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DOMAINS OF DIMENSION 1 WITH
INFINITELY MANY SINGULAR MAXIMAL IDEALS

WILLIAM J. HEINZER AND LAWRENCE S. LEVY

ABSTRACT. Let Λ be a Noetherian domain of dimension
1 with normalization Γ, and let m range through the maximal
ideals of Λ. We study the set of possible factorizations of Γm
into products of maximal ideals of Γ, in the situation where
infinitely many such m can be “singular,” that is, Λm �= Γm .

1. Introduction. Let Λ be a Noetherian domain of (Krull)
dimension 1 with normalization Γ, necessarily a Dedekind domain.
Then, for each maximal ideal m of Λ, we have a factorization Γm =∏g

j=1 m
ej

j into a product of powers of distinct maximal ideals mj of Γ.
The integer ej is sometimes called the ramification degree of mj (over
m or over Λ). Let fj denote the residue degree of mj (over m or over
Λ), that is, the dimension of Γ/Γmj considered as a vector space over
Λ/m. Then we have the efg-relation

(1.0.1)
g∑

i=1

ejfj = λΛ(Γ/Γm)

where λΛ(. . . ) denotes the composition length of the Λ-module (. . . ).

In the classical situation where Γ is module-finite over Λ the
localization Λm equals Γm for almost all m, i.e., for all but finitely
many m. In other words, the efg-relation associated with almost every
maximal ideal m of Λ is trivial (ej = fj = g = 1).

Suppose now that Γ is not module-finite over Λ. Then infinitely many
maximal ideals of Λ can have nontrivial efg-relations. An instance of
this was given by Hochster [2]. Our main result is that there is no
restriction whatsoever on the efg-relations that can occur in this non-
finite situation (Theorem 3.2). Note that each individual efg-relation
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(1.0.1) is local data, that is, it is determined by Λm. Our proof is in
three parts. In Section 2 we describe a method of building an integral
domain with infinitely many suitably specified localizations, and an
easy way of obtaining a local ring that realizes a single efg-relation.
Then we apply this, proving our main result (Theorem 3.2).

Original motivation. A series of papers by Klingler and Levy [4 6]
contains the description of the category of finitely generated Λ-modules
(including its direct-sum relations), where Λ is any reduced Noetherian
ring not of wild representation type. They call such rings Λ “Dedekind-
like” because they generalize Dedekind domains. These rings form
a rather small class of rings of dimension 1. However, Dedekind-
like domains seem to be the only Noetherian domains whose module
category has been described since Steinitz gave his description in
the case of (what are now called) Dedekind domains in [8 (1912)].
The localizations of Dedekind-like rings Λ at maximal ideals always
have finite normalization, but Klingler and Levy could not determine
whether this is true of Λ itself.

We show that the answer is “not necessarily.” In fact, we show
that the set of singular maximal ideals of Λ can have arbitrarily large
cardinality (Section 4).

Throughout this paper, ring means “commutative ring” and local
ring means “Noetherian local ring”.

2. Specifying infinitely many localizations.

Theorem 2.1. Let K be a field and I a nonempty set. For each
i ∈ I, let (Λi, n(i)) be a local integral domain of dimension 1 whose
quotient field Q(Λi) equals K. Suppose:

(i) (“Finite character”). Every nonzero element of K is a unit in
almost all Λi; and

(ii) (“Independence”). For every pair of distinct indices h �= j there
exist elements x ∈ Λh and y ∈ Λj such that : (a) x and y are nonunits
in Λh and Λj respectively ; (b) x is a unit in Λi when i �= h, and y is a
unit in Λi when i �= j; (c) x + y is a unit in every Λi.
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Then the ring Λ = ∩i Λi is Noetherian of dimension 1, its distinct
maximal ideals are m(i) = n(i) ∩ Λ, and each Λi = Λm(i) (localization
at m(i)).

Proof. We call a multiplicatively closed set of a ring proper if it does
not contain 0.

Claim 1. For any proper multiplicatively closed subset S of any
local domain R of dimension 1, the localization RS equals Q(R) if S
contains a nonunit of R, and equals R otherwise. (This holds because
localizations are determined by the prime ideals that survive.)

Claim 2. For any proper multiplicatively closed subset S of Λ we
have ΛS = ∩i (Λi)S.

