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THE HURWITZ ZETA FUNCTION
AS A CONVERGENT SERIES

ROMAN DWILEWICZ AND JÁN MINÁČ

ABSTRACT. New series for the Hurwitz zeta function
which converge on the whole plane, except s = 1, are devel-
oped. This is applied to obtain a remarkably simple evaluation
of some special values of the function.

1. Introduction. Classically the Riemann zeta function, or more
generally, the Hurwitz zeta function, is defined on a half plane using
a series and then it is analytically extended, with respect to s, to the
whole plane except for a simple pole at s = 1 with residue 1,

ζ(s, x) =
∞∑

n=0

1
(n + x)s

for �s > 1 and 0 < x ≤ 1,

however in many calculations x can be taken any positive number.
The Riemann zeta function is obtained from the Hurwitz function by
setting x = 1. In this paper we define the Hurwitz zeta function by a
series which converges on the whole plane except for s = 1. In fact we
define a family of series parameterized by certain easily constructible
sequences of natural numbers {gn}∞n=0. Our constructions and proofs
are elementary and they require only the basic properties of Bernoulli
numbers (for basic properties of Bernoulli numbers and L-functions we
refer the reader to [3] and [23]) and complex analysis of one variable,
see, e.g., [46]. The new series leads to a very simple and natural
evaluation of L-functions at negative integers. One example of our
series is the following:
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Let Bn be Bernoulli numbers, and let gn be a sequence defined by

gn = [[
√

ln(n + 3) ]] for n = 0, 1, . . . ,

where [[·]] is the integer part of a real number. Then the Hurwitz
zeta function ζ = ζ(s, x), where s ∈ C \ {1} and 0 < x ≤ 1, can
be represented as follows:

ζ(s, x) =
1
xs

+
1

s − 1

[
x−s+1 + B1(s − 1) x−s + B2

(s − 1)s
2!

x−s−1

]

+
∞∑

n=1

[
2gn∑

β=2gn−1+2

Bβ
s . . . (s + β − 2)

β!
1

(n + x)s+β−1

]

−
∞∑

n=1

{ ∞∑
β=2gn−1+2

[
s . . . (s + β − 1)

×
2gn−1∑
j=0

Bj
1

j!(β − j + 1)!

]
1

(n + x)β+s

}
.

This representation can be used as a very simple evaluation of some
values of the Hurwitz zeta function, and consequently, of L-series.

In Section 2 we mention a few historical remarks. In Section 3 we
introduce the key H-function which is closely related to Bernoulli’s
polynomials and we establish the basic, rather interesting properties,
of our H-function. Section 4 is the main part of our paper and in
particular we formulate and prove Theorem 4.2 where a family of
series convergent on the whole plane except s = 1 is described. As
a corollary we obtain the well-known values of Hurwitz’s zeta function
at negative integers by merely plugging our negative integers into our
series. Finally, in Section 5, as an application of the previous results,
we obtain a simple evaluation of Dirichlet L-functions. In this section
we were also influenced by Stark’s beautiful derivation of Dirichlet’s
class-number formula quoted in the references.

2. Historical remarks. In 1731 the summation of the series ζ(n),
when n is an integer ≥ 2, had been a classical problem. In the years
1731 1735, Euler discovered, independently of MacLaurin, the Euler-
MacLaurin summation formula and applied it to the calculation ζ(n).
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Following a breakthrough in 1735, Euler discovered the remarkable fact
that ζ(2n)/π2n, n ∈ N, are all rational numbers. Euler also found a
key connection, in the case of real s, between the zeta function and
prime numbers, which is today the well-known product formula

ζ(s) =
∏
p

(1 − p−s)−1, �(s) > 1,

where the product runs over all prime numbers. This formula implies
that

∑
p(1/p) is a divergent series and in particular that there are

infinitely many primes. (See [53, par. 17 to 20].)

In 1937 Dirichlet used Euler’s idea to show that in each arithmetic
sequence

a, a + d, a + 2d, . . . ,

in which a and d are natural numbers with no common factor, there are
infinitely many primes. In order to prove this result, Dirichlet defined
an L-series attached to Dirichlet’s characters. (See [13] and also [14].)

Now it was Riemann who in his eight-page paper, see [43], made
a number of crucial discoveries and key conjectures related to the
zeta function and to the distribution of prime numbers. In particular,
Riemann showed in his paper that ζ(s) can be analytically extended to
a whole plane and ζ(s) − 1/(s − 1) is an entire function.

In 1882 Hurwitz realized that one can analytically extend the L-
functions attached to a quadratic character by introducing an auxil-
iary function: today called the Hurwitz zeta function, see [22]. (Hur-
witz himself only considered the case when a is rational, see [39, Sec-
tion 4.2].)

