
ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 36, Number 4, 2006

ON SOME CONJECTURES RELATED
TO THE GOLDBACH CONJECTURE

J. FABRYKOWSKI

ABSTRACT. In the first part of this note we consider the
problem of representing integers as a sum of a square and
an almost prime and in the second part we turn to investigate
distribution of roots of certain class of reciprocal polynomials.
In both cases we will show a connection with the celebrated
Goldbach conjecture stating that every even integer 2n ≥ 4
can be expressed as a sum of two primes.

1. For a positive integer r let Pr denote a positive integer having
at most r prime factors distinct or not. Such an integer Pr is called
an almost prime of order r. Obviously, if r = 1, then P1 is a prime
number. We consider the problem of representing an integer n in the
form n = m2 +Pr, where m is a nonnegative integer. By the definition
of Pr it follows that if such representation exists for some r, then it
also holds for any r′ > r, hence one should investigate this problem for
a smallest possible r.

If r = 1, then it is well known that there are infinitely many integers
n which cannot be written in the form m2+p, for example, no integer of
the form (3k+2)2 with k ≥ 1 is of this form. Therefore we assume r ≥ 2.
Typically, analytic and sieve methods are used to handle problems of
this kind and the corresponding results will hold for sufficiently large
integers.

The case r = 3. Here we make the following observation:

Theorem 1. Every sufficiently large integer n can be represented in
the form

n = m2 + P3.
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Proof. First we consider the case n �= k2. The above claim follows
from the result on the linear weighted sieve [5]:

(1) |{n, 1 ≤ n ≤ x, F (n) = Pg+1}| ≥ 2
3

∏

p

1 − ρ(p)/p

1 − 1/p

x

log x
,

for x ≥ x0 = x0(F ) where F (n) is an irreducible polynomial of degree
g (≥ 1) with integer coefficients and ρ(p) is the number of solutions
to the congruence F (a) ≡ 0 (mod p) with an additional assumption
ρ(p) < p for all p.

This result applies in our case with F (x) = n − x2. It also follows
that if n is not a square then there exists a positive constant c such
that the number of representations is at least c(

√
n/ log n).

If n = k2 for some integer k, then our polynomial is reducible and the
inequality (1) does not apply. In this case we appeal to the well-known
result of Chen [1] stating that every sufficiently large even integer 2k
admits representation in the form:

(2) 2k = p + P2.

From this it follows that P2 − k = k − p, hence k − m = p, and
k + m = P2 for some integer m. Multiplying the last two equations we
get n = k2 = m2 + pP2 = m2 + P3 which proves this case.

The case r = 2. The above argument underlines a connection
between representations of integers as a sum of a square and an almost
prime and of even integers written as a sum of two almost primes. The
most transparent connection holds in the case r = 2 which is expressed
as follows:

Theorem 2. If every integer n ≥ 3 can be expressed as n = m2 +P2

in two different ways, then the Goldbach conjecture holds true.

Proof. Let n = k2, k ≥ 2, and p, q, r, s be primes, and suppose that
k2 has two different representations in the above form. It is clear that
k2 = m2

1 +p = m2
2 +q cannot happen, since each representation implies

k − m1 = k − m2 = 1, hence they are the same representations. If
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k2 = m2
1 + p = m2

2 + sr, then k − m1 = 1, forcing k − m2 = r say, and
consequently 2k = r+s. Finally, if k2 = m2

1+pq = m2
2+rs, then either

k − m1 = 1 or k − m2 = 1 but not both. Therefore, either 2k = p + q
or 2k = r + s.

Numerical computation supports the following conjecture:

Conjecture 1. Every integer n ≥ 3 can be expressed as n = m2+P2

in two different ways.

This has been verified in the range 1 ≤ n ≤ 100, 000. If n �= k2, then
we may apply the result of Iwaniec [2] which mutatis mutandis can be
formulated as follows.

Theorem. If G(x) = ax2 + bx + c is an irreducible polynomial with
c odd, then

|{x ≤ n; G(x) = P2}| > C
x

log x

for sufficiently large n and positive constant C.

Thus, in our case if n is odd we take G(x) = n− x2, and if n is even,
then we take G(x) = 2l − 1 − 4x − 4x2, where n = 2l. In both cases
the assumption n �= k2 implies that the polynomials are irreducible.

