-oscillation of vector partial differential equations. On the other
hand, in recent years, some results on the oscillation theory for systems
of PFDE were established in [3 8]. However, using the approach in
these papers, it is impossible to obtain the forced oscillation of systems
of PFDE. In this paper, we use a new technique to study the forced
oscillation of systems of neutral parabolic differential equations with
deviating arguments of the form

∂

∂t

(
δi(t)ui(x, t) +

s∑
r=1

λir(t)ui(x, ρir(t))
)

=
m∑

k=1

aik(t)Δuk(x, t) +
m∑

k=1

bik(t)Δuk(x, τik(t))
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− ci
(
x, t, (uk(x, t))m

k=1, (uk(x, σik(t)))m
k=1

)
−

l∑
h=1

∫ b

a

qih(x, t, ξ)ui(x, gih(t, ξ)) dσ(ξ) + fi(x, t),

(x, t) ∈ Ω × [0,∞) ≡ G, i = 1, 2, . . . ,m,

where Ω is a bounded domain in Rn with a piecewise smooth bound-
ary ∂Ω, Δui(x, t) =

∑n
r=1(∂

2ui(x, t)/∂x2
r), i = 1, 2, . . . ,m, and the

integral in (1) is the Stieltjes integral.

We assume throughout this paper that

(H1) δi, λir ∈ C1([0,∞); [0,∞)), aik, bik ∈ C([0,∞);R), aii(t) > 0,
and bii(t) > 0, i = 1, 2, . . . ,m; k = 1, 2, . . . ,m; r = 1, 2, . . . , s;

(H2) ρir, τik, σik ∈ C([0,∞);R), ρir(t) ≤ t, τik(t) ≤ t, σik(t) ≤ t and
limt→∞ ρir(t) = limt→∞ τik(t) = limt→∞ σik(t) = ∞, i = 1, 2, . . . ,m;
r = 1, 2, . . . , s; k = 1, 2, . . . ,m;

(H3) ci ∈ C(G×R2m;R), and

ci(x, t, ξ1, . . . , ξi, . . . , ξm, η1, . . . , ηi, . . . , ηm){≥ 0 if ξi and ηi ∈ (0,∞),

≤ 0 if ξi and ηi ∈ (−∞, 0),

i = 1, 2, . . . ,m;

(H4) qih ∈ C(G × [a, b]; [0,∞)), qih(t, ξ) = minx∈Ω qih(x, t, ξ), i =
1, 2, . . . ,m; h = 1, 2, . . . , l;

(H5) gih ∈ C([0,∞) × [a, b];R), gih(t, ξ) ≤ t, ξ ∈ [a, b] and gih(t, ξ)
are nondecreasing functions with respect to t and ξ, respectively,

lim
t→∞ min

ξ∈[a,b]
{gih(t, ξ)} = ∞, i = 1, 2, . . . ,m; h = 1, 2, . . . , l;

(H6) σ ∈ ([a, b];R) and σ(ξ) are nondecreasing in ξ;

(H7) fi ∈ C(G;R), i = 1, 2, . . . ,m.

Consider the following two kinds of boundary conditions:

(2)
∂ui(x, t)
∂N

= ψi(x, t), (x, t) ∈ ∂Ω × [0,∞), i = 1, 2, . . . ,m,
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where N is the unit exterior normal vector to ∂Ω and ψi(x, t) is a
continuous function on ∂Ω × [0,∞), i = 1, 2, . . . ,m, and

(3) ui(x, t) = 0, (x, t) ∈ ∂Ω × [0,∞), i = 1, 2, . . . ,m.

Definition 1.1. The vector function u(x, t) = {u1(x, t), u2(x, t), . . . ,
um(x, t)}T is said to be a solution of the problem (1), (2) (or (1), (3))
if it satisfies (1) in G = Ω× [0,∞) and boundary condition (2) (or (3)).

Definition 1.2. The vector solution u(x, t) = {u1(x, t), u2(x, t), . . . ,
um(x, t)}T of the problem (1), (2) (or (1), (3)) is said to oscillate in
the domain G = Ω × [0,∞) if at least one of its nontrivial component
oscillates in G. Otherwise, the vector solution u(x, t) is said to be
nonoscillatory.