Today the Hurwitz zeta function and its related functions are in the
center of mathematical investigations. The distribution of primes and
their relation to Hurwitz’s zeta function has remained one of the key
problems in current number theory, with the Riemann hypothesis be-
ing the last unsolved problem contained in [43]. There is an important
connection with probability theory (see [30] and [31], for example) and
with some special functions. Not only is ζ(s, x) a special function itself,
but ζ(s, x) has numerous relations with other special functions includ-
ing gamma functions, theta functions, and hypergeometric functions,
see [37, Chapter 1, ] and [17]. It also has relations with the evaluation
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of integrals (see [9, 15, 16]), with cosmology (see [24, p. 134] and
[34 36]), and with the convexity and monotonicity of zeta functions
(see [5]). Rather recently the fascinating connection with noncommu-
tative geometry and spectral interpretation of the critical zeros of the
Riemann zeta function as an absorbtion spectrum was discovered, see
[10 12]. There is also an established link between Riemann’s hypoth-
esis and random matrix theory which originated in physics, see [25,
26, 47]. A delightful mix of modern and classical topics related to the
Hurwitz zeta function may be found in [32].

Of course, this is just an extremely quick glimpse at the vast recent
research related to the Hurwitz zeta function.

It is remarkable, after all of these years and with the growing interest
in zeta functions by mathematicians and physicists from different areas,
how relevant and how modern are the ideas of Euler on the zeta
function. We still seem to be very far from establishing Euler’s dream
of determining the nature of the values ζ(2n + 1), n ∈ N. However, in
1979 Apéry showed that ζ(3) is irrational, see [1, 2, 51]. In 2000 Rivoal
showed that infinitely many values ζ(2n + 1), n ∈ N are irrational, see
also [4, 44, 45, 54]. Zagier proposed a very interesting conjecture
about the values of the Dedekind zeta function ζF (m) attached to an
algebraic number field F , which relates ζF (m) with polylogarithms and
K-theory, see [54, 55]. In [18] Goncharov proved Zagier’s conjecture
for m = 3. (See also [19] for a nice, short survey of related topics). The
paper [20] contains a detailed exposition of a number of fundamental
discoveries related to trilogarithms, K-theory, and ζF (3). See [6 8]
for important, far-reaching Beilinson conjectures about the values of
motivic L-functions, Deligne cohomology and regulators (also [40]
contains a very nice, informative exposition of these topics). For a
fascinating exposition related to periods defined as integrals of n-forms
on algebraic varieties over an algebraic closure of Q and special values
of L-functions, see [28].

Very recently some of the key conjectures related to the K-theory of
fields were settled by Rost and Voevodsky. These developments led to
descriptions of K-groups of rings of algebraic integers. This in turn
is related to the values of the Dedekind zeta function at odd negative
integers. (See [52] for details.)
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Renewed interest in the values ζ(1 − k) has its origin in the fact
that the values (1 − pk−1)ζ(1 − k) can be p-adically interpolated. In
fact, these values can be extended to a p-adic zeta function ζp such that
ζp(1−k) = (1−pk−1)ζ(1−k) for each k ∈ N. (See [27, Chapter 2].) In
[33] it was observed that ζ(−a), a ∈ N∪{0}, can be directly connected
with the partial sum

Sa(M) :=
M−1∑
n=1

na; in fact ζ(−a) =
∫ 1

0

Sa(x) dx.

Also in [33] and independently in [38], it was observed that using a
well-known formula for ζ(s) expressed by the values ζ(s + q), q ∈ N,
see [29, p. 147] and also [42], one can derive the formula for ζ(1 − k),
k ∈ N, in a simple way. For a very nice survey of these results see [49].

These considerations are related to some ideas, somewhat in the
original spirit of Euler, that one could modify each term 1/ns, n ∈ N,
with some function of n and s which behaves like a difference of values
of Bernoulli polynomials, and which will make our series convergent on
the entire plane with the exception of the point s = 1, without altering
the values of ζ(s) if Rs > 1. The additional idea is to apply this
procedure conveniently in some intervals in N in which we make our
summation. The goal of this paper is to show that this idea works when
carefully executed in the more general case of Hurwitz’s zeta function.

3. H-function.

3.1 Definition of the H-function. One way to define Bernoulli
polynomials Bn(x) and numbers Bn = Bn(0), see [3, p. 264], is the
following expansion

zexz

ez − 1
=

∞∑
n=0

Bn(x)
n!

zn.

The property of the Bernoulli polynomials, see [3, p. 265], which we
need later on is

(3.1) Bn(x + 1) = Bn(x) + nxn−1 for n ≥ 1
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and of Bernoulli numbers

(3.2)
m−1∑
j=0

Bj

(
m
j

)
= 0.

We define the function H(k, s, x), where k = 1, 2, . . . , and s ∈ C,
x ∈ R, x > 0,

(3.3) H(k, s, x) =
2k∑

j=0

Bj

(
s + j − 2

j

)
x−s−j+1.

Here the complex powers are meant as principal values.

Taking into account that B1 = −1/2 and that the odd Bernoulli
numbers are zero, except for B1, another equivalent version of the H
function, is

(3.4) H(k, s, x) =
2k∑

j=0

Bj

(−(s − 1)
j

)
x−s−j+1 + (1 − s)x−s.