As we saw above, Conjecture 1 implies the Goldbach conjecture. The
assumption that n = m2+P2 in two different ways might be replaced by
requiring that m <

√
n− 1. If this is the case, then any representation

k2 = m2 + P2 is equivalent to 2k = p + q, where P2 = pq and with
m = (q − p)/2, (q ≥ p). Such a requirement rules out the possibility of
k2 = m2 + p, where p is a prime. In view of this observation, we make
another conjecture.

Conjecture 2. Every integer n ≥ 3 can be expressed as n = m2+P2,
where

0 ≤ m ≤ √
n − 1.



1224 J. FABRYKOWSKI

Again, the Iwaniec result implies that sufficiently large integers n �=
k2 admit such a representation and, as observed above, if n = k2, then
the number of such representations is exactly the same as the number
of representations of 2k = p + q in the Goldbach problem.

Let EG(x) denote the number of exceptional even integers in the
Goldbach conjecture, i.e., EG(x) = |{4 ≤ 2n ≤ x, 2n �= p + q}|, then,
as we know (see [4]), there exists a positive (effectively computable)
constant 2δ such that EG(x) < x1−2δ. Based on this and the result of
Iwaniec we may formulate the following.

Theorem 3. Let E(x) = |{3 ≤ n ≤ x, n �= m2 + P2, 0 ≤ m <√
n−1}|. Then there exists a positive (effectively computable) constant

δ such that, for all large x,

E(x) < x(1/2)−δ.

We have also investigated the problem of representing integers n
in the form n = m2 + pq where p and q are primes. Let R(n) and
R′(n) denote the number of representations of n as above, under the
assumptions 0 ≤ m and 0 ≤ m <

√
n − 1, respectively. In the range

3 ≤ n ≤ 100, 000, we found that R(n) > 0 and R′(n) > 0 for all integers
n except n = 3, 12, 17, 28, 32, 72, 108, 117, 297 and 657. For large n
the expected values of R(n) and R′(n) will attend their local minima
at squares, the case of reducible polynomials. On the other hand, we
found the following values:

If n ∈ [9001, 10000], then the minimum value of R(n) is 7 and it
occurs at n = 972, and the next smallest value is 8 for n = 52192,
n = 222311 and n = 2454. In the interval [99001, 100000] the minimum
value is 10 for n = 24792 and the next smallest is 28 for n = 2267 · 373
and 42 for n = 345272.

It is easy to see that, if R′(n) > 0 for n = k2, then 2k = p + q. We
also expect that, for sufficiently large n �= k2, R(n) > 0 and R′(n) > 0
might be provable since it is likely that the number of representations
of n in the form m2 + pq exceeds the number of representations in the
form m2 + p.

2. In this part we will work with reciprocal polynomials, which are
products of the following polynomials of degree four:
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fpq(x) = (px2 − 2nx + q)(qx2 − 2nx + p),

where p and q are prime numbers, n is a positive integer and pq < n2.

Let us make several observations. If n is the exceptional Goldbach
integer, then obviously 1 is not a root of the polynomial fpq. The
polynomial has four real positive roots and, since it is reciprocal, two
of them are in the interval (0, 1). Furthermore, it is easy to verify that
if p �= q, then all the roots are distinct.

Suppose now that p, q, r, s are pairwise distinct primes, and consider
the polynomial:

fpqrs(x) = fpq(x)frs(x).

We shall prove the following.

Lemma. Let p, q and r, s be pairwise distinct odd primes such that
pq < n2 and rs < n2. Let αi, i = 1, 2, 3, 4, be the roots of the polynomial
fpq and βj, j = 1, 2, 3, 4, the roots of the polynomial frs. Then αk = βl

implies that 2n = p + q and 2n = r + s.

Proof. The condition αk = βl is of the form [n ± (
√

n2 − pq)]/p =
[n ± (

√
n2 − rs)]/r where arbitrary signs + or − can be placed in

the numerators. Routine calculation shows that the former equality
implies:

(3) (rq − ps)2 = 4n2(q − s)(r − p).