Definition 1.3. The vector solution u(x, t) = {u1(x, t), u2(x, t), . . . ,
um(x, t)}T of the problem (1), (2) (or (1), (3)) is said to oscillate
strongly in the domain G = Ω × [0,∞) if each of its nontrivial
component oscillates in G.

2. Main results. Firstly, we introduce the following fact [1]:

The smallest eigenvalue α0 of the Dirichlet problem{
Δω(x) + αω(x) = 0 in Ω
ω(x) = 0 on ∂Ω,

is positive and the corresponding eigenfunction ϕ(x) is positive in Ω.

For convenience, we will use the following notations:

Ui(t) =
∫

Ω

ui(x, t) dx, Ψi(t) =
∫

∂Ω

ψi(x, t) dS, Fi(t) =
∫

Ω

fi(x, t) dx,

Hi(t) = Fi(t) +
m∑

k=1

aik(t)Ψk(t) +
m∑

k=1

bik(t)Ψk(τik(t)),

Ũi(t) =
∫

Ω

ui(x, t)ϕ(x) dx, Ei(t) =
∫

Ω

fi(x, t)ϕ(x) dx,

t ≥ 0, i = 1, 2, . . . ,m,

where dS is the surface element on ∂Ω.
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Lemma 2.1. Suppose that u(x, t)={u1(x, t), u2(x, t), . . . , um(x, t)}T

is a solution of the problem (1), (2) in G. If there exists some i0 ∈
{1, 2, . . . ,m} such that ui0(x, t) > 0, t ≥ t0 ≥ 0, then Ui0(t) satisfies
the neutral differential inequality

(4)

(
δi0(t)V (t) +

s∑
r=1

λi0r(t)V (ρi0r(t))
)′

+
l∑

h=1

∫ b

a

qi0h(t, ξ)V (gi0h(t, ξ)) dσ(ξ) ≤ Hi0(t).

Proof. From the conditions (H2) and (H5), we easily obtain that there
exists a number t1 ≥ t0 such that ui0(x, t) > 0, ui0(x, ρi0r(t)) > 0,
ui0(x, σi0k(t)) > 0, ui0(x, σi0k(t)) > 0 and ui0(x, gi0h(t, ξ)) > 0 in
Ω × [t1,∞), k = 1, 2, . . . ,m; r = 1, 2, . . . , s, h = 1, 2, . . . , l.

Consider the following equation

∂

∂t

(
δi0(t)ui0(x, t) +

s∑
r=1

λi0r(t)ui0(x, ρi0r(t))
)(5)

=
m∑

k=1

ai0k(t)Δuk(x, t)+
m∑

k=1

bi0k(t)Δuk(x, τi0k(t))−ci0
(
x, t, (uk(x, t))m

k=1,

(uk(x, σi0k(t)))m
k=1

) − l∑
h=1

∫ b

a

qi0h(x, t, ξ)ui0(x, gi0h(t, ξ)) dσ(ξ)

+ fi0(x, t), (x, t) ∈ Ω × [0,∞) ≡ G.

Integrating (5) with respect to x over the domain Ω, we have

d

dt

(
δi0(t)

∫
Ω

ui0(x, t) dx+
s∑

r=1

λi0r(t)
∫

Ω

ui0(x, ρi0r(t)) dx
)(6)

=
m∑

k=1

ai0k(t)
∫

Ω

Δuk(x, t) dx+
m∑

k=1

bi0k(t)
∫

Ω

Δuk(x, τi0k(t)) dx



OSCILLATION TESTS 1289

−
∫

Ω

ci0
(
x, t, (uk(x, t))m

k=1, (uk(x, σi0k(t)))m
k=1

)
dx

−
l∑

h=1

∫
Ω

∫ b

a

qi0h(x, t, ξ)ui0(x, gi0h(t, ξ)) dσ(ξ) dx+
∫

Ω

fi0(x, t) dx,

t ≥ t1.