To prove the nontrivial inclusion (⊇), take any nonzero x ∈ ∩i (Λi)S .
Then for each i there is an expression x = λi/si (λi ∈ Λi, si ∈ S). In
fact, by the finite character hypothesis, x is a unit in almost every Λi

and hence we can take each such si = 1. Let s be the product of the
remaining finite number of si. Then sx ∈ ∩i Λi and therefore x ∈ ΛS .

Notation. For any subset J⊆I let ΛJ = ∩i∈J Λi. We adopt the
convention that Λ∅ = K, where ∅ denotes the empty set.

Claim 3. Let S be a proper multiplicatively closed subset of Λ and
set H = {h ∈ I | S contains a nonunit of Λh}. Then, in the above
notation, ΛS = Λ(I−H). Moreover ΛH �= ΛJ when H �= J .

The first assertion follows from Claims 2 and 1. In proving the second
assertion, we may assume that H contains an index h that is not in
J . By independence conditions (a) and (b), there is a nonunit x of Λh

that becomes a unit in every other Λi. Then x ∈ Λ, x is a nonunit in
ΛH but x is a unit in ΛJ .
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Claim 4. Q(Λ) = K. Let S be the set of all nonzero elements of
Λ, so that Q(Λ) = ΛS . By independence condition (a), S contains a
nonunit of every Λi. Therefore, in the notation of Claim 3, we have
ΛS = Λ∅ = K.

Claim 5. ΛJ is not a local ring if J contains more than one element.

Let h, j be distinct elements of J , and pick x, y according to indepen-
dence conditions (a) and (c). Then x and y are nonunits of Λ whose
sum is a unit, hence ΛJ is not local.

Claim 6. Λ has dimension 1, its distinct maximal ideals are the ideals
m(i) = n(i) ∩ Λ, and Λm(i) = Λi.

Let m be any maximal ideal of Λ. By Claim 3 with S = Λ − m,
we have Λm = ΛJ for some J , and by Claim 5, J consists of a single
element. Say Λm = Λj . Since Λj has dimension 1 we conclude that
every maximal ideal of Λ has height 1. In particular Λ has dimension 1
as claimed; and the prime ideal m(i), which contains m, must equal m.
Also, since every maximal ideal of Λ has height 1, each prime ideal m(i)
of Λ is maximal; and hence the set of maximal ideals of Λ coincides
with the set of ideals m(i).

It remains to prove that i �= j implies m(i) �= m(j). This follows from
independence condition (b).

Claim 7. Λ is Noetherian. It suffices to show that, for every nonzero
x ∈ Λ, the Λ-module Λ/Λx has finite length [3, Theorem 90]. By
Claim 6 the localizations of Λ/Λx at the maximal ideals of Λ are the
Λi-modules Λi/Λix. Almost all of these are zero by our finite-character
hypothesis. The remaining finite number of them have finite length
since every Λi is Noetherian of dimension 1. Since every Λ-module
is contained in the full direct product of its localizations at maximal
ideals, this proves that the composition length of Λ/Λx is at most the
sum of the composition lengths of its nonzero localizations Λi/Λix, and
hence is finite.
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The next lemma gives a realization of a single efg-relation. Suitable
choices of the field k and localizations Υp of the ring Υ provided by
this lemma will then provide the local rings Λi to use in Theorem 2.1.

Lemma 2.2. Let k be a field, p1, . . . , pg distinct monic irreducible
polynomials in k[x], pj = k[x]·pj, and e1, . . . , eg positive integers. Let
p =

∏
j p

ej

j and Υ = k + k[x]·p. Then Υ is Noetherian, Q(Υ) = k(x)
and the following properties hold.

(i) p =
∏g

j=1 p
ej

j is a maximal ideal of Υ (and an ideal of k[x]).

(ii) Each pj has residue degree fj = deg (pj) over p.

(iii) k[x] is a finitely generated Υ-module and is the normalization of
Υ.

Proof. Redefine Υ to be the pullback of the following “conductor
square.”

(2.2.1)

Υ

�

�
incl Ω = k[x]

�

(ker(ν) = Ωp)

k �

diag
Ω =

⊕
i
k[x]/(pei

i )

In more detail, the upper horizontal arrow of this commutative square
denotes inclusion, the lower horizontal arrow denotes the “diagonal”
map, and the right-hand vertical map ν denotes a surjective ring
homomorphism whose kernel is as shown. Let Υ be the pullback of
these maps, that is, the inverse image of k in Ω. The left-hand vertical
map denotes the restriction of ν to Υ. Thus both vertical maps are
surjections. We have Υ = k + Ωp by (2.2.1).

