A CENTRAL LIMIT THEOREM FOR GENERAL WEIGHTED SUMS OF LNQD RANDOM VARIABLES AND ITS APPLICATION

MI-HWA KO, DAE-HEE RYU, TAE-SUNG KIM AND YONG-KAB CHOI

Abstract

In this paper we derive the central limit theorem for $\sum_{i=1}^{n} a_{n i} \xi_{i}$, where $\left\{a_{n i}, 1 \leq i \leq n\right\}$ is a triangular array of nonnegative numbers such that $\sup _{n} \sum_{i=1}^{n} a_{n i}^{2}<\infty$, $\max _{1 \leq i \leq n} a_{n i} \rightarrow 0$ as $n \rightarrow \infty$ and ξ_{i} 's are a linearly negative quadrant dependent sequence. We also apply this result to consider a central limit theorem for a partial sum of a generalized linear process of the form $X_{n}=\sum_{j=-\infty}^{\infty} a_{k+j} \xi_{j}$.

1. Introduction and results. Lehmann [8] introduced a simple and natural definition of positive (negative) dependence: A sequence $\left\{\xi_{i}, 1 \leq i \leq n\right\}$ of random variables is said to be pairwise positive (negative) quadrant dependent (pairwise $\mathrm{PQD}(\mathrm{NQD})$) if, for any real α_{i}, α_{j} and $i \neq j P\left(\xi_{i}>\alpha_{i}, \xi_{j}>\alpha_{j}\right) \geq(\leq) P\left(\xi_{i}>\alpha_{i}\right) P\left(\xi_{j}>\alpha_{j}\right)$. Much stronger dependent concepts than PQD and NQD were considered by Esary, Proschan and Walkup [4] and Joag-Dev and Proschan [6], respectively. A sequence $\left\{\xi_{i}, 1 \leq i \leq n\right\}$ of random variables is said to be associated if, for any real coordinatewise increasing functions f, g on $\mathbf{R}^{n}, \operatorname{Cov}\left(f\left(\xi_{1}, \ldots, \xi_{n}\right), g\left(\xi_{1}, \ldots, \xi_{n}\right)\right) \geq 0$ and $\left\{\xi_{i}, 1 \leq i \leq n\right\}$ is said to be negatively associated if, for any disjoint subsets, $A, B \subset\{1,2, \ldots, n\}$ and any real coordinatewise increasing functions f on \mathbf{R}^{A} and g on $\mathbf{R}^{B}, \operatorname{Cov}\left(f\left(\xi_{i}, i \in A\right), g\left(\xi_{i} \in B\right)\right) \leq 0$.

Instead of association (negative association) Newman's [10] central limit theorem requires only that positive linear combinations of the random variables are PQD (NQD). The definition of positive (negative) dependence introduced by Newman [10] is the following: A sequence $\left\{\xi_{i}, 1 \leq i \leq n\right\}$ of random variables is said to be linearly positive

[^0](negative) quadrant dependent (LPQD (LNQD)) if, for every pair of disjoint subsets $A, B \subset\{1,2, \ldots n\}$ and positive r_{j} 's
\[

$$
\begin{equation*}
\sum_{i \in A} r_{i} \xi_{i} \quad \text { and } \quad \sum_{j \in B} r_{j} \xi_{j} \quad \text { are } \mathrm{PQD}(\mathrm{NQD}) \tag{1.1}
\end{equation*}
$$

\]

Let us remark that LPQD (LNQD) is between pairwise PQD (NQD) and association (negative association) and it is well known, see, for example, [10, p. 131] that association (negative association) implies LPQD (LNQD) and LPQD (LNQD) implies PQD (NQD).
Newman [10] established the central limit theorem for a strictly stationary LPQD (LNQD) process and Birkel [2] also obtained a functional central limit theorem for LPQD processes which can be used to obtain the functional central limit theorem for LNQD processes. Kim and Baek [7] extended this result to a stationary linear process of the form $X_{k}=\sum_{j=0}^{\infty} a_{j} \xi_{k-j}$, where $\left\{a_{j}\right\}$ is a sequence of real numbers with $\sum_{j=0}^{\infty}\left|a_{j}\right|<\infty$ and $\left\{\xi_{k}\right\}$ is a strict stationary LPQD process with $E \xi_{i}=0,0<E \xi_{i}^{2}<\infty$; this result can be extended to the LNQD case by a similar method.