Green’s formula and (2) yield∫
Ω

Δuk(x, t) dx =
∫

∂Ω

∂uk(x, t)
∂N

dS =
∫

∂Ω

ψk(x, t) dS = Ψk(t),(7)

and∫
Ω

Δuk(x, τi0k(t)) dx =
∫

∂Ω

∂uk(x, τi0k(t))
∂N

dS =
∫

∂Ω

ψk(x, τi0k(t)) dS

(8)

= Ψk(τi0k(t)), t ≥ t1, k = 1, 2, . . . ,m.
Noting that∫

Ω

∫ b

a

qi0h(x, t, ξ)ui0(x, gi0h(t, ξ)) dσ(ξ) dx

=
∫ b

a

∫
Ω

qi0h(x, t, ξ)ui0(x, gi0h(t, ξ)) dx dσ(ξ),

t ≥ t1, h = 1, 2, . . . , l,
then from condition (H4), we have

(9)

∫
Ω

∫ b

a

qi0h(x, t, ξ)ui0(x, gi0h(t, ξ)) dσ(ξ) dx

≥
∫ b

a

qi0h(t, ξ)
∫

Ω

ui0(x, gi0h(t, ξ)) dx dσ(ξ), h = 1, 2, . . . , l.

Using the condition (H3), we have ci0
(
x, t, (uk(x, t))m

k=1, (uk(x,
σi0k(t)))m

k=1

)
> 0, then combining (6) (9), we have(

δi0(t)Ui0(t) +
s∑

r=1

λi0r(t)Ui0(ρi0r(t))
)′

+
l∑

h=1

∫ b

a

qi0h(t, ξ)Ui0(gi0h(t, ξ)) dσ(ξ)

≤ Fi0(t) +
m∑

k=1

ai0k(t)Ψk(t) +
m∑

k=1

bi0k(t)Ψk(τi0k(t)), t ≥ t1,
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which shows that Ui0(t) > 0 is a positive solution of the inequality (4).
The proof is complete.

Using a similar way, we easily obtain the following lemma.

Lemma 2.2. Suppose that u(x, t)={u1(x, t), u2(x, t), . . . , um(x, t)}T

is a solution of the problem (1), (2) in G. If there exists some
i0 ∈ {1, 2, . . . ,m} such that ui0(x, t) < 0, t ≥ t0 ≥ 0, then Ui0(t)
satisfies the neutral differential inequality

(10)
(
δi0(t)V (t) +

s∑
r=1

λi0r(t)V (ρi0r(t))
)′

+
l∑

h=1

∫ b

a

qi0h(t, ξ)V (gi0h(t, ξ)) dσ(ξ) ≥ Hi0(t).

Theorem 2.1. If there exists some i0 ∈ {1, 2, . . . ,m} such that the
inequality (4) has no eventually positive solutions and the inequality
(10) has no eventually negative solutions, then every solution of the
problem (1), (2) is oscillatory in G.

Proof. Suppose to the contrary that there is a nonoscillatory solution
u(x, t) = {u1(x, t), u2(x, t), . . . , um(x, t)}T of the problem (1), (2). It
is obvious that |ui(x, t)| > 0 for t ≥ t0 ≥ 0, i = 1, 2, . . . ,m; then
ui0(x, t) > 0 or ui0(x, t) < 0, t ≥ t0.

If ui0(x, t) > 0, t ≥ t0, using Lemma 2.1 we obtain that Ui0(t) > 0 is
a solution of inequality (4), which is a contradiction.

If ui0(x, t) < 0, t ≥ t0, using Lemma 2.2 we obtain that Ui0(t) < 0 is
a solution of inequality (10), which is a contradiction. This completes
the proof.

Theorem 2.2. If there exists some i0 ∈ {1, 2, . . . ,m} such that

lim inf
t→∞

∫ t

t1

Hi0(s) ds = −∞, t1 ≥ t0,(11)
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and

lim sup
t→∞

∫ t

t1

Hi0(s) ds = ∞, t1 ≥ t0,(12)

hold. Then every solution of the problem (1), (2) is oscillatory in G.

Proof. We prove that the inequality (4) has no eventually positive
solutions and the inequality (10) has no eventually negative solutions.

