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A SIMPLE PROOF THAT A LINEARLY ORDERED
SPACE IS HEREDITARILY AND COMPLETELY

COLLECTIONWISE NORMAL

F.S. CATER

It is known [1] that a linearly ordered space is hereditarily collec-
tionwise normal. In this note we give a simpler proof that a linearly
ordered space is both hereditarily and completely collectionwise normal
[3, p. 168].

Let X be a linearly ordered set endowed with the usual open interval
topology. We denote intervals in the usual way by (a, b), (a, b], [a, b)
or [a, b]. We prove

Theorem I. Let {Ai} be a family of subsets of X such that each Ai

is disjoint from the closure of ∪j �=iAj. Then there is a family {Ui} of
mutually disjoint open sets such that Ai ⊂ Ui for each index i.

Proof. For convenience, put P = ∪iAi. We say that points
a, b ∈ X\P are equivalent if the interval joining a to b is a subset
of X\P . Then X\P is partitioned into equivalence classes we call the
components of X\P . Use the Axiom of Choice to select a point f(C)
in each component C.

Fix an index i. For each x ∈ Ai that is not the greatest point in X
we select a point tx > x as follows:

Case (1). If x is a right accumulation point of Ai, select tx ∈ Ai so
that tx > x and the interval (x, tx) is disjoint from P\Ai.

Case (2). If x has an immediate successor, we designate it by tx.

2000 AMS Mathematics Subject Classification. Primary 54F05, 54D15, 54A05.
Key words and phrases. Linearly ordered space, hereditarily and completely

collectionwise normal.
Received by the editors on October 15, 2003.

Copyright c©2006 Rocky Mountain Mathematics Consortium

1149



1150 F.S. CATER

Case (3). If x is a right accumulation point of X but not of Ai, then
the set {p ∈ P : p > x} is bounded away from x, and hence x is the
greatest lower bound of a unique component C of X\P . Let tx = f(C).

In all the Cases (1), (2) and (3), the interval [x, tx) is disjoint from
the set P\Ai.

For each x ∈ Ai that is not the least point of X, select sx < x in the
analogous way with the order reversed. We define the interval Ix for
each x ∈ Ai to be (sx, tx) if both sx and tx are defined, to be [x, tx) if x
is the least point of X and (sx, x] if x is the greatest point of X. Thus
Ix is an open neighborhood of x disjoint from P\Ai for each x ∈ Ai.

It remains only to prove that if u ∈ Ai, y ∈ Aj , i �= j, then Iu and
Iy are disjoint. Assume to the contrary that Iu and Iy intersect. Say
u < y for definiteness. Then y /∈ Iu because Iu can contain no point of
Aj . Likewise u /∈ Iy. It follows that sy ∈ Iu and tu ∈ Iy. Then Case (1)
does not govern the definition of tu because Iy contains no point of Ai.
Likewise Case (1) does not govern the definition of sy. Clearly Case (2)
does not govern the definition of tu or sy.

So Case (3) governs the definitions of tu and sy. Say (u, tu) ⊂ C1 and
(sy, y) ⊂ C2 for appropriate components C1 and C2 of X\P . It follows
that

(0.1) Iu ∩ Iy = (u, tu) ∩ (sy, y) ⊂ C1 ∩ C2,

and C1 ∩ C2 is nonvoid. We deduce from this that C1 = C2 and

tu = f(C1) = f(C2) = sy.

At that point the intervals Iu and Iy must abut, so they are disjoint.
This contradiction completes the proof.

Observe that the analogue of Theorem I is true when X is replaced
by any subspace of X. We leave the proof.

From Theorem I it follows that X and all its subspaces are completely
collectionwise normal. Then X is hereditarily collectionwise normal as
well.



LINEARLY ORDERED SPACES 1151

Remarks. Our hypothesis in Theorem I need not require that the
family {Ai} be discrete [1, p. 35]. Consider for example the family of
singleton sets {1/i} in the real line as i assumes all nonzero integer
values. This family is not discrete, nor is it even locally finite.

It is easy to find completely collectionwise normal spaces that are
not homeomorphic to any subspace of any linearly ordered space.
For example, the Euclidean plane (or any metric space) is trivially
completely collectionwise normal [3, p. 168]. Use the x and y-axes to
find four connected subsets of the plane, the intersection of any two of
which is the same singleton set. No subspace of any linearly ordered
space can contain four such connected subsets.

On the other hand, there are linearly ordered spaces that are not
metrizable. Consider the set {(r, v) : r real, v = 0 or 1} with
the lexicographic order. This ordered space is separable but has no
countable base. Hence it is not metrizable.

Finally, for a completely collectionwise normal space that is not home-
omorphic to any subspace of any linearly ordered space or metrizable
space, take the sum of the Euclidean plane and the linearly ordered
space in the preceding paragraph.
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