In order to motivate H(k, s, x), we see that these functions are
actually Bernoulli polynomials when s is a negative integer. Indeed
suppose that a ∈ Z and 0 ≤ a < 2k. Then, using (3.4),

(3.5)

H(k,−a, x) =
2k∑

j=0

Bj

(
a + 1

j

)
xa+1−j + (a + 1)xa

=
a+1∑
j=0

Bj

(
a + 1

j

)
xa+1−j + (a + 1)xa

= Ba+1(x + 1),

where Ba+1(x + 1) is the (a + 1)th Bernoulli polynomial.

3.2 Formulation of properties of the H-function.

Lemma 3.1. We have the identity

∂H(k, s, x)
∂x

= (1 − s)H(k, s + 1, x).
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Proof. The lemma can be proved by a simple direct computation.
Since (

s + j − 2
j

)
(−s − j + 1) = (1 − s)

(
s + j − 1

j

)

we have

∂H(k, s, x)
∂x

=
2k∑

j=0

Bj

(
s + j − 2

j

)
(−s − j + 1)x−s−j

= (1 − s)

[
2k∑

j=0

Bj

(
s + j − 1

j

)
x−s−j

]

= (1 − s)H(k, s + 1, x),

which completes the proof.

The following proposition gives an explicit formula for the difference
H(k, s, x) − H(k, s, x − 1) as a power series of 1/x.

Proposition 3.1 (Expansion). We have the following properties of
the H-functions :

1. The function (s, x) → H(k, s, x) is smooth for s ∈ C, x ∈ R,
x > 0, and holomorphic with respect to s.

2. For k = 1, 2, . . . , the function xs[H(k, s, x) − H(k, s, x − 1)] can
be expanded into a power series with respect to x > 1 with polynomial
coefficients in s:

(3.6)
xs

s − 1
[H(k, s, x) − H(k, s, x − 1)] + 1

= −
∞∑

β=2k+2

1
β + 1

(
s + β − 1

β

) 2k∑
j=0

Bj

(
β + 1

j

)
︸ ︷︷ ︸

aβ

x−β.
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Proposition 3.2 (Estimates). Let |s| ≤ r, where r ≥ 4 is a natural
number. Then we have the following estimates of the coefficients aβ

and of the series
∑

aβ x−β :

(3.7) |aβ| ≤ (β + r)2k+r 1
(2π)2k+1

(3.8)

∞∑
β=2k+2

|aβ|x−β ≤ 2π

(2πx)2k+2
(4k + 2r + 2)!

(
x

x − 1

)4k+2r+3

for x > 1,

which implies, for x > 1,

(3.9)
∣∣∣∣ xs

s − 1
[H(k, s, x) − H(k, s, x − 1)] + 1

∣∣∣∣
≤ 2π

(2πx)2k+2
(4k + 2r + 2)!

(
x

x − 1

)4k+2r+3

.

We observe that the formula (3.9) is a generalization of the well-
known identity (3.1).

As an immediate consequence of Proposition 3.1, we have

Corollary 3.1. For n = 2, 3, . . . , we have

(3.10)
1

s − 1
[H(k, s, n) − H(k, s, n − 1)] +

1
ns

= −
∞∑

β=2k+2

1
β+1

(
s + β − 1

β

)[
2k∑

j=0

Bj

(
β+1

j

)]
1

ns+β+1
.

Remark 3.1. The same type propositions can be formulated for the
derivatives

∂i+j

∂si∂xj

[
xs

s − 1
[H(k, s, x) − H(k, s, x − 1)] + 1

]
;
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actually it is a repetition with small modifications of the proofs we are
giving below for the function. In particular, it implies that the series
3.6 can be differentiated term by term with respect to s and x.

3.3. Proof of the “expansion” proposition. The first part of
the proposition is obvious by using definition (3.3) of the function H.

The second part requires some calculations. From the definition of
the function H, we obtain

xs [H(k, s, x) − H(k, s, x − 1)]

= xsH(k, s, x) − xs

(x−1)s
(x−1)sH(k, s, x − 1)

=
2k∑

j=0

Bj

(
s+j−2

j

)
x−j+1 − xs

(x−1)s

2k∑
j=0

Bj

(
s+j−2

j

)
(x−1)−j+1.

To get positive exponents in the expressions in the above sums, we
substitute x = 1/t for 0 < t < 1 since x > 1. Then we calculate the
last two-line sums in the above expression.

(3.11)

2k∑
j=0

Bj

(
s + j − 2

j

)
tj−1 −

2k∑
j=0

Bj

(
s + j − 2

j

)
tj−1(1 − t)−s−j+1

=
2k∑

j=0

Bj

(
s + j − 2

j

)
tj−1

[
1 − (1 − t)−s−j+1

]
.

Next we use the binomial expansion:

tj−1
[
1 − (1 − t)−s−j+1

]
= tj−1

[
1 −

∞∑
α=0

(−1)α

(−s − j + 1
α

)
tα

]

= tj−1

[
1 −

∞∑
α=0

(
s + j + α − 2

α

)
tα

]

= −
∞∑

α=1

(
s + j + α − 2

α

)
tα+j−1.
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The series in (3.11) becomes

−
2k∑

j=0

Bj

(
s + j − 2

j

) ∞∑
α=1

(
s + j + α − 2

α

)
tα+j−1

= −
∞∑

α=1

2k∑
j=0

Bj

(
s + j − 2

j

)(
s + j + α − 2

α

)
tα+j−1.