Assume to the contrary that (4) has a positive solution Ui0(t);
then there exists t0 ≥ 0 such that Ui0(t) > 0, Ui0(ρi0r(t)) > 0,
Ui0(gi0h(t, ξ)) > 0, t ≥ t0, h = 1, 2, . . . , l, r = 1, 2, . . . , s. Then from
(4) we have

(13)
(
δi0(t)Ui0(t) +

s∑
r=1

λi0r(t)Ui0(ρi0r(t))
)′

≤ Hi0(t).

Integrating (13) over the interval [t1, t], t1 ≥ t0, we have

(14) δi0(t)Ui0(t) +
s∑

r=1

λi0r(t)Ui0(ρi0r(t)) ≤ C +
∫ t

t1

Hi0(s) ds,

where C is a constant. Taking t→ ∞, from (14) we have

lim inf
t→∞

[
δi0(t)Ui0(t) +

s∑
r=1

λi0r(t)Ui0(ρi0r(t))
]

= −∞,

which contradicts the assumption that Ui0(t) > 0.

Assume that (10) has a negative solution U i0(t). Noting that condi-
tion (12) and using the above mentioned method, we easily obtain a
contradiction. The proof is complete.

Using the above oscillation results, it is not difficult to derive the
following strong oscillation conclusions.

Theorem 2.3. Suppose that for all i ∈ {1, 2, . . . ,m},

(15)

(
δi(t)V (t) +

s∑
r=1

lair(t)V (ρir(t))
)′

+
l∑

h=1

∫ b

a

qih(t, ξ)V (gih(t, ξ)) dσ(ξ) ≤ Hi(t)
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has no eventually positive solutions and

(16)

(
δi(t)V (t) +

s∑
r=1

λir(t)V (ρir(t))
)′

+
l∑

h=1

∫ b

a

qih(t, ξ)V (gih(t, ξ)) dσ(ξ) ≥ Hi(t)

has no eventually negative solutions.

Then every solution of the problem (1), (2) oscillates strongly in G.

Theorem 2.4. Suppose that for all i ∈ {1, 2, . . . ,m},

lim inf
t→∞

∫ t

t1

Hi(s) ds = −∞, t1 ≥ t0,(17)

and

lim sup
t→∞

∫ t

t1

Hi(s) ds = ∞, t1 ≥ t0,(18)

hold. Then every solution of the problem (1), (2) oscillates strongly
in G.

Next, we study the oscillation of the problem (1), (3).

Lemma 2.3. Assume that u(x, t)={u1(x, t), u2(x, t), . . . , um(x, t)}T

is a solution of the problem (1), (3) in G, and the following hypothesis
(H8) is satisfied:

(H8) aik(t) = bik(t) = 0, i �= k, i = 1, 2, . . . ,m; k = 1, 2, . . . ,m.

If there exists some i0 ∈ {1, 2, . . . ,m} such that ui0(x, t) > 0,
t ≥ t0 ≥ 0, then Ũi0(t) satisfies the neutral differential inequality

(19)

(
δi0(t)V (t) +

s∑
r=1

λi0r(t)V (ρi0r(t))
)′

+ α0ai0i0(t)V (t) + α0bi0i0(t)V (τi0i0(t))

+
l∑

h=1

∫ b

a

qi0h(t, ξ)V (gi0h(t, ξ)) dσ(ξ) ≤ Ei0(t).
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Proof. As in the proof of Lemma 2.1, consider equation (5). Multi-
plying both sides of (5) by ϕ(x) and integrating with respect to x over
the domain Ω, and noting the hypothesis (H8), we have
(20)
d

dt

(
δi0(t)

∫
Ω

ui0(x, t)ϕ(x) dx+
s∑

r=1

λi0r(t)
∫

Ω

ui0(x, ρi0r(t))ϕ(x) dx
)

= ai0i0(t)
∫

Ω

Δui0(x, t)ϕ(x) dx+ bi0i0(t)
∫

Ω

Δui0(x, τi0i0(t))ϕ(x) dx

−
∫

Ω

ci0(x, t, (uk(x, t))m
k=1, (uk(x, σi0k(t)))m

k=1)ϕ(x) dx

−
l∑

h=1

∫
Ω

∫ b

a

qi0h(x, t, ξ)ui0(x, gi0h(t, ξ)) dσ(xi)ϕ(x) dx

+
∫

Ω

fi0(x, t)ϕ(x) dx, t ≥ t1.