In this paper we derive a central limit theorem for a linearly negative quadrant dependent sequence in a double array, replacing the strict stationarity assumption with uniform integrability, see Theorem 1.1 below. We apply this result to obtain a central limit theorem for a partial sum of a linear process of the form $X_{n}=\sum_{j=-\infty}^{\infty} a_{k+j} \xi_{j}$ generated by linearly negative quadrant dependent sequence $\left\{\xi_{j}\right\}$, see Theorem 1.2 below.

Theorem 1.1. Let $\left\{a_{n i}, 1 \leq i \leq n\right\}$ be a triangular array of nonnegative numbers such that

$$
\begin{equation*}
\sup _{n} \sum_{i=1}^{n} a_{n i}^{2}<\infty \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\max _{1 \leq i \leq n} a_{n i} \longrightarrow 0 \quad \text { as } \quad n \rightarrow \infty \tag{1.3}
\end{equation*}
$$

Let $\left\{\xi_{i}\right\}$ be a centered sequence of linearly negative quadrant dependent random variables such that

$$
\begin{gather*}
\left\{\xi_{i}^{2}\right\} \text { is a uniformly integrable family, } \tag{1.4}\\
\operatorname{Var}\left(\sum_{i=1}^{n} a_{n i} \xi_{i}\right)=1 \tag{1.5}
\end{gather*}
$$

and

$$
\begin{equation*}
\sum_{j:|i-j| \geq u} \operatorname{Cov}\left(\xi_{i}, \xi_{j}\right)^{-} \longrightarrow 0 \quad \text { as } \quad u \rightarrow \infty \quad \text { uniformly in } \quad i \geq 1 \tag{1.6}
\end{equation*}
$$

see [3]. Then

$$
\sum_{i=1}^{n} a_{n i} \xi_{i} \xrightarrow{\mathcal{D}} N(0,1) \quad \text { as } \quad n \rightarrow \infty
$$

Remark. Theorem 1.1 extends Newman's [10] central limit theorem for strictly stationary LNQD sequences from equal weights to general weights, while at the same time weakening the assumption of stationarity.

Corollary 1.1. Let $\left\{\xi_{i}\right\}$ be a centered sequence of linearly negative quadrant dependent random variables such that $\left\{\xi_{i}^{2}\right\}$ is a uniformly integrable family, and let $\left\{a_{n i}, 1 \leq i \leq n\right\}$ be a triangular array of nonnegative numbers such that

$$
\begin{align*}
& \sup _{n} \sum_{i=1}^{n} \frac{a_{n i}^{2}}{\sigma_{n}^{2}}<\infty \tag{1.7}\\
& \max _{1 \leq i \leq n} \frac{a_{n i}}{\sigma_{n}} \longrightarrow 0 \quad \text { as } \quad n \rightarrow \infty \tag{1.8}
\end{align*}
$$

where $\sigma_{n}^{2}=\operatorname{Var}\left(\sum_{i=1}^{n} a_{n i} \xi_{i}\right)$. If (1.6) holds, then as $n \rightarrow \infty$,

$$
\begin{equation*}
\frac{1}{\sigma_{n}} \sum_{i=1}^{n} a_{n i} \xi_{i} \xrightarrow{\mathcal{D}} N(0,1) . \tag{1.9}
\end{equation*}
$$

Theorem 1.2. Let $\left\{a_{j}, j \in Z\right\}$ be a sequence of nonnegative numbers such that $\sum_{j} a_{j}<\infty$, and let $\left\{\xi_{j}, j \in Z\right\}$ be a centered sequence of linearly negative quadrant dependent random variables which is uniformly integrable in L_{2} and satisfying (1.6). Let

$$
X_{k}=\sum_{j=-\infty}^{\infty} a_{k+j} \xi_{j} \quad \text { and } \quad S_{n}=\sum_{i=1}^{n} X_{i} .
$$

Assume

$$
\begin{equation*}
\inf _{n \geq 1} n^{-1} \sigma_{n}^{2}>0 \tag{1.10}
\end{equation*}
$$

where $\sigma_{n}^{2}=\operatorname{Var}\left(S_{n}\right)$. Then

$$
\begin{equation*}
\frac{S n}{\sigma_{n}} \xrightarrow{\mathcal{D}} N(0,1) \quad \text { as } \quad n \rightarrow \infty . \tag{1.11}
\end{equation*}
$$

This result extends Theorem 18.6.5 in [5] from the i.i.d. case to the linearly negative quadrant dependence case by adding condition (1.6) and improves the central limit theorem of Kim and Baek [7] for linear processes generated by LNQD sequences.
2. Proofs. We start with the following lemma.