After changing the summation index, the sum (3.11) can be written

(3.12)

2k∑
j=0

Bj

(
s + j − 2

j

)
tj−1

[
1 − (1 − t)−s−j+1

]

= −
∞∑

β=0

min(β,2k)∑
j=0

Bj

(
s + j − 2

j

)(
s + β − 1
β − j + 1

)
tβ

= −
∞∑

β=0

(
s + β − 1

β + 1

)min(β,2k)∑
j=0

Bj

(
β + 1

j

)
tβ .

But if β = 0, 1, . . . , 2k + 1, then using (3.2), we obtain

min(β,2k)∑
j=0

Bj

(
β + 1

j

)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

B0 ( 1
0 ) = B0 = 1 if β = 0,∑β

j=0 Bj

(
β+1

j

)
= 0 if β = 1, 2, . . . , 2k,∑2k

j=0 Bj

(
2k+2

j

)
=

∑2k+1
j=0 Bj

(
2k+2

j

)
= 0 if β = 2k + 1.

Combining (3.12) with the above formulas for coefficients we proved

2k∑
j=0

Bj

(
s + j − 2

j

)
tj−1

[
1 − (1 − t)−s−j+1

]

= −(s − 1) −
∞∑

β=2k+2

(
s + β − 1

β + 1

) 2k∑
j=0

Bj

(
β + 1

j

)
tβ .
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Finally, replacing t by 1/x, we get

xs [H(k, s, x) − H(k, s, x − 1)] + (s − 1)

= −
∞∑

β=2k+2

(
s + β − 1

β + 1

) 2k∑
j=0

Bj

(
β + 1

j

)
x−β

= −(s − 1)
∞∑

β=2k+2

1
β + 1

(
s + β − 1

β

) 2k∑
j=0

Bj

(
β + 1

j

)
x−β

what was needed to be proved.

3.4 Proof of the “estimates” proposition. Here we consider the
series

(3.13)
∞∑

β=2k+2

aβ x−β =
∞∑

β=2k+2

1
β + 1

(
s + β − 1

β

) 2k∑
j=0

Bj

(
β + 1

j

)
︸ ︷︷ ︸

aβ

x−β

from the first proposition where we write aβ as

(3.14)
aβ = aβ(s, k) = s . . . (s + β − 1)

2k∑
j=0

Bj
1

j!(β − j + 1)!
,

β ≥ 2k + 2.

3.4.1 Estimate of aβ. In our calculations we shall use the following
inequalities for Bernoulli numbers, see [41, p. 17]:

(3.15) |Bj | ≤ j!
12(2π)j−2

≤ 4j!
(2π)j

=⇒ |Bj |
j!

≤ 4
(2π)j

.
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Using (3.15) and also |s| ≤ r, we obtain

(3.16)

|aβ| ≤ |s . . . (s + β − 1)|
2k∑

j=0

4
(2π)j

1
(β − j + 1)!

= 4
r

1
. . .

r + β − 1
β

2k∑
j=0

β!
(2π)j(β − j + 1)!

≤ 4
(

r + β − 1
β

) 2k∑
j=0

(
β

2π

)j

≤ 4
(

r + β − 1
β

)(
β

2π

)2k+1

.

From (3.16) we get (assume that r ≥ 4)

|aβ| ≤ 4
(β + r − 1) . . . (β + 1)

(r − 1)!

(
β

2π

)2k+1

≤ (β + r − 1)r−1

(
β

2π

)2k+1

≤ (β + r)2k+r 1
(2π)2k+1

.

3.4.2 Estimate of the series. From the estimate of αβ above we have

(3.17)

∞∑
β=2k+2

|aβ |x−β ≤ 1
(2π)2k+1

∞∑
β=2k+2

(β + r)2k+rx−β for x > 1.

Now we estimate the right-hand side of (3.17).
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First we need a formula for |t| < 1:

( ∞∑
β=0

tβ+m

)(m)

= [tm(1 − t)−1](m)

=
m∑

α=0

(
m
α

)
(tm)(m−α)[(1 − t)−1](α)

=
m∑

α=0

(
m
α

)
m . . . (α + 1)tαα . . . 1(1 − t)−1−α

=
m!

1 − t

m∑
α=0

(
m
α

)(
t

1 − t

)α

=
m!

1 − t

(
1 +

t

1 − t

)m

=
m!

(1 − t)m+1
.

So we obtained

(3.18)

( ∞∑
β=0

tβ+m

)(m)

=
m!

(1 − t)m+1
for |t| < 1.