Using Green’s formula and the boundary condition (3), we obtain

∫
Ω

Δui0(x, t)ϕ(x) dx =
∫

Ω

ui0(x, t)Δϕ(x) dx

(21)

= −α0

∫
Ω

ui0(x, t)ϕ(x) dx,
and∫

Ω

Δui0(x, τi0i0(t))ϕ(x) dx =
∫

Ω

ui0(x, τi0i0(t))Δϕ(x) dx

(22)

= −α0

∫
Ω

ui0(x, τi0i0(t))ϕ(x) dx, t ≥ t1.

It is easy to see that

∫
Ω

∫ b

a

qi0h(x, t, ξ)ui0(x, gi0h(t, ξ))ϕ(x) dσ(ξ) dx

(23)

=
∫ b

a

∫
Ω

qi0h(x, t, ξ)ui0(x, gi0h(t, ξ))ϕ(x) dx dσ(ξ)

≥
∫ b

a

qi0h(t, ξ)
∫

Ω

ui0(x, gi0h(t, ξ))ϕ(x) dx dσ(ξ), h =1, 2, . . . , l,
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and

(24) ci0

(
x, t, (uk(x, t))m

k=1,
(
uk(x, σi0k(t))

)m

k=1

)
ϕ(x) > 0.

Therefore,

(
δi0(t)Ũi0(t) +

s∑
r=1

λi0r(t)Ũi0(ρi0r(t))
)′

+ α0ai0i0(t)Ũi0(t) + α0bi0i0(t)Ũi0(τi0i0(t))

+
l∑

h=1

∫ b

a

qi0h(t, ξ)Ũi0(gi0h(t, ξ)) dσ(ξ) ≤ Ei0(t),

which shows that Ũi0(t) > 0 is a positive solution of the inequality (19).
This completes the proof.

Similarly, we also have the following lemma.

Lemma 2.4. Assume that u(x, t)={u1(x, t), u2(x, t), . . . , um(x, t)}T

is a solution of the problem (1), (3) in G, and the hypothesis (H8)
holds. If there exists some i0 ∈ {1, 2, . . . ,m} such that ui0(x, t) < 0,
t ≥ t0 ≥ 0, then Ũi0(t) satisfies the neutral differential inequality

(25)

(
δi0(t)V (t) +

s∑
r=1

λi0r(t)V (ρi0r(t))
)′

+ α0ai0i0(t)V (t) + α0bi0i0(t)V (τi0i0(t))

+
l∑

h=1

∫ b

a

qi0h(t, ξ)V (gi0h(t, ξ)) dσ(ξ) ≥ Ei0(t).

Using Lemmas 2.3 and 2.4, we easily establish the following results.

Theorem 2.5. Assume that the hypothesis (H8) holds. If there exists
some i0 ∈ {1, 2, . . . ,m} such that the inequality (19) has no eventually
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positive solutions and the inequality (25) has no eventually negative
solutions, then every solution of the problem (1), (3) is oscillatory in
G.

Theorem 2.6. Assume that the hypothesis (H8) holds. If there exists
some i0 ∈ {1, 2, . . . ,m} such that

lim inf
t→∞

∫ t

t1

Ei0(s) ds = −∞, t1 ≥ t0,(26)

and

lim sup
t→∞

∫ t

t1

Ei0(s) ds = ∞, t1 ≥ t0,(27)

hold. Then every solution of the problem (1), (3) is oscillatory in G.

Theorem 2.7. Assume that the hypothesis (H8) holds. If for all
i ∈ {1, 2, . . . ,m},

(28)

(
δi(t)V (t) +

s∑
r=1

λir(t)V (ρir(t))
)′

+ α0aii(t)V (t) + α0bii(t)V (τii(t))

+
l∑

h=1

∫ b

a

qih(t, ξ)V (gih(t, ξ)) dσ(ξ) ≤ Ei(t)

has no eventually positive solutions and

(29)

(
δi(t)V (t) +

s∑
r=1

λir(t)V (ρir(t))
)′

+ α0aii(t)V (t) + α0bii(t)V (τii(t))

+
l∑

h=1

∫ b

a

qih(t, ξ)V (gih(t, ξ)) dσ(ξ) ≥ Ei(t)

has no eventually negative solutions.
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Then every solution of the problem (1), (3) oscillates strongly in G.