Lemma 2.1 [9]. Let $\left\{Z_{i}, 1 \leq i \leq n\right\}$ be a sequence of linearly negative quadrant dependent random variables with finite second moments. Then

$$
\begin{aligned}
& \mid E \exp \left(i t \sum_{j=1}^{n} Z_{j}\right)-\prod_{j=1}^{n} E \exp \left(i t Z_{j}\right) \mid \\
& \leq C t^{2}\left|\operatorname{Var}\left(\sum_{j=1}^{n} Z_{j}\right)-\sum_{j=1}^{n} \operatorname{Var}\left(Z_{j}\right)\right|
\end{aligned}
$$

for all $t \in \mathbf{R}$, where $C>0$ is an arbitrary constant, not depending on n.

Proof of Theorem 1.1. Without loss of generality, we assume that $a_{n i}=0$ for all $i>n$ and $\sup _{n \geq 1} E \xi_{n}^{2}=M<\infty$. For every $1 \leq a<b \leq n$ and $1 \leq u \leq b-a$, we have, after some manipulations,

$$
\begin{align*}
0 & \leq \sum_{i=a}^{b-u} a_{n i} \sum_{j=i+u}^{b} a_{n j} \operatorname{Cov}\left(\xi_{i}, \xi_{j}\right)^{-} \tag{2.1}\\
& \leq \sup _{k}\left(\sum_{j:|k-j| \geq u} \operatorname{Cov}\left(\xi_{k}, \xi_{j}\right)^{-}\right)\left(\sum_{i=a}^{b} a_{n i}^{2}\right) .
\end{align*}
$$

By the definition of LNQD, we also have, for every $1 \leq a \leq b \leq n$,

$$
\operatorname{Var}\left(\sum_{i=a}^{b} a_{n i} \xi_{i}\right) \leq M \sum_{i=a}^{b} a_{n i}^{2}
$$

We shall construct now a triangular array of random variables $\left\{Z_{n i}, 1 \leq\right.$ $i \leq n\}$ for which we shall make use of Lemma 2.1. Fix a small positive ε and find a positive integer $u=u_{\varepsilon}$ such that, for every $n \geq u+1$,

$$
\begin{align*}
0 & \leq\left(\sum_{i=1}^{n-u} a_{n i} \sum_{j=i+u}^{n} a_{n j} \operatorname{Cov}\left(\xi_{i}, \xi_{j}\right)^{-}\right) \tag{2.2}\\
& \leq \varepsilon
\end{align*}
$$

This is possible because of (2.1) and (1.6). Denote by $[x]$ the integer part of x, and define

$$
\begin{gathered}
K=\left[\frac{1}{\varepsilon}\right] \\
Y_{n j}=\sum_{i=u j+1}^{u(j+1)} a_{n i} \xi_{i}, \quad j=0,1, \ldots, \\
A_{j}=\left\{i: 2 K j \leq i<2 K j+K, \operatorname{Cov}\left(Y_{n i}, Y_{n, i+1}\right)^{-} \leq \frac{2}{K} \sum_{i=2 K j}^{2 K j+K} \operatorname{Var}\left(Y_{n i}\right)\right\} .
\end{gathered}
$$

Since $2 \operatorname{Cov}\left(Y_{n i}, Y_{n, i+1}\right)^{-} \leq \operatorname{Var}\left(Y_{n i}\right)+\operatorname{Var}\left(Y_{n, i+1}\right)$, we get that for every j the set A_{j} is not empty. Now we define the integers $m_{1}, m_{2}, \ldots, m_{n}$, recursively. Let $m_{0}=0$ and

$$
m_{j+1}=\min \left\{m: m>m_{j}, m \in A_{j}\right\}
$$

and define

$$
\begin{aligned}
Z_{n j} & =\sum_{i=m_{j}+1}^{m_{j+1}} Y_{n i}, \quad j=0,1, \ldots \\
\mathcal{D}_{j} & =\left\{u\left(m_{j}+1\right)+1, \ldots, u\left(m_{j+1}+1\right)\right\}
\end{aligned}
$$

