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ON A STATIONARY, TRIPLE-WISE INDEPENDENT,
ABSOLUTELY REGULAR COUNTEREXAMPLE TO

THE CENTRAL LIMIT THEOREM

RICHARD C. BRADLEY

ABSTRACT. An earlier paper gave a construction of a
strictly stationary, finite-state, nondegenerate random se-
quence which satisfies pairwise independence and absolute
regularity but fails to satisfy a central limit theorem. Here
it will be shown that random sequence is in fact triple-wise
independent (though not quadruple-wise independent).

1. Introduction. Etemadi [7] proved the strong law of large num-
bers for sequences of pairwise independent, identically distributed ran-
dom variables with finite absolute first moment. Janson [9] constructed
several classes of (nondegenerate) strictly stationary sequences of pair-
wise independent random variables with finite second moments such
that the CLT (central limit theorem) fails to hold. Subsequently, the
author [2] constructed such an example with the additional property
of absolute regularity (defined below). For the examples in those two
papers, as well as other examples of pairwise independent sequences,
Cuesta and Matrán [4] examined the behavior of the partial sums fur-
ther, e.g., in connection with the law of the iterated logarithm. For
an arbitrary integer N ≥ 3, Pruss [12] constructed a (not strictly sta-
tionary) sequence of N -tuple-wise independent, identically distributed
random variables with finite second moment such that the CLT fails
to hold. In that paper, for a given N ≥ 3, the existence of such exam-
ples that are also strictly stationary was left as an open question. For
N = 3, the answer is affirmative. The purpose of this note is to show
that the example in [2] alluded to above is triple-wise independent.

Suppose X := (Xk, k ∈ Z) is a strictly stationary sequence of random
variables on a probability space (Ω,F , P ). For −∞ ≤ j ≤ l ≤ ∞, let F l

j

denote the σ-field (⊂ F) of events generated by the random variables
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Xk, j ≤ k ≤ l, k ∈ Z. For any two σ-fields A and B ⊂ F , define the
following two measures of dependence:

α(A,B) := sup
A∈A,B∈B

|P (A ∩ B) − P (A)P (B)| ;

and

β(A,B) := sup
1
2

I∑
i=1

J∑
j=1

|P (Ai ∩ Bj) − P (Ai)P (Bj)| ,

where the latter supremum is taken over all pairs of partitions {A1, . . . ,
AI} and {B1, . . . , BJ} of Ω such that Ai ∈ A for each i and Bj ∈ B
for each j. For the given strictly stationary sequence X, define for each
positive integer n the dependence coefficients

α(n) := α(F0
−∞,F∞

n )

and

β(n) := β(F0
−∞,F∞

n ).

As a consequence of strict stationarity, for every n ≥ 1 and every
j ∈ Z, α(n) = α(Fj

−∞, F∞
j+n) and β(n) = β(Fj

−∞, F∞
j+n). The strictly

stationary sequence X is said to be “strongly mixing” (or “α-mixing”)
[13] if α(n) → 0 as n → ∞; and it is “absolutely regular” (or “β-
mixing”) [14] if β(n) → 0 as n → ∞. Obviously absolute regularity
implies strong mixing.

For each n ≥ 1, define the partial sum Sn := X1 + X2 + · · · + Xn.

Here is our main result:

Theorem 1. There exists a strictly stationary sequence X :=
(Xk, k ∈ Z) of random variables with the following properties:

(A) The random variables Xk take just the three values −1, 0 and 1,
with P (X0 = −1) = P (X0 = 1) = 1/4 and P (X0 = 0) = 1/2.

(B) For every choice of three distinct integers i, j and k, the random
variables Xi, Xj and Xk are independent.

(C) The sequence X satisfies absolute regularity with mixing rate
β(n) = O(1/n) as n → ∞.
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(D) One has that infn≥1 P (Sn = 0) > 0.

(E) The family of distributions of the partial sums (Sn, n ≥ 1) is
tight.

The author [2, Theorem 1] verified Theorem 1 except that, in prop-
erty (B), only pairwise independence was verified. It turns out that the
random sequence X := (Xk, k ∈ Z) constructed in [2] for that theo-
rem satisfies triple-wise independence, as stated in property (B) here.
That will be shown in Section 3 below. As a key preliminary step, it
will be shown in Section 2 that a strictly stationary, two-state, pairwise
independent, ergodic counterexample used in [2] is in fact triple-wise
independent.