Theorem 2.8. Suppose that the hypothesis (H8) holds, and for all
i ∈ {1, 2, . . . ,m}

lim inf
t→∞

∫ t

t1

Ei(s) ds = −∞, t1 ≥ t0,(30)

and

lim sup
t→∞

∫ t

t1

Ei(s) ds = ∞, t1 ≥ t0,(31)

hold. Then every solution of the problem (1), (3) oscillates strongly in
G.

3. Examples. In this section, we give some illustrative examples.

Example 3.1. Consider the system of neutral parabolic differential
equations
(32)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t
[u1(x, t)+u1(x, t−π)] = Δu1(x, t)+

1
3

Δu1(x, t−π)+etΔu2(x, t)

+
2
3

Δu2

(
x, t−

(
3
π

2

))
−(u1(x, t) + u1(x, t− π)) exp{u2(x, t) + u2(x, t− π)}

−
∫ −π/2

−π

etu1(x, t+ ξ) dξ − et sin t cosx− et(sin t+ cos t),

∂

∂t
[u2(x, t)+u2(x, t−π)] = 2Δu1(x, t)+

5
3

Δu1(x, t−π)+etΔu2(x, t)

+
1
3

Δu2

(
x, t−

(
3
π

2

))
−(u2(x, t) + u2(x, t− π)) exp{u1(x, t) + u1(x, t− π)}

−
∫ −π/2

−π

etu2(x, t+ ξ) dξ + et sin t cosx+ et(sin t− cos t),

(x, t) ∈ (0, π) × [0,∞),
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with boundary condition

(33)
∂ui(0, t)
∂x

=
∂ui(π, t)
∂x

= 0, t ≥ 0, i = 1, 2.

Here Ω = (0, π), n = 1, m = 2, s = 1, l = 1, δ1(t) = δ2(t) = 1,
λ11(t) = λ21(t) = 1, ρ11(t) = ρ21(t) = t − π, a11(t) = 1, a12(t) = et,
a21(t) = 2, a22(t) = et, b11(t) = 1/3, b12(t) = 2/3, b21(t) = 5/3,
b22(t) = 1/3, τ11(t) = τ21(t) = t− π, τ12(t) = τ22(t) = t− (3π/2),

c1
(
x, t, u1(x, t), u2(x, t), u1(x, σ11(t)), u2(x, σ12(t))

)
=

(
u1(x, t) + u1(x, σ11(t))

)
exp{u2(x, t) + u12(x, σ12(t))},

c2
(
x, t, u1(x, t), u2(x, t), u1(x, σ21(t)), u2(x, σ22(t))

)
=

(
u2(x, t) + u2(x, σ22(t))

)
exp{u1(x, t) + u1(x, σ21(t))},

σ11(t) = σ12(t) = σ21(t) = σ22(t) = t−π, q11(x, t, ξ) = q21(x, t, ξ) = et,
a = −π, b = −π/2, g11(t, ξ) = g21(t, ξ) = t+ ξ, ψ1(x, t) = ψ2(x, t) = 0,
f1(x, t) = −et sin t cosx − et(sin t + cos t), f2(x, t) = et sin t cosx +
et(sin t− cos t).

It is obvious that Ψ1(t) = Ψ2(t) = 0, Ψ1(τ11(t)) = Ψ1(τ21(t)) = 0,
Ψ2(τ12(t)) = Ψ2(τ22(t)) = 0, Φ1(t) = Φ2(t) = 0, Φ1(τ11(t)) =
Φ1(τ21(t)) = 0, Φ2(τ12(t)) = Φ2(τ22(t)) = 0, then

H1(t) = F1(t) =
∫

Ω

f1(x, t) dx =
∫ π

0

f1(x, t) dx = −πet(sin t+ cos t),

H2(t) = F2(t) =
∫

Ω

f2(x, t) dx =
∫ π

0

f2(x, t) dx = πet(sin t− cos t).