We apply (3.18) in the following estimates for 0 < t < 1:

(3.19)

∞∑
β=2k+2

(β + r)2k+rtβ = t2k+2
∞∑

α=0

(α + 2k + r + 2)2k+r tα

≤ t2k+2

[ ∞∑
α=0

tα+4k+2r+2

](4k+2r+2)

≤ t2k+2 (4k + 2r + 2)!
(1 − t)4k+2r+3

.
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Switching back to x by taking t = 1/x in (3.19) and using (3.17), we
get

(3.20)
∞∑

β=2k+2

|aβ|x−β ≤ 2π

(2πx)2k+2
(4k + 2r + 2)!

(
x

x − 1

)4k+2r+3

,

and the proposition is proved.

4. Series representations of the Hurwitz zeta function.

4.1 Formulation of results. In this section we establish two
representations of the Hurwitz zeta function ζ = ζ(s, x). First we
define the following families of formal series. Later we specify for what
arguments these series converge. Let
(4.1)

H(k, s, x) =
1
xs

+
1

s−1
H(k, s, x)

+
∞∑

n=1

[
1

(n+x)s
+

1
s−1

[H(k, s, n+x)−H(k, s, n+x−1)]
]
,

where s ∈ C \ {1}, x ∈ R, x > 0 and k = 1, 2, . . . .

Before we define the second family of series, let g(n) = gn be an
integer-valued nondecreasing sequence such that g(0) = 1. Define

(4.2)

Hg(s, x) =
1
xs

+
1

s−1
H(1, s, x)

+
∞∑

n=1

[
1

(n+x)s
+

1
s−1

[H(gn, s, n+x)−H(gn−1, s, n+x−1)]
]
,

where s ∈ C \ {1} and x ∈ R, x > 0.

Theorem 4.1. With the above notation, we have:

(a) The series in the second line of (4.1) converges for x > 0 and
�s > − 2k − 1;



THE HURWITZ ZETA FUNCTION 1205

(b) The function H(k, s, x) is smooth with respect to the variables s
and x, and holomorphic with respect to s for �s > − 2k − 1 and s 	= 1;

(c) For �s > − 2k−1 and s 	= 1 the function H(k, s, x) can be written
as :
(4.3)

H(k, s, x) = ζ(s, x) =
1
xs

+
1

s−1
H(k, s, x)

−
∞∑

n=1

∞∑
β=2k+2

1
β+1

(
s+β−1

β

) 2k∑
j=0

Bj

(
β+1

j

)
1

(n+x)β+s
.

Theorem 4.2. There is a nondecreasing integer-valued sequence
{gn}∞n=0, g0 = 1, such that we have:

(a) The series in (4.2) converges for x > 0 and s ∈ C \ {1};
(b) The function Hg(s, x) is smooth with respect to the variables

s ∈ C \ {1} and x > 0 and holomorphic with respect to s;

(c) For all s ∈ C \ {1} and x > 0, we have

(4.4)

Hg(s, x) = ζ(s, x) =
1
xs

+
1

s−1
H(1, s, x)

+
∞∑

n=1

2gn∑
β=2gn−1+2

Bβ
1
β

(
s+β−2

β−1

)
1

(n+x)s+β−1

−
∞∑

n=1

∞∑
β=2gn−1+2

1
β+1

(
s+β−1

β

)2gn−1∑
j=0

Bj

(
β+1

j

)
1

(n+x)β+s
;

(d) The function Hg(s, x) does not depend upon g, i.e., ζ(s, x) =
Hg(s, x) for all s ∈ C \ {1} and 0 < x ≤ 1.

Corollary 4.1. For x = 1 and s 	= 1, the Riemann zeta function
ζ(s) has the following representations

(1) (4.1) for �(s) > − 2k − 1,

(2) (4.2) for all s ∈ C \ {1},
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(3) (4.3) for �(s) > − 2k − 1,

(4) (4.4) for all s ∈ C \ {1}.

The following corollary is well known. (See [3, Theorem 12.13].) We
obtain this corollary by simply substituting the nonnegative integer a
in our series.

Corollary 4.2. For any nonnegative integer a we have the following
identity for the Hurwitz zeta function

(4.5) ζ(− a, x) = − Ba+1(x)
a + 1

.

Proof of Corollary 4.2. Using Theorem 4.1(c) in the case when
a < 2k + 1, we see that if s = − a, the formula (4.3) for the function
H(k,−a, x) is reduced to few terms

ζ(− a, x) = H(k,−a, x) = xa − 1
a + 1

H(k,−a, x)

=
(a + 1)xa − H(k,−a, x)

a + 1
.

Now using (3.5) we get

ζ(− a, x) =
(a + 1)xa − Ba+1(x + 1)

a + 1
= −Ba+1(x)

a + 1
,

which gives (4.5).

Before we approach the proofs of the theorems above, we present one
more representation of the Hurwitz zeta function. This representation
immediately follows from the formula (3.1) for ζ(s, x). Introduce the
function

a(s) = max([[−�s]], 1)

where [[·]] is the greatest integer function, i.e., taking integer values
and [[y]] ≤ y < [[y]] + 1 for y ∈ R. (In fact, instead of a(s) we could
take any positive integer-valued function which satisfies the condition
�s > − 2a(s)−1.) Then we have the following corollary of Theorem 4.1.