We observe that

$$
Z_{n j}=\sum_{k \in \mathcal{D}_{j}} a_{n k} \xi_{k}, \quad j=0,1, \ldots
$$

By the definition of LNQD the random variables $\left\{Z_{n j}\right\}$ are LNQD. From the fact that $m_{j} \geq 2 K(j-1)$ and $m_{j+1} \leq K(2 j+1)$ every set \mathcal{D}_{j} contains no more than $3 K u$ elements and $m_{j+1} / m_{j} \rightarrow 1$ as $j \rightarrow \infty$. Hence, for every fixed positive ε by (1.2)-(1.5) the array $\left\{Z_{n i}: i=0,1, \ldots, n ; n \geq 1\right\}$ satisfies the Lindeberg condition, see Petrov [11, Theorem 22, p. 100], that is, $\left\{Z_{n j}\right\}$ satisfies

$$
\begin{equation*}
\sigma_{n}^{-1} \sum_{j=1}^{n} E Z_{n j}^{2} I\left(\left|Z_{n j}\right|>\varepsilon \sigma_{n}\right) \longrightarrow 0 \quad \text { as } \quad n \rightarrow \infty \tag{2.3}
\end{equation*}
$$

where $\sigma_{n}^{2}=\operatorname{Var}\left(\sum_{j=1}^{n} Z_{n j}\right)$.
We can observe that, by Lemma 2.1 and the construction,

$$
\begin{align*}
& \left|E \exp \left(i t \sum_{j=1}^{n} Z_{n j}\right)-\prod_{j=1}^{n} E \exp \left(i t Z_{n j}\right)\right| \tag{2.4}\\
& \leq C t^{2}\left|\left\{\operatorname{Var}\left(\sum_{j=1}^{n} Z_{n j}\right)-\sum_{j=1}^{n} \operatorname{Var}\left(Z_{n j}\right)\right\}\right| \\
& \leq C t^{2}\left\{2\left(\sum_{i=1}^{n} \operatorname{Cov}\left(Z_{n i}, Z_{n, i+1}\right)^{-}\right)+2\left(\sum_{i=1}^{n-2} \sum_{j=i+2}^{n} \operatorname{Cov}\left(Z_{n i}, Z_{n j}\right)^{-}\right)\right\}
\end{align*}
$$

$$
\begin{aligned}
& \leq C t^{2}\left[\left\{2 \sum_{j=1}^{n} \operatorname{Cov}\left(Y_{n, m_{j}}, Y_{n, m_{j+1}}\right)^{-}+2 \sum_{i=1}^{n-u} a_{n i} \sum_{j=i+u}^{n} a_{n j} \operatorname{Cov}\left(\xi_{i}, \xi_{j}\right)^{-}\right\}\right. \\
& \\
& \left.+\left\{2 \sum_{i=1}^{n-u} a_{n i} \sum_{j=i+u}^{n} a_{n j} \operatorname{Cov}\left(\xi_{i}, \xi_{j}\right)^{-}\right\}\right] \\
& =C t^{2}\left\{4 \sum_{i=1}^{n-u} a_{n i} \sum_{j=i+u}^{n} a_{n j} \operatorname{Cov}\left(\xi_{i}, \xi_{j}\right)^{-}+2 \sum_{j=1}^{n} \operatorname{Cov}\left(Y_{n, m_{j}}, Y_{n, m_{j}+1}\right)^{-}\right\} \\
& \leq C t^{2}\left\{4 \varepsilon+\frac{8}{K} \sum_{i=1}^{n} \operatorname{Var}\left(Y_{n i}\right)\right\} \\
& =C t^{2}\left\{4 \varepsilon+\frac{8}{K} \sum_{j=1}^{n} \operatorname{Var}\left(\sum_{i=u j+1}^{u(j+1)} a_{n_{i}} \xi_{i}\right)\right\} \\
& \leq C t^{2}\left\{4 \varepsilon+\frac{8 M}{K} \sum_{j=1}^{n} \sum_{i=u j+1}^{u(j+1)} a_{n_{i}} \xi_{i}\right\} \\
& \leq C_{1} t^{2} \varepsilon\left\{1+\sup \sum_{i=1}^{n} a_{n i}^{2}\right\} \\
& \leq C_{2} t^{2} \varepsilon \text { for every positive } \varepsilon .
\end{aligned}
$$

Therefore the problem is now reduced to the study of the central limit theorem of a decoupled sequence $\left\{\widetilde{Z}_{n j}\right\}$ of independent random variables such that, for each n and j, the variable $\widetilde{Z}_{n j}$ is distributed as $Z_{n j}$.