Hence

lim inf
t→∞

∫ t

t1

H1(s) ds = −∞, lim sup
t→∞

∫ t

t1

H1(s) ds = ∞,

and

lim inf
t→∞

∫ t

t1

H2(s) ds = −∞, lim sup
t→∞

∫ t

t1

H2(s) ds = ∞,
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which shows that all the conditions of Theorem 2.4 are fulfilled. Then
every solution of the problem (32), (33) oscillates strongly in (0, π) ×
[0,∞). In fact, u1(x, t) = (1 + cosx) sin t, u2(x, t) = (1 + cosx) cos t is
such a solution.

Example 3.2. Consider the system of neutral parabolic differential
equations
(34)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t
[u1(x, t) + u1(x, t− π)] = (et + 1)Δu1(x, t) + Δu1(x, t− π)

+Δu2(x, t) + (−1)Δu2

(
x, t−

(π
2

))
− u1(x, t) − u1(x, t− π)

−
∫ −π/2

−π

etu1(x, t+ ξ) dξ +
((π

2

)
− et cos t

)
cosx− et(sin t+ cos t),

∂

∂t

[
tu2(x, t) + 2u2

(
x, t−

(π
4

))]
= Δu1(x, t) + Δu1(x, t− π)

+Δu2(x, t) + 3Δu2

(
x, t−

(π
3

))
− u2(x, t) − u2

(
x, t−

(π
3

))
−

∫ −π/2

−π

8
π
u2(x, t+ ξ) dξ +

(
12t−

(
13
π

3

)
+ 3

)
cosx,

(x, t) ∈ (0, π) × [0,∞),

with the boundary condition (33).

It is easy to see that H1(t) = −πet(sin t+cos t), H2(t) = 0. Therefore,

lim inf
t→∞

∫ t

t1

H1(s) ds = −∞,

lim sup
t→∞

∫ t

t1

H1(s) ds = ∞.

Then, using Theorem 2.2, we obtain that every solution of the problem
(34), (33) oscillates in (0, π)× [0,∞). In fact, u1(x, t) = (1+cosx) sin t,
u2(x, t) = t cosx is such a solution.
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Example 3.3. Consider the system of neutral parabolic differential
equations
(35)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t

[
2u1(x, t) +

1
3
u1(x, t− π)

]
= etΔu1(x, t) +

5
3

Δu1

(
x, t−

(π
2

))
−(u1(x, t) + u1(x, t− π)) exp

{
u2(x, t) + u2

(
x, t−

(π
2

))}
−

∫ −π/2

−π

etu1(x, t+ ξ) dξ + et sin t sinx,

∂

∂t

[1
3
u2(x, t) +

(
7
π

4

)
u2

(
x, t−

(π
3

))]
= 2Δu2(x, t) + 4Δu2

(
x, t−

(π
4

))
−

(
u2(x, t) + u2

(
x, t− 1

3

))
exp{u1(x, t) + u1(x, t− π)}

−
∫ −π/2

−π

2
π
u2(x, t+ ξ) dξ + 9t sinx,

(x, t) ∈ (0, π) × [0, 1),

with the boundary condition

(36) ui(0, t) = ui(π, t) = 0, t ≥ 0, i = 1, 2.

Here f1(x, t) = et sin t sinx, f2(x, t) = 9t sinx. We easily see that
α0 = 1, ϕ(x) = sinx. Let i0 = 1, then

Ei0(t) = E1(t) =
∫

Ω

f1(x, t)ϕ(x) dx =
∫ π

0

et sin t sin2 x dx =
π

2
et sin t.

Hence,

lim inf
t→∞

∫ t

t1

E1(s) ds = − 1, lim sup
t→∞

∫ t

t1

E1(s) ds = ∞,

then using Theorem 2.6, we obtain that every solution of the problem
(35), (36) oscillates in (0, π) × [0,∞). In fact, u1(x, t) = cos t sinx,
u2(x, t) = t sinx is such a solution.
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