ON SOME CONJECTURES RELATED TO THE GOLDBACH CONJECTURE

J. FABRYKOWSKI

Abstract

In the first part of this note we consider the problem of representing integers as a sum of a square and an almost prime and in the second part we turn to investigate distribution of roots of certain class of reciprocal polynomials. In both cases we will show a connection with the celebrated Goldbach conjecture stating that every even integer $2 n \geq 4$ can be expressed as a sum of two primes.

1. For a positive integer r let P_{r} denote a positive integer having at most r prime factors distinct or not. Such an integer P_{r} is called an almost prime of order r. Obviously, if $r=1$, then P_{1} is a prime number. We consider the problem of representing an integer n in the form $n=m^{2}+P_{r}$, where m is a nonnegative integer. By the definition of P_{r} it follows that if such representation exists for some r, then it also holds for any $r^{\prime}>r$, hence one should investigate this problem for a smallest possible r.

If $r=1$, then it is well known that there are infinitely many integers n which cannot be written in the form $m^{2}+p$, for example, no integer of the form $(3 k+2)^{2}$ with $k \geq 1$ is of this form. Therefore we assume $r \geq 2$. Typically, analytic and sieve methods are used to handle problems of this kind and the corresponding results will hold for sufficiently large integers.

The case $r=3$. Here we make the following observation:

Theorem 1. Every sufficiently large integer n can be represented in the form

$$
n=m^{2}+P_{3} .
$$

[^0]Proof. First we consider the case $n \neq k^{2}$. The above claim follows from the result on the linear weighted sieve [5]:

$$
\begin{equation*}
\left|\left\{n, 1 \leq n \leq x, F(n)=P_{g+1}\right\}\right| \geq \frac{2}{3} \prod_{p} \frac{1-\rho(p) / p}{1-1 / p} \frac{x}{\log x} \tag{1}
\end{equation*}
$$

for $x \geq x_{0}=x_{0}(F)$ where $F(n)$ is an irreducible polynomial of degree $g(\geq 1)$ with integer coefficients and $\rho(p)$ is the number of solutions to the congruence $F(a) \equiv 0(\bmod p)$ with an additional assumption $\rho(p)<p$ for all p.

This result applies in our case with $F(x)=n-x^{2}$. It also follows that if n is not a square then there exists a positive constant c such that the number of representations is at least $c(\sqrt{n} / \log n)$.

If $n=k^{2}$ for some integer k, then our polynomial is reducible and the inequality (1) does not apply. In this case we appeal to the well-known result of Chen [1] stating that every sufficiently large even integer $2 k$ admits representation in the form:

$$
\begin{equation*}
2 k=p+P_{2} \tag{2}
\end{equation*}
$$

From this it follows that $P_{2}-k=k-p$, hence $k-m=p$, and $k+m=P_{2}$ for some integer m. Multiplying the last two equations we get $n=k^{2}=m^{2}+p P_{2}=m^{2}+P_{3}$ which proves this case.

The case $r=2$. The above argument underlines a connection between representations of integers as a sum of a square and an almost prime and of even integers written as a sum of two almost primes. The most transparent connection holds in the case $r=2$ which is expressed as follows:

Theorem 2. If every integer $n \geq 3$ can be expressed as $n=m^{2}+P_{2}$ in two different ways, then the Goldbach conjecture holds true.

Proof. Let $n=k^{2}, k \geq 2$, and p, q, r, s be primes, and suppose that k^{2} has two different representations in the above form. It is clear that $k^{2}=m_{1}^{2}+p=m_{2}^{2}+q$ cannot happen, since each representation implies $k-m_{1}=k-m_{2}=1$, hence they are the same representations. If
$k^{2}=m_{1}^{2}+p=m_{2}^{2}+s r$, then $k-m_{1}=1$, forcing $k-m_{2}=r$ say, and consequently $2 k=r+s$. Finally, if $k^{2}=m_{1}^{2}+p q=m_{2}^{2}+r s$, then either $k-m_{1}=1$ or $k-m_{2}=1$ but not both. Therefore, either $2 k=p+q$ or $2 k=r+s$.

Numerical computation supports the following conjecture:

Conjecture 1. Every integer $n \geq 3$ can be expressed as $n=m^{2}+P_{2}$ in two different ways.