In Theorem 1, the mixing rate in (C) was shown in [2] with an
adaptation of mixing-rate calculations of Davydov [5]. It cannot be
replaced by o(1/n); see the CLT’s in [10, Corollary 1.1(ii)] or [3,
Theorem 10.3]. Properties (D) and (E) were adapted from the example
of Herrndorf [8] (in which the random variables are uncorrelated).

It seems to still be an open question whether for a nondegenerate
strictly stationary sequence X := (Xk, k ∈ Z) with finite second
moments, quadruple-wise independence implies the CLT. However,
under the additional assumption of strong mixing, the CLT does hold.
That is a special case of a well-known standard CLT under strong
mixing given, e.g., in [6, Theorem 3], [11] or [3, Theorem 1.19]. The
main task is, after the random variables are centered, to show that
the family (S2

n/n, n ≥ 1) is uniformly integrable. To accomplish
that, one can truncate the Xk’s at an arbitrarily high level, center
the truncated random variables, and then apply a well known bound
on fourth moments of sums of bounded random variables. (See, e.g.,
Billingsley [1, p. 85, eq. (6.2)]. The standard argument there uses just
quadruple-wise independence.)

As a consequence, in Theorem 1, property (B) cannot be strengthened
to quadruple-wise independence. (In particular, as one can also see with
a direct, tedious calculation, the sequence X constructed here as in [2]
for Theorem 1 fails to satisfy quadruple-wise independence.)
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2. Preliminaries: a two-state sequence. Throughout, our
probability space is (Ω,F , P ). Let us repeat here the construction
in [2, p. 3, Definition 2.1].

Definition 2.1. (a) Let S denote the set of all ordered pairs (t, u)
such that

t ∈ {±2j , j ∈ N} and u ∈ {0, 1, 2, . . . , |t| − 1}.
(The first set is {±2,±4,±8,±16, . . . }; the letter N denotes the set of
all positive integers.)

(b) Let μ denote the probability measure on S defined by μ({(t, u)}) =
1/(2t2) for (t, u) ∈ S.

(c) Let V := (Vk, k ∈ Z), with Vk := (Tk, Uk), k ∈ Z, be a strictly
stationary Markov chain with state space S, with invariant marginal
probability measure μ, and with one-step transition probabilities (con-
sistent with μ) given by the following equations:

P (V1 = (t, |t| − 1)|V0 = (T, 0)) = 3/(2t2)
∀ t, T ∈ {±2,±4,±8,±16, . . . };

P (V1 = (t, u − 1)|V0 = (t, u)) = 1
∀ t = ±2,±4,±8, . . . , ∀u = 1, 2, . . . , |t| − 1;

P (V1 = s1|V0 = s0) = 0
for all other pairs of states s0, s1 ∈ S.

As a trivial technicality, we assume that for every k ∈ Z and every
ω ∈ Ω, the ordered pair (Vk, Vk+1)(ω) is either ((T, 0), (t, |t| − 1)) for
some numbers T, t ∈ {±2,±4,±8, . . . } or else ((t, u), (t, u−1)) for some
t ∈ {±2,±4,±8, . . . }, u ∈ {1, 2, . . . , |t| − 1}.

(d) Define the function f : S → {−1, 1} as follows:

f((t, u)) :=

⎧⎪⎪⎨
⎪⎪⎩

1 if t ∈ {2, 4, 8, . . . } and t/2 ≤ u < t

−1 if t ∈ {2, 4, 8, . . . } and 0 ≤ u < t/2
−1 if t ∈ {−2,−4,−8, . . . } and |t|/2 ≤ u < |t|
1 if t ∈ {−2,−4,−8, . . . } and 0 ≤ u < |t|/2.
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(e) Define the (strictly stationary) sequence W := (Wk, k ∈ Z) as
follows: for all k ∈ Z,

Wk = f(Vk).

Remark 2.2. As was noted in [2, Lemmas 2.4 and 2.6], the random
variables Wk, k ∈ Z are pairwise independent, and for all k ∈ Z,

(2.1) P (Wk = 1) = P (Wk = −1) = 1/2.

That and the following definitions and observations will be useful:

(a) For any pair of integers I < J , define the event

(2.2)

D(I, J) := {UI = UJ = 0 and Uk 
= 0 ∀ k ∈ {I + 1, I + 2, . . . , J − 1}}

(with D(I, I +1) := {UI = UI+1 = 0}). Then by Definition 2.1 (c), the
event D(I, J) is nonempty only if J − I ∈ {2, 4, 8, 16, . . . }. That fact
plays a central role throughout Section 2.