We claim that Υ is Noetherian. By Eakin’s theorem [1] and the fact
that the ring k[x] is Noetherian, it suffices to show that the Υ-module
k[x] is finitely generated; and for this it suffices to show that the Υ-
module k[x]/Υ is finitely generated. But by (2.2.1), this module is
isomorphic to Ω/k which is a finitely generated Υ-module because it is
a finite-dimensional k-vector space.
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We have Q(Υ) = k(x) because x = xp/p ∈ Q(Υ). Since Ω is a
finitely generated Υ-module, Ω is integral over Υ; and since Ω is its
own normalization, we conclude that Ω is the normalization of Υ.

The ideal p = Ωp of Ω defined in statement (i) equals ker(Υ → k)
in (2.2.1), and is therefore an ideal of Υ, a maximal ideal since k is a
field. Statement (ii) of the lemma is now clear.

3. Specifying efg-relations.

Lemma 3.1. Let p ∈ k[x] be a monic irreducible polynomial over an
infinite field k, and let Y be a set of indeterminates over k(x). Then p
remains irreducible over the field k(Y ).

Proof. Suppose that there is a proper factorization p = f1f2 in
k(Y )[x]. We may suppose that each f is monic and x actually appears
in it. Consider the elements of k(Y ) that occur as coefficients of the
powers of x that occur in f1 and f2. They can be written as fractions
s/t with s, t ∈ k[Y ]. Since k is an infinite field there must be at least
one substitution in k for the indeterminates Y such that every t is
nonzero. Making that substitution into the equation p = f1f2 then
yields a proper factorization of p in k[x], a contradiction that proves
the lemma.

A classical reference for Lemma 3.1 is [9, Theorem 35, p. 223]. The
result also holds in the case where the field k is finite.

The next proof uses the fact that “normalizations localize”; that
is, if Λ is a reduced Noetherian ring with normalization Γ, then the
normalization of Λm is Γm. This is a consequence, for example, of
Serre’s characterization of normal rings [7, Theorem 23.8].

Theorem 3.2. Let I be an index set, and for each i ∈ I let a
numerical expression of the following form be given

(3.2.1)
g(i)∑

j=1

e(i)jf(i)j

where each e, f, g is a positive integer. Then there is a Noetherian
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domain Λ of dimension 1 whose maximal ideals m(i) are parameter-
ized by I and satisfy the following efg-properties with respect to the
normalization Γ of Λ.

(i) For each i there is a factorization Γ·m(i) =
∏gj

j=1 m(i)e(i)j

j , where
the m(i)j are distinct maximal ideals of Γ.

(ii) The residue degree of each m(i)j equals f(i)j.

Proof. Let F be any infinite field that has irreducible polynomials
of all degrees, and hence infinitely many irreducible polynomials of all
degrees, e.g., the field of rational numbers. For each index i ∈ I, we
want to define a local domain Λi whose maximal ideal n(i) realizes
the given formal efg-expression (3.2.1) as the actual efg-relation (1.0.1)
associated with n(i). We do this in such a way that the set of maximal
ideals of the ring Λ provided by Theorem 2.1 is parameterized by I and
has the specified set of efg-relations.

Choose a set of indeterminates X = {xi | i ∈ I} over F , and let the
field K in Theorem 2.1 be F (X).

Temporarily fix i. For each j in the formal efg-expression (3.2.1)
corresponding to this i, choose a distinct monic irreducible polynomial
p(i)j of degree f(i)j in the ring F [xi]. Let Ki denote the field obtained
by adjoining every xk other than xi to F . By Lemma 3.1 each p(i)j

remains irreducible in Ki[xi].

Note that Q(Ki[xi]) = K for all i. We continue with the temporarily
fixed i.