By (2.3) $\left\{\widetilde{Z}_{n j}\right\}$ also satisfies the Lindeberg condition, that is, $\left\{\widetilde{Z}_{n j}\right\}$ satisfies $\tilde{\sigma}_{n}^{-1} \sum_{j=1}^{n} E \widetilde{Z}_{n j}^{2} I\left(\left|\widetilde{Z}_{n j}\right|>\varepsilon \tilde{\sigma}_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$ where $\tilde{\sigma}_{n}^{2}=$ $\operatorname{Var}\left(\sum_{j=1}^{n} \widetilde{Z}_{n j}\right)$, and hence by [1, Theorem 7.2]

$$
\begin{equation*}
\tilde{\sigma}_{n}^{-1} \sum_{j=1}^{n} \widetilde{Z}_{n j} \xrightarrow{\mathcal{D}} N(0,1) \quad \text { as } \quad n \rightarrow \infty \tag{2.5}
\end{equation*}
$$

where $\tilde{\sigma}_{n}^{2}=\operatorname{Var}\left(\sum_{j=1}^{n} \widetilde{Z}_{n j}\right)$. It follows from (2.3), (2.4) and (2.5) that

$$
\begin{equation*}
\sigma_{n}^{-1} \sum_{j=1}^{n} Z_{n j} \xrightarrow{\mathcal{D}} N(0,1) \quad \text { as } \quad n \rightarrow \infty \tag{2.6}
\end{equation*}
$$

where $\sigma_{n}^{2}=\operatorname{Var}\left(\sum_{j=1}^{n} Z_{n j}\right)$, and now the proof is complete by (2.5), (2.6) and [1, Theorem 4.2].

Proof of Corollary 1.1. Let $A_{n i}=a_{n i} / \sigma_{n}$. Then we have

$$
\begin{gathered}
\max _{1 \leq i \leq n} A_{n i} \longrightarrow 0 \quad \text { as } \quad n \rightarrow \infty \\
\sup _{n} \sum_{i=1}^{n} A_{n i}^{2}<\infty \\
\operatorname{Var}\left(\sum_{i=1}^{n} A_{n i} \xi_{i}\right)=1
\end{gathered}
$$

Hence, by Theorem 1.1 the desired result (1.11) follows.
Proof of Theorem 1.2. First note that $\sum_{j} a_{j}^{2}<\infty$ and, without loss of generality, we can assume $\sup E \xi_{k}^{2}=1$. Let

$$
S_{n}=\sum_{k=1}^{n} X_{k}=\sum_{j=-\infty}^{\infty}\left(\sum_{k=1}^{n} a_{k+j}\right) \xi_{j}
$$

In order to apply Theorem 1.1, fix W_{n} such that $\sum_{|j|>W_{n}} a_{j}^{2}<n^{-3}$, and take $k_{n}=W_{n}+n$. Then

$$
\frac{S_{n}}{\sigma_{n}}=\sum_{|j| \leq k_{n}}\left(\sum_{k=1}^{n} a_{k+j}\right) \frac{\xi_{j}}{\sigma_{n}}+\sum_{|j|>k_{n}}\left(\sum_{k=1}^{n} a_{k+j}\right) \frac{\xi_{j}}{\sigma_{n}}=T_{n}+U_{n}
$$

By the Cauchy-Schwarz inequality and the assumptions we have the following estimate

$$
\begin{aligned}
\operatorname{Var}\left(U_{n}\right) & \leq \sum_{|j|>k_{n}} \operatorname{Var}\left(\sum_{k=1}^{n} a_{k+j} \frac{\xi_{j}}{\sigma_{n}}\right) \\
& \leq \sum_{|j|>k_{n}}\left(\sum_{k=1}^{n} a_{k+j} / \sigma_{n}\right)^{2} E \xi_{j}^{2} \leq n \sigma_{n}^{-2} \sum_{|j|>k_{n}}\left(\sum_{k=1}^{n} a_{k+j}^{2}\right) \\
& \leq n^{2} \sigma_{n}^{-2} \sum_{|j|>k_{n}-n} a_{j}^{2} \leq n^{2} \sigma_{n}^{-2} \sum_{|j|>W_{n}} a_{j}^{2} \\
& \leq n^{-1} \sigma_{n}^{-2} \longrightarrow 0 \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

which yields

$$
\begin{equation*}
U_{n} \longrightarrow 0 \text { in probability as } n \rightarrow \infty \tag{2.7}
\end{equation*}
$$

By [1, Theorem 4.1], it remains to prove that $T_{n} \xrightarrow{\mathcal{D}} N(0,1)$. Put

$$
\begin{equation*}
a_{n k}=\frac{\sum_{j=1}^{n} a_{k+j}}{\sigma_{n}} \tag{2.8}
\end{equation*}
$$

From the assumption $\sum_{j} a_{j}<\infty\left(a_{j}>0\right),(1.10)$ and (2.8) we obtain

$$
\begin{gathered}
\frac{\sup _{-\infty<k<\infty} \sum_{j=1}^{n} a_{k+j}}{\sigma_{n}} \longrightarrow 0 \quad \text { as } \quad n \rightarrow \infty \\
\max _{1 \leq k \leq n} a_{n_{k}} \longrightarrow 0 \quad \text { as } \quad n \rightarrow \infty \\
\sup _{n} \sum_{k=1}^{n} a_{n k}^{2}<\infty
\end{gathered}
$$

Hence, by Theorem 1.1,

$$
\begin{equation*}
T_{n} \xrightarrow{\mathcal{D}} N(0,1) \tag{2.9}
\end{equation*}
$$

and from (2.7) and (2.9) the desired result (1.10) follows.

REFERENCES

1. P. Billingsley, Convergence of probability measures, Wiley, New York, 1968.
2. T. Birkel, A functional central limit theorem for positively dependent random variables, J. Multivariate Anal. 44 (1993), 314-320.
3. J.T. Cox and G. Grimmett, Central limit theorems for associated random variables and the percolation model, Ann. Probab. 12 (1984), 514-528.
4. J. Esary, F. Proschan and D. Walkup, Association of random variables with applications, Ann. Math. Statist. 38 (1967), 1466-1474.
5. I.A. Ibragimov and Yu.V. Linnik, Independent and stationary sequences of random variables, Volters, Groningen, 1971.
6. K. Joag-Dev and F. Proschan, Negative association of random variables with applications, Ann. Statist. 11 (1983), 1037-1041.
7. T.S. Kim and J.L. Baek, A central limit theorem for stationary linear processes generated by linearly positive quadrant dependent process, Statist. Prob. Letters 5 (2001), 299-305.
8. E.L. Lehmann, Some concepts of dependence, Ann. Math. Statist. 37 (1966), 1137-1153.
9. C.M. Newman, Normal fluctuations and the FKG inequalities, Comm. Math. Phys. 91 (1980), 75-80.
10. -, Asymptotic independence and limit theorems for positively and negatively dependent random variables, in Stochastics and probability (Y.L. Tong, ed.), vol. 5, Inst. Math. Statist., Hayward, CA, 1984, pp. 127-140.
11. V.V. Petrov, Sums of independent random variables, Berlin, 1975.

Department of Mathematics and Institute of Basic Science, WonKwang University, Jeonbuk, 570-749, Korea
E-mail address: songhack@wonkwang.ac.kr
Department of Computer Science, ChungWoon University, Chungnam, 351-701, Korea
E-mail address: rdh@mail.chungwoon.ac.kr
Department of Mathematics and Institute of Basic Science, WonKwang
University, Jeonbuk, 570-749, Korea
E-mail address: starkim@wonkwang.ac.kr
Department of Mathematics, Gyeongsang University, Kyungnam, 660701, Korea
E-mail address: mathykc@nongae.gsnu.ac.kr

[^0]: AMS Mathematics Subject Classification. Primary 60F05, 60G10.
 Key words and phrases. Central limit theorem, linear process, linearly negative quadrant dependent, uniformly integrable, triangular array.

 This work was supported by KOSEF(R01-2005-000-10696-0), the KRF Grant funded by Korea Government (KRF-2006-353-C00006) and the Chung Woon University grant in 2007.

 Received by the editors on March 11, 2004, and in revised form on July 1, 2004.