(b) As was noted in [2, equation (2.1)], P (U0 = 0) = 1/3.

(c) From [2, Lemma 2.3] and strict stationarity, one has that if I ∈ Z,
A ∈ σ(Vk, k ≤ I), B ∈ σ(Vk, k ≥ I+1) and P (A∩{UI = 0}) > 0, then
P (B|A ∩ {UI = 0}) = P (B|UI = 0). Thus for a given I ∈ Z, the “one-
sided” Markov chains (VI , VI−1, VI−2, . . . ) and (VI+1, VI+2, VI+3, . . . )
are conditionally independent given {UI = 0}.

(Here and below, the notation σ(. . . ) means the σ-field generated by
(. . . ).)

(d) By (c) above and Definition 2.1 (c), if I < J are integers and
J − I ∈ {2, 4, 8, 16, . . . }, then

P (D(I, J)|UI = 0) = P (VI+1 = (J − I, J − I − 1)|UI = 0)
+ P (VI+1 = (−(J − I), J − I − 1) | UI = 0)

and each term in the right-hand side is 3/[2(J − I)2]. Hence by (b)
above and a simple calculation, if I < J and J − I ∈ {2, 4, 8, 16, . . . },
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then

(2.3) P (D(I, J)) = 1/(J − I)2,

and P (VI+1 = (z(J − I), J − I − 1) | D(I, J)) = 1/2 for z ∈ {−1, 1}.
(e) From that last equality and Definition 2.1 (c), (d) and (e), if

I < J and J − I ∈ {2, 4, 8, 16, . . . }, then for any ω ∈ D(I, J),
(WI+1, WI+2, . . . , WJ )(ω) is either (1, . . . , 1,−1, . . . ,−1) or (−1, . . . ,
−1, 1, . . . , 1), with (J − I)/2 1’s and (J − I)/2 −1’s in either case; and,
in fact,

P ((WI+1, . . . , WJ) = (1, . . . , 1,−1, . . . ,−1) | D(I, J)) = 1/2

(2.4)

and

P ((WI+1, . . . , WJ) = (−1, . . . ,−1, 1, . . . , 1) | D(I, J)) = 1/2.

(f) By systematic use of (c) above, one has the following: If
I(0) < I(1) < · · · < I(n), n ≥ 2, are integers and I(u) − I(u −
1) ∈ {2, 4, 8, 16, . . . } for each u = 1, . . . , n, then the event D :=
∩n

u=1D(I(u − 1), I(u)) satisfies P (D) > 0, and the random vectors
(VI(u−1)+1, VI(u−1)+2, . . . , VI(u)), u = 1, . . . , n, are conditionally inde-
pendent given D, and for each u = 1, . . . , n, the conditional distribution
of (VI(u−1)+1, . . . , VI(u)) given D is the same as its conditional distribu-
tion given D(I(u−1), I(u)). By Definition 2.1 (e), the same comments
hold for the random vectors (WI(u−1)+1, . . . , WI(u)), u = 1, . . . , n.

(g) By systematic use of (e) and (f) above, one has the following:
Suppose I < J and J − I ∈ {2, 4, 8, 16, . . . }.

(i) If i, j and k are integers such that i ≤ I, j ∈ {I + 1, . . . , J}, and
k > J , then the random variables Wi, Wj and Wk are conditionally
independent given D(I, J), and P (Wa = z|D(I, J)) = 1/2 for a = i, j, k
and z = 1,−1.

(ii) If i, j and k are integers such that i ≤ I or i > J , and
j ∈ {I + 1, . . . , (I + J)/2} and k ∈ {(I + J)/2 + 1, . . . , J}, then
the random variable Wi and the random vector (Wj , Wk) are condi-
tionally independent given D(I, J), with P (Wi = z|D(I, J)) = 1/2
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for z = 1,−1, and P ((Wj , Wk) = (1,−1)|D(I, J)) = P ((Wj, Wk) =
(−1, 1)|D(I, J)) = 1/2. (Of course one can say more, but this is what
will be used below.)

Theorem 2.3. For any three distinct integers a, b and c, the random
variables Wa, Wb, and Wc are independent.

From this theorem, equation (2.1), Definition 2.1 and (say) [2, Lem-
mas 2.12 and 2.13], W is a (nondegenerate) strictly stationary, two-
state, ergodic, triple-wise independent random sequence that fails to
satisfy the CLT. (To see that W is ergodic, note that the strictly sta-
tionary, countable