THE HURWITZ ZETA FUNCTION 1207

Corollary 4.3. We have

(4.6)

ζ(s, x) =
1
xs

+
1

s−1
H(a(s), s, x)

+
∞∑

n=1

[
1

(n+x)s
+

1
s−1

[H(a(s), s, n+x)−H(a(s), s, n+x−1)]
]

for s ∈ C \ {1} and 0 < x ≤ 1.

4.2 Proof of Theorem 4.1. To prove (a) we use Proposition 3.2,
and we get the estimate (the second inequality below holds for n >
4k + 2r + 3):

(4.7)

∣∣∣∣ 1
(n + x)s

+
1

s − 1
[H(k, s, n + x) − H(k, s, n + x − 1)]

∣∣∣∣
≤ 1

(2π)2k+1

1
|(n + x)2k+2+s| (4k+2r+2)!

(
n + x

n+x−1

)4k+2r+3

≤ e

(2π)2k+1

1
|(n + x)2k+2+s| (4k+2r+2)!

and the series in (4.1) converges if �(2k+2+s) > 1 i.e., �s > −2k−1.

Part (b) of the theorem follows from the fact that each term of the
series (4.1) is smooth with respect to x and s, holomorphic with respect
to s and by using Remark 3.1 and estimates of the same kind as in (4.7).

To prove part (c), take s ∈ C, �s > 1. Then the partial sums
Hm(k, s, x) of H(k, s, x) are

Hm(k, s, x) =
1
xs

+
1

s − 1
H(k, s, x)

+
m∑

n=1

[
1

(n+x)s
+

1
s−1

(
H(k, s, n+x)−H(k, s, n+x−1)

)]

=
m∑

n=0

1
(n + x)s

+
1

s − 1
H(k, s, m + x).
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By the definition of the function H, namely (3.3), we have that
limm→∞ H(k, s, m + x) = 0 if �s > 1, and consequently,

lim
m→∞Hm(k, s, x) =

∞∑
n=0

1
(n + x)s

= ζ(s, x).

The formula (4.3) is actually rewritten (4.1) by using Proposition 3.1
and formula (3.6). This proves part (c) and completes the proof of the
theorem.

4.3 Proof of Theorem 4.2. We fix a natural number r such that
|s| ≤ r.

We choose a sequence {gn} of natural numbers in such a way that
the following conditions are satisfied: There is n0 such that for n > n0

we have

(4.8) g0 = 1, lim
n→∞ gn = ∞, 0 ≤ gn − gn−1 ≤ 1, gn

gn ≤ n.

As an example of a sequence that satisfies (4.8) we can take

(4.9) gn = [[
√

ln(n + 3) ]] for n = 0, 1, . . . .

The sequence (4.9) obviously satisfies the first three conditions of (4.8).
To see the last one, we have the following inequalities:

gn
gn =

(
[[
√

ln(n + 3) ]]
)[[
√

ln(n+3) ]]

≤
(√

ln(n + 3)
)√ln(n+3)

,

and taking logarithm of the above expressions, we get

gn ln gn ≤ 1
2

√
ln(n+3) ln(ln(n+3)) ≤ 1

2
ln(n+3) ≤ ln n for n ≥ 3,

which implies the last condition of (4.8).
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The general term of the series in (4.2) multiplied by (n + x)s can be
written as:

1 +
(n + x)s

s − 1
[H(gn, s, n + x) − H(gn−1, s, n + x − 1)]

(4.10)

=
(n + x)s

s − 1
[H(gn, s, n + x) − H(gn−1, s, n + x)]︸ ︷︷ ︸

In

+ 1 +
(n + x)s

s − 1
[H(gn−1, s, n + x) − H(gn−1, s, n + x − 1)]︸ ︷︷ ︸

IIn

(4.11)

We notice that In and IIn depend on n, x, and s.

In estimates of these two expressions, we need the following simple
inequality: for a natural number l, l ≤ gn, we have

(4.12) (lgn)! ≤ (lgn)lgn ≤ [g2
n]lgn ≤ [ggn

n ]2l ≤ n2l.

Estimate of In. First consider the expression In. From the properties
of the sequence {gn}, this expression is either zero or contains exactly
one term (see the definition of H). If it contains one term, take n large
enough such that gn ≥ r. Then, using (4.12), we have

|In| =
∣∣∣∣ 1
s − 1

B2gn

(
s + 2gn − 2

2gn

)
1

(n + x)2gn−1

∣∣∣∣
≤

∣∣∣∣ B2gn

(2gn)!

∣∣∣∣ |s(s + 1) . . . (s + 2gn − 2)| 1
(n + x)2gn−1

≤ 4
(2π)2gn

r(r + 1) . . . (r + 2gn − 2)
1

(n + x)2gn−1

≤ 4
(2π)2gn

(3gn)!
1

(n + x)2gn−1

≤ 1
(2π)2gn

n6 1
(n + x)2gn−1

≤ 1
(2π)2gn

1
(n + x)2gn−7

.
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Thus we have obtained

(4.13) |In| ≤ 1
(2π)2gn

1
(n + x)2gn−7

.