Apply Lemma 2.2 with k replaced by the field Ki (over which each
p(i)j is irreducible). Note that p(i) =

∏
j p(i)e(i)j

j is a polynomial in xi

over the smaller field F . Consider the ring Υ, which we now call Υ(i),
furnished by Lemma 2.2. Then the normalization and quotient field of
Υ(i) are Ki[Xi] and Q(Ki[xi]) = K, respectively. Also, by this lemma,
there is maximal ideal p(i) of Υ(i) with a factorization:

(3.2.2) p(i) =
∏

j

p(i)e(i)j

j

into a product of powers of distinct maximal ideals p(i)j of Ki[xi] and
with respective residue degrees f(i)j .
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Let Λi = Υ(i)p(i), a local domain with maximal ideal n(i) = p(i)p(i),
quotient field Q(Ki[xi]) = K, and normalization Ki[xi]p(i). Localizing
(3.2.2.) at p(i) yields the factorization

(3.2.3) n(i) =
∏

j

n(i)e(i)j

j

into a product of powers of distinct maximal ideals of the normalization
of Λi, again with respective residue degrees f(i)j .

In order to apply Theorem 2.1, we now check its compatibility
conditions.

Finite character. This holds because any individual polynomial
involves only finitely many indeterminates xi.

Independence (a) and (b). For each i the polynomial p(i) is a
polynomial in xi alone and is therefore a nonunit in Λi. It is a unit in
every other Λj because p(i) ∈ Kj⊆Υ(j)⊆Λj .

Independence (c). Choose distinct indices h, j. Then p(h) and p(j)
are nonunits in Λh and Λj , respectively, and units elsewhere, as already
noted. Consider p(h)+p(j). This is a unit in the local ring Λh because
p(h) is a nonunit there and p(j) is a unit there. Similarly, p(h)+p(j) is
a unit in Λj . And p(h) + p(j) is a unit in every other Λi since xi does
not appear in p(h) + p(j).

Theorem 2.1 now yields the Noetherian domain Λ = ∩iΛi of dimen-
sion 1 whose distinct maximal ideals are the ideals m(i) = n(i)∩Λ and
such that each Λi = Λm(i).

The normalization Γ of Λ is a Dedekind domain since Λ has dimen-
sion 1, and therefore each ideal Γ·m(i) of Γ has a unique factorization
into a product of powers of distinct maximal ideals of Γ. Since nor-
malizations localize, localizing this factorization of Γ·m(i) yields the
unique factorization of n(i) in (3.2.3) and shows that our factorization
of Γ·m(i) is as described in statements (i) and (ii) of the theorem we
have just proved.

Addendum 3.3. For use in the next section, we show that the
ring Λ constructed in Theorem 3.2 has the following two additional
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properties. We make no claim that these properties are consequences
of the theorem itself.

(i) For every maximal ideal m of Λ the normalization Γm of Λm is a
finitely generated Λm-module.

(ii) For every maximal ideal m of Γ, the ideal mm of Λm is also an
ideal of Γm.

Proof. As observed at the end of the proof of the Theorem, every
maximal ideal of Λ has the form m(i) = n(i) ∩ Λ where n(i) is the
maximal ideal of the local ring Λi = Λm(i).

Let Υ(i) be the ring defined above (3.2.2). This ring was obtained
from Lemma 2.2, which states that the normalization k[x] of Υ = Υ(i)
is a finitely generated Υ-module and p = p(i) is a maximal ideal of Υ
as well as an ideal of k[x].

Equation (3.2.3) was obtained by localizing Υ(i) and (3.2.2) at p(i).
Therefore the normalization of Υ(i)p(i) is a finitely generated Υ(i)p(i)-
module, and the maximal ideal n(i) = p(i)p(i) of Υ(i)p(i) is also an
ideal of the normalization of Υ(i)p(i). Since Λi = Υ(i)p(i) (defined
above (3.2.3)), the proof of the addendum is complete.

4. Dedekind-like domains. Dedekind-like rings are defined in [6,
Section 10]. For some natural examples of these rings see [6, Examples
2.2]. For the purposes of this section, it is more useful to take as our
definition the following characterization, given in [6, Corollary 10.7].

Lemma 4.1. A Noetherian ring Λ is Dedekind-like if and only if all
localizations at maximal ideals are Dedekind-like.

We therefore need to define “local Dedekind-like ring.” The notation
μΛ(M) denotes the minimum number of elements needed to generate
a Λ-module M . The next definition comes from [4, Definition 2.5].