Let us rewrite (3) in the form:

(4) [r(q − s) + s(r − p)]2 = 4n2(q − s)(r − p),

from which it follows that q > s and r > p, or q < s and r < p.
Consider (4) modulo r − p. We obtain r2(q − s)2 ≡ 0 mod (r − p).
Since (r, r − p) = 1, then it follows that (q − s)2 ≡ 0 mod (r − p).
Similarly, considering (4) modulo q − s, we obtain that (r − p)2 ≡ 0
mod (q − s). The above two congruences tell us that the even integers
r − p and q − s have exactly the same prime divisors. Let t be a
prime such that ta||q − s and tb||r − p, where a < b. Then t2a exactly
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divides the left-hand side of (4), however ta+b divides the right-hand
side; hence, we must have a = b. It follows that q − s = r − p = u, say.
Therefore, (4) becomes

(r + s)2u2 = 4n2u2,

implying 2n = r + s. Note that if (4) is changed to the form:

[q(r − p) + p(q − s)]2 = 4n2(q − s)(r − p),

then we would get 2n = p + q.

The lemma tells us that if 2n is an exceptional Goldbach integer, then
for all pairwise distinct primes p, q, r, s, the polynomial fpqrs has all
distinct roots, four of them in the interval (0, 1). It can be generalized
as follows:

Let Pn be a set of primes such that, for every p, q ∈ Pn, pq < n2, and
let Tn be a subset of Pn of even order 2k, say. Now let

∏
be a set of

ordered pairs of primes, where all the primes are taken from Tn, and
each prime of Tn occurs exactly once in only one ordered pair.

Define
f∏ =

∏

(p,q)∈
∏ fpq.

We have the following:

Theorem. If 2n is an exceptional Goldbach integer, then the
polynomial f∏ is reciprocal of degree 4k, it has 4k distinct roots such
that 2k of them are in the interval (0, 1).

Remark. It also follows from the lemma that if any two roots of the
polynomial f∏ are equal, then they must be equal to 1. Moreover, if 2n
is an exceptional Goldbach integer, then the polynomial f∏ (of degree
≥ 4) has at most four rational roots. It can happen only if 2n = 1+pq,
where the roots are 1/p, 1/q, p and q.

Final comments. Suppose that the polynomial f∏ is of degree 4k

and that 2n is an exceptional Goldbach integer. Then, since 2k of its
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roots are in the interval (0, 1), the Dirichlet box principle tells us that
two roots exist whose distance is at most 1/2k. The fact that all the
roots are distinct is equivalent to nonvanishing of its discriminant.

There is an interesting result of Mahler [3] which relates the minimal
distance between the roots of a polynomial and its discriminant.

More precisely, let m ≥ 2, and f(x) = a0x
m+a1x

m−1+· · ·+am−1x+
am = a0

∏m
i=1(x − αi). Let P =

∏
1≤h<k≤m(αh − αk). Define the

discriminant D(f) of the polynomial f by D(f) = a2m−2
0 P 2. In the

case if αi �= αj for i �= j, let Δ(f) = min1≤h<k≤m |αh − αk|. Finally,
let M(f) = |a0|

∏m
h=1 max(1, |αh|) and L(f) =

∑m
i=1 |ai|.

Theorem (Mahler). With the above notations:

(5) Δ(f) >
√

3m−(m+2)/2|D(f)|1/2M(f)−(m−1)

and, moreover, 2−mL(f) ≤ M(f) ≤ L(f).

One may investigate further the zeros of polynomials f∏ using
inequality (5). Let us assume that 2n is an exceptional Goldbach
integer and consider the polynomial fpqrs, where the odd primes p, q, r, s
are pairwise distinct.

The determinant of the polynomial fpqrs (in a factored form) is equal
to:

D(fpqrs) = 256(n2 − pq)2(n2 − rs)2

× (p − q)4(p + q − 2n)2(p + q + 2n)2

× (r − s)4(r + s − 2n)2(r + s + 2n)2

× [(qr − ps)2 + 4n2(p − r)(q − s)]4

× [(pr − qs)2 + 4n2(p − s)(q − r)]4.

Since the set Pn has at least n/ log n primes, therefore the set
∏

might have at least n/(2 log n) pairs of primes. Hence, there exist
two pairs (p, q) and (r, s), say, and two zeros αpq and αrs such that
|αpq−αrs| < (2 log n)/n. This together with inequality (5) may suggest
further investigations of consequences under the assumption that 2n is
an exceptional Goldbach integer.
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