Estimate of IIn. Using (3.9), (4.12) and taking n large enough such
that n > 4gn−1 + 2r + 3 and gn ≥ 2r + 2, we obtain

|IIn| =
∣∣∣∣1 +

(n + x)s

s − 1
[H(gn−1, s, n + x) − H(gn−1, s, n + x − 1)]

∣∣∣∣
≤ 2π

[2π(n + x)]2gn−1+2
(4gn−1 + 2r + 2)!

(
n + x

n + x − 1

)4gn−1+2r+3

≤ e

(2π)2gn−1

1
(n + x)2gn

(4gn + 2r + 2)!

≤ e

(2π)2gn−1

1
(n + x)2gn

(5gn)!

≤ e

(2π)2gn−1

1
(n + x)2gn

n10

≤ e

(2π)2gn−1

1
n2gn−10

.

Thus we have obtained

(4.14) |IIn| ≤ e

(2π)2gn−1

1
n2gn−10

Combining (4.13) and (4.14) we obtain:∣∣∣∣ 1
(n + x)s

+
1

s − 1
[H(gn, s, n + x) − H(gn−1, s, n + x − 1)]

∣∣∣∣
≤ const

|ns+2gn−10|

for n sufficiently large. This estimate proves part (a) of Theorem 4.2.

Part (b) of the theorem follows from the fact that each term of the
series (4.2) is smooth with respect to x and s, holomorphic with respect
to s and by using Remark 3.1 and estimates of the same kind as in (4.7).
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Proof of (c). Now take s ∈ C, �s > 1, and x > 0. Then the partial
sums Hg

m(s, x) of Hg(s, x) are

(4.15)

Hg
m(s, x) =

1
xs

+
1

s−1
H(1, s, x) +

m∑
n=1

[
1

(n+x)s
+

1
s−1

[
H(gn, s, n+ x)

− H(gn−1, s, n+ x−1)
]]

=
m∑

n=0

1
(n+x)s

+
1

s−1
H(gm, s, m + x).

The limit of the first term when m → ∞ on the right-hand side of
(4.15) is ζ(s, x). Now we prove that the limit of the second term is zero
as m → ∞.

By definition of H(gm, s, m + x), using the assumptions �s > 1 and
|s| ≤ r, we have

1
s − 1

|H(gm, s, m + x)| ≤
2gm∑
j=0

|Bj |
j!

|s . . . (s + j − 2)| 1
|(m + x)s+j−1|

≤ 1
|ms−1|

2gm∑
j=0

4
(2π)j

(r + j − 2)!
mj

.

To prove that the very right-hand side converges to zero, it is enough
to show that (j + r − 2)! ≤ mj−1 for large j and j ≤ 2gm. This follows
from the following sequence of estimates: For large m we have

(j + r − 2)! ≤ (j + r − 2)j+r−2 ≤ (j + r − 2)j+r ≤ (3gm)j+r ≤ mj .

To see the last inequality, observe that the equivalent statement

(j + r) ln(3gm) ≤ j ln m ⇐⇒ j + r

j
≤ ln m

ln(3gm)

is obvious.

Consequently, we get

|H(gm, x, m + x)| ≤ const
|ms−1| ,
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where the constant depends on r only. Since �s > 1, we see
limm→∞ H(gm, x, m + x) = 0.

Part (d) of the theorem follows from general considerations: As we
know, the function Hg(s, x) is smooth with respect to both variables
and holomorphic with respect to s ∈ C \ {1}. For fixed x > 1, the
function s → Hg(s, x) − x−s+1/(s − 1) is holomorphic in s ∈ C and
is ζ(s, x) for �s > 1. Because the holomorphic extension is unique,
therefore we get independence of g = {gn}.

5. Applications: series representations of the Dirichlet L-
functions. In this section we apply the theorems from Section 3 to the
Dirichlet L-functions. That such simple evaluations are possible was
observed earlier by Stark in [48]. Actually the Hurwitz zeta function
can be considered as a generalization of both the Riemann zeta function
and the Dirichlet L-functions, see [3, p. 249]. Here we remind the reader
in brief of the definition of the Dirichlet L-functions.

Let χ be a Dirichlet character. Then the Dirichlet L-function is
defined by

(5.1) L(s, χ) =
∞∑

n=1

χ(n)
ns

,

if �s > 1.

If χ is a character mod m, then we can rearrange the terms in the
series for L(s, χ) according to the residue classes mod m, and we get

n = qm + r, where 1 ≤ r ≤ m and q = 0, 1, 2, . . . ,

(5.2)

L(s, χ) =
∞∑

n=1

χ(n)
ns

=
m∑

r=1

∞∑
q=0

χ(qm + r)
(qm + r)s

= m−s
m∑

r=1

χ(r) ζ

(
s,

r

m

)
,

where ζ(s, x) is the Hurwitz zeta function. We already dealt with the
case when χ was the principal character, namely this case corresponds
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to the standard Riemann zeta function. Therefore now we assume that
χ is nonprincipal, and as a consequence we get, see [3, p. 140], that

(5.3)
m∑

j=1

χ(j) = 0.