Definition 4.2. Let (Λ, m, k) be a local ring. We call Λ a Dedekind-
like ring if Λ is reduced and its normalization Γ has the following
properties: Γ is a direct sum of principal ideal domains (necessarily
semi-local), m = rad (Γ) (the Jacobson radical of Γ) and μΛ(Γ) ≤ 2.
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We do not consider fields to be principal ideal domains. Therefore Γ
and Λ have dimension 1.

Next we give the connection of local Dedekind-like rings with efg-
properties.

Lemma 4.3. Let (Λ, m, k) be a local domain with normalization Γ.
Then Λ is Dedekind-like if and only if m = rad (Γ) �= 0 and one of the
following conditions holds.

(U) m is the unique maximal ideal of Γ, and Γ/m is a two-
dimensional field extension of k = mΛ/m. (Here we call Λ “unsplit.”)

(S) m is the product of two distinct maximal ideals of Γ, each with
residue field k. (Here we call Λ “nonstrictly split.”)

(N) Λ = Γ. (Here Λ is a DVR.)

Proof. Suppose that Λ is Dedekind-like. Since m is an ideal of Γ as
well as Λ, and μΛ(Γ) ≤ 2, the k-vector space Γ/m must have dimension
≤ 2. In addition, Γ/m = Γ/rad (Γ), a reduced ring. Therefore, the
ideal m of Γ is the product of distinct maximal ideals, at most two such
ideals since the k-dimension of Γ/m is ≤ 2.

If the dimension of Γ/m equals 2, then the only possibilities are those
in conditions (U) and (S). If the dimension equals 1, then (N) holds.

Conversely, suppose that the stated conditions hold. For any nonzero
element x ∈ m we have xΓ⊆Λ. Since the ring Λ is Noetherian, this
shows that Γ is a finitely generated Λ-module. In any of the three
situations (U), (S), or (N) the k-dimension of Γ/m is ≤ 2; and therefore
μΛ(Γ) ≤ 2 by Nakayama’s lemma. Therefore Λ is Dedekind-like.

There is a fourth type of local Dedekind-like ring, called “strictly
split.” However such rings are never integral domains, and so do not
interest us here. (See [4, Definition 2.5].)

We call a maximal ideal m of a Dedekind-like domain Λ unsplit, non-
strictly split or nonsingular according to whether the local Dedekind-
like ring Λm is respectively unsplit, nonstrictly split or a DVR.
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We now show that a Dedekind-like domain can have arbitrarily many
maximal ideals of each of the three types.

Theorem 4.4. Let a set I be the union of three disjoint subsets
I = U ∪S∪N (some, but not all of which, can be empty). Then there is
a Dedekind-like domain Λ whose maximal ideals m(i) are paramaterized
by I and such that each m(i) is unsplit, nonstrictly split or nonsingular
according as i is an element of U , S, or N respectively.

Proof. Let Γ be the normalization of Λ. By Theorem 3.2 there is a
Noetherian domain Λ of dimension 1 whose maximal ideals m(i) are
paramaterized by I, and the following efg-properties hold.

(4.4.1) (U) If i ∈ U , then Γ·m(i) is a maximal ideal of Γ and has residue
degree 2 over Λ; (S) If i ∈ S, then Γ·m(i) is a product of two distinct
maximal ideals of Γ, each with residue degree 1 over Λ; (N) If i ∈ N ,
then Γ·m(i) is a maximal ideal with residue degree 1 over Λ.

Moreover, every Γm is the normalization of Λm (see the paragraph
before Theorem 3.2) and, by Addendum 3.3, the construction can be
carried out so that, for every maximal ideal m of Λ, Γm is a finitely
generated Λm-module and mm is an ideal of Γm.

To complete the proof, we show that Λ is Dedekind-like. By
Lemma 4.1, we may assume that Λ is a local domain, (Λ, m, k). Since
Λ is a local domain of dimension 1, its normalization Γ is a semi-local
principal ideal domain, and every maximal ideal of Γ lies over m, and
therefore must appear in the factorization of Γm into a product of max-
imal ideals of Γ. Therefore, by properties (4.4.1), Γm is the product
of the one or two maximal ideals of Γ. Also, Γm = m since m is also
an ideal of Γ. We conclude that m = rad (Γ) �= 0. It follows from
Lemma 4.3 that Λ is Dedekind-like and its sets of unsplit, strictly split,
and nonsingular maximal ideals are indexed by U , S and N , respec-
tively.
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