This has been verified in the range $1 \leq n \leq 100,000$. If $n \neq k^{2}$, then we may apply the result of Iwaniec [2] which mutatis mutandis can be formulated as follows.

Theorem. If $G(x)=a x^{2}+b x+c$ is an irreducible polynomial with c odd, then

$$
\left|\left\{x \leq n ; G(x)=P_{2}\right\}\right|>C \frac{x}{\log x}
$$

for sufficiently large n and positive constant C.

Thus, in our case if n is odd we take $G(x)=n-x^{2}$, and if n is even, then we take $G(x)=2 l-1-4 x-4 x^{2}$, where $n=2 l$. In both cases the assumption $n \neq k^{2}$ implies that the polynomials are irreducible.

As we saw above, Conjecture 1 implies the Goldbach conjecture. The assumption that $n=m^{2}+P_{2}$ in two different ways might be replaced by requiring that $m<\sqrt{n}-1$. If this is the case, then any representation $k^{2}=m^{2}+P_{2}$ is equivalent to $2 k=p+q$, where $P_{2}=p q$ and with $m=(q-p) / 2,(q \geq p)$. Such a requirement rules out the possibility of $k^{2}=m^{2}+p$, where p is a prime. In view of this observation, we make another conjecture.

Conjecture 2. Every integer $n \geq 3$ can be expressed as $n=m^{2}+P_{2}$, where

$$
0 \leq m \leq \sqrt{n}-1
$$

Again, the Iwaniec result implies that sufficiently large integers $n \neq$ k^{2} admit such a representation and, as observed above, if $n=k^{2}$, then the number of such representations is exactly the same as the number of representations of $2 k=p+q$ in the Goldbach problem.

Let $E_{G}(x)$ denote the number of exceptional even integers in the Goldbach conjecture, i.e., $E_{G}(x)=|\{4 \leq 2 n \leq x, 2 n \neq p+q\}|$, then, as we know (see [4]), there exists a positive (effectively computable) constant 2δ such that $E_{G}(x)<x^{1-2 \delta}$. Based on this and the result of Iwaniec we may formulate the following.

Theorem 3. Let $E(x)=\mid\left\{3 \leq n \leq x, n \neq m^{2}+P_{2}, 0 \leq m<\right.$ $\sqrt{n}-1\} \mid$. Then there exists a positive (effectively computable) constant δ such that, for all large x,

$$
E(x)<x^{(1 / 2)-\delta}
$$

We have also investigated the problem of representing integers n in the form $n=m^{2}+p q$ where p and q are primes. Let $R(n)$ and $R^{\prime}(n)$ denote the number of representations of n as above, under the assumptions $0 \leq m$ and $0 \leq m<\sqrt{n}-1$, respectively. In the range $3 \leq n \leq 100,000$, we found that $R(n)>0$ and $R^{\prime}(n)>0$ for all integers n except $n=3,12,17,28,32,72,108,117,297$ and 657 . For large n the expected values of $R(n)$ and $R^{\prime}(n)$ will attend their local minima at squares, the case of reducible polynomials. On the other hand, we found the following values:

If $n \in$ [9001, 10000], then the minimum value of $R(n)$ is 7 and it occurs at $n=97^{2}$, and the next smallest value is 8 for $n=5^{2} 19^{2}$, $n=2^{2} 2311$ and $n=2^{4} 5^{4}$. In the interval [99001, 100000] the minimum value is 10 for $n=2^{4} 79^{2}$ and the next smallest is 28 for $n=2^{2} 67 \cdot 373$ and 42 for $n=3^{4} 5^{2} 7^{2}$.

It is easy to see that, if $R^{\prime}(n)>0$ for $n=k^{2}$, then $2 k=p+q$. We also expect that, for sufficiently large $n \neq k^{2}, R(n)>0$ and $R^{\prime}(n)>0$ might be provable since it is likely that the number of representations of n in the form $m^{2}+p q$ exceeds the number of representations in the form $m^{2}+p$.
2. In this part we will work with reciprocal polynomials, which are products of the following polynomials of degree four:

$$
f_{p q}(x)=\left(p x^{2}-2 n x+q\right)\left(q x^{2}-2 n x+p\right)
$$

where p and q are prime numbers, n is a positive integer and $p q<n^{2}$.
Let us make several observations. If n is the exceptional Goldbach integer, then obviously 1 is not a root of the polynomial $f_{p q}$. The polynomial has four real positive roots and, since it is reciprocal, two of them are in the interval $(0,1)$. Furthermore, it is easy to verify that if $p \neq q$, then all the roots are distinct.

Suppose now that p, q, r, s are pairwise distinct primes, and consider the polynomial:

$$
f_{p q r s}(x)=f_{p q}(x) f_{r s}(x)
$$

We shall prove the following.

Lemma. Let p, q and r, s be pairwise distinct odd primes such that $p q<n^{2}$ and $r s<n^{2}$. Let $\alpha_{i}, i=1,2,3,4$, be the roots of the polynomial $f_{p q}$ and $\beta_{j}, j=1,2,3,4$, the roots of the polynomial $f_{r s}$. Then $\alpha_{k}=\beta_{l}$ implies that $2 n=p+q$ and $2 n=r+s$.

Proof. The condition $\alpha_{k}=\beta_{l}$ is of the form $\left[n \pm\left(\sqrt{n^{2}-p q}\right)\right] / p=$ $\left[n \pm\left(\sqrt{n^{2}-r s}\right)\right] / r$ where arbitrary signs + or - can be placed in the numerators. Routine calculation shows that the former equality implies:

$$
\begin{equation*}
(r q-p s)^{2}=4 n^{2}(q-s)(r-p) \tag{3}
\end{equation*}
$$

Let us rewrite (3) in the form:

$$
\begin{equation*}
[r(q-s)+s(r-p)]^{2}=4 n^{2}(q-s)(r-p) \tag{4}
\end{equation*}
$$

from which it follows that $q>s$ and $r>p$, or $q<s$ and $r<p$. Consider (4) modulo $r-p$. We obtain $r^{2}(q-s)^{2} \equiv 0 \bmod (r-p)$. Since $(r, r-p)=1$, then it follows that $(q-s)^{2} \equiv 0 \bmod (r-p)$. Similarly, considering (4) modulo $q-s$, we obtain that $(r-p)^{2} \equiv 0$ $\bmod (q-s)$. The above two congruences tell us that the even integers $r-p$ and $q-s$ have exactly the same prime divisors. Let t be a prime such that $t^{a} \| q-s$ and $t^{b} \| r-p$, where $a<b$. Then $t^{2 a}$ exactly
divides the left-hand side of (4), however t^{a+b} divides the right-hand side; hence, we must have $a=b$. It follows that $q-s=r-p=u$, say. Therefore, (4) becomes

$$
(r+s)^{2} u^{2}=4 n^{2} u^{2}
$$

implying $2 n=r+s$. Note that if (4) is changed to the form:

$$
[q(r-p)+p(q-s)]^{2}=4 n^{2}(q-s)(r-p)
$$

then we would get $2 n=p+q$.

The lemma tells us that if $2 n$ is an exceptional Goldbach integer, then for all pairwise distinct primes p, q, r, s, the polynomial $f_{p q r s}$ has all distinct roots, four of them in the interval $(0,1)$. It can be generalized as follows:

Let P_{n} be a set of primes such that, for every $p, q \in P_{n}, p q<n^{2}$, and let T_{n} be a subset of P_{n} of even order $2 k$, say. Now let Π be a set of ordered pairs of primes, where all the primes are taken from T_{n}, and each prime of T_{n} occurs exactly once in only one ordered pair.
Define

$$
f_{\Pi}=\prod_{\left(p_{0}\right) \in \Pi} f_{p r r}
$$

We have the following:

Theorem. If $2 n$ is an exceptional Goldbach integer, then the polynomial f_{Π} is reciprocal of degree $4 k$, it has $4 k$ distinct roots such that $2 k$ of them are in the interval $(0,1)$.

Remark. It also follows from the lemma that if any two roots of the polynomial f_{Π} are equal, then they must be equal to 1 . Moreover, if $2 n$ is an exceptional Goldbach integer, then the polynomial f_{Π} (of degree $\geq 4)$ has at most four rational roots. It can happen only if $2 n=1+p q$, where the roots are $1 / p, 1 / q, p$ and q.

Final comments. Suppose that the polynomial f_{Π} is of degree $4 k$ and that $2 n$ is an exceptional Goldbach integer. Then, since $2 k$ of its
roots are in the interval $(0,1)$, the Dirichlet box principle tells us that two roots exist whose distance is at most $1 / 2 k$. The fact that all the roots are distinct is equivalent to nonvanishing of its discriminant.

There is an interesting result of Mahler [3] which relates the minimal distance between the roots of a polynomial and its discriminant.

More precisely, let $m \geq 2$, and $f(x)=a_{0} x^{m}+a_{1} x^{m-1}+\cdots+a_{m-1} x+$ $a_{m}=a_{0} \prod_{i=1}^{m}\left(x-\alpha_{i}\right)$. Let $P=\prod_{1 \leq h<k \leq m}\left(\alpha_{h}-\alpha_{k}\right)$. Define the discriminant $D(f)$ of the polynomial \bar{f} by $D(f)=a_{0}^{2 m-2} P^{2}$. In the case if $\alpha_{i} \neq \alpha_{j}$ for $i \neq j$, let $\Delta(f)=\min _{1 \leq h<k \leq m}\left|\alpha_{h}-\alpha_{k}\right|$. Finally, let $M(f)=\left|a_{0}\right| \prod_{h=1}^{m} \max \left(1,\left|\alpha_{h}\right|\right)$ and $L(f)=\sum_{i=1}^{m}\left|a_{i}\right|$.

Theorem (Mahler). With the above notations:

$$
\begin{equation*}
\Delta(f)>\sqrt{3} m^{-(m+2) / 2}|D(f)|^{1 / 2} M(f)^{-(m-1)} \tag{5}
\end{equation*}
$$

and, moreover, $2^{-m} L(f) \leq M(f) \leq L(f)$.

One may investigate further the zeros of polynomials f_{Π} using inequality (5). Let us assume that $2 n$ is an exceptional Goldbach integer and consider the polynomial $f_{p q r s}$, where the odd primes p, q, r, s are pairwise distinct.

The determinant of the polynomial $f_{\text {pqrs }}$ (in a factored form) is equal to:

$$
\begin{aligned}
D\left(f_{p q r s}\right)= & 256\left(n^{2}-p q\right)^{2}\left(n^{2}-r s\right)^{2} \\
& \times(p-q)^{4}(p+q-2 n)^{2}(p+q+2 n)^{2} \\
& \times(r-s)^{4}(r+s-2 n)^{2}(r+s+2 n)^{2} \\
& \times\left[(q r-p s)^{2}+4 n^{2}(p-r)(q-s)\right]^{4} \\
& \times\left[(p r-q s)^{2}+4 n^{2}(p-s)(q-r)\right]^{4} .
\end{aligned}
$$

Since the set P_{n} has at least $n / \log n$ primes, therefore the set Π might have at least $n /(2 \log n)$ pairs of primes. Hence, there exist two pairs (p, q) and (r, s), say, and two zeros $\alpha_{p q}$ and $\alpha_{r s}$ such that $\left|\alpha_{p q}-\alpha_{r s}\right|<(2 \log n) / n$. This together with inequality (5) may suggest further investigations of consequences under the assumption that $2 n$ is an exceptional Goldbach integer.

REFERENCES

1. J. Chen, On the representation of a larger even integer as the sum of a prime and the product of at most two primes, Sci. Sinica (Sci. China Ser. A) 16 (1973), 157-176.
2. H. Iwaniec, Almost-primes represented by quadratic polynomials, Invent. Math. 47 (1978), 171-188.
3. K. Mahler, An inequality for the discriminant of a polynomial, Michigan Math. J. 11 (1964), 257-262.
4. H.L. Montgomery and R.C. Vaughan, The exceptional set in Goldbach's problem, Acta Arith. 27 (1976), 353-370.
5. H.-E. Richert, Selberg sieve with weights, Mathematica 16 (1969), 1-22.

Department of Mathematics and Statistics, Youngstown State University, Youngstown, OH 44555
E-mail address: jfabryk@math.ysu.edu

[^0]: Received by the editors on September 24, 2003.