Actually, following [48], we shall consider an even more general situ-
ation, namely when χ is a periodic function on Z with period m and
moreover χ satisfies (5.3).

In all statements below we assume that χ is a nonprincipal character.
In this case L(s, χ) is an entire function, see [3, Theorem 12.5].
Nevertheless, because in the formulas below we divide by s − 1, we
exclude the value s = 1.

Theorem 5.1. For any natural number k, the Dirichlet L-function
corresponding to character χ mod m can be represented as the series

(5.4) L(s, χ) =
m∑

r=1

χ(r)r−s +
m−s

s−1

m∑
r=1

χ(r)H
(
k, s,

r

m

)
+ m−s

×
m∑

r=1

χ(r)
∞∑

n=1

[
1

(n + (r/m))s
+

1
s−1

[
H
(
k, s, n +

r

m

)

− H
(
k, s, n +

r

m
− 1

)]]
,

where the series converges for �s > − 2k − 1, s 	= 1.

Theorem 5.2. There is a nondecreasing integer-valued sequence
{gn}∞n=0, g0 = 1, such that the Dirichlet L-function corresponding to
character χ mod m can be represented as the series

L(s, χ) =
m∑

r=1

χ(r)r−s +
m−s

s−1

m∑
r=1

χ(r)H
(
1, s,

r

m

)
+ m−s

×
m∑

r=1

χ(r)
∞∑

n=1

[
1

(n + (r/m))s
+

1
s−1

[
H
(
gn, s, n +

r

m

)

− H
(
gn−1, s, n +

r

m
− 1

)]]
,

where the series (in the second line) converges in C \ {1}.
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The other consequences for the Dirichlet L-function come from The-
orems 4.1 and 4.2 when we write more explicitly the differences of the
H functions.

Corollary 5.1. For any natural number k, the Dirichlet L-function
corresponding to character χ mod m can be represented as the series
(5.5)

L(s, χ) =
m∑

r=1

χ(r)r−s +
m−s

s − 1

m∑
r=1

χ(r)H
(

k, s,
r

m

)
− m−s

×
m∑

r=1

[
χ(r)

∞∑
n=1

∞∑
β=2k+2

[
s . . . (s+ β−1)

2k∑
j=0

Bj
1

j! (β −j +1)!

]

× 1
(n + (r/m))β+s

]
,

where the series converges for �s > −2k − 1, s 	= 1.

Corollary 5.2. There is a nondecreasing integer-valued sequence
{gn}∞n=0, g(0) = 1, such that the Dirichlet L-function corresponding to
character χ mod m can be represented as the series

L(s, χ) =
m∑

r=1

χ(r)r−s +
m−s

s − 1

m∑
r=1

χ(r)H
(

1, s,
r

m

)

+ m−s
m∑

r=1

{
χ(r)

∞∑
n=1

[ 2gn∑
β=2gn−1+2

Bβ
s . . . (s + β − 2)

β!

× 1
(n + (r/m))s+β−1

]}

− m−s
m∑

r=1

[
χ(r)

∞∑
n=1

∞∑
β=2gn−1+2

[
s . . . (s + β − 1)

×
2gn−1∑
j=0

Bj
1

j! (β − j + 1)!

]
1

(n + (r/m))β+s

]
,

where the series converges for all s ∈ C \ {1}.
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As some applications of the above formulas for the Dirichlet L-
function, we compute the values of L(s, χ) for negative integers s. Take
any nonnegative integer a and for this integer fix a natural number k
such that a < 2k +1. When we plug s = −a into (5.5), we see that the
infinite sum on the right-hand sides of this formula vanishes. Thus, the
formula for L becomes

(5.6) L(− a, χ) =
m∑

r=1

χ(r)ra − ma

a + 1

m∑
r=1

χ(r)H
(

k,−a,
r

m

)
.

Using (3.5), the formula (5.6) can be written as

(5.7) L(− a, χ) =
m∑

r=1

χ(r)ra − ma

a + 1

m∑
r=1

χ(r)Ba+1

(
r

m
+ 1

)
.

In particular, if a = 0, we get

(5.8) L(0, χ) = −
m∑

r=1

χ(r)
(

r

m
+

1
2

)
= − 1

m

m∑
r=1

r χ(r)

since the character is nonprincipal.

If a = 1, we get

L(−1, χ) =
m∑

r=1

r χ(r) − m

2

m∑
r=1

χ(r)B2

(
r

m
+ 1

)

=
m∑

r=1

r χ(r) − m

2

m∑
r=1

χ(r)
(

r2

m2
+

r

m
+

1
6

)

=
m∑

r=1

r χ(r) − 1
2m

m∑
r=1

r2χ(r) − 1
2

m∑
r=1

r χ(r)

= − 1
2m

m∑
r=1

r2χ(r) +
1
2

m∑
r=1

r χ(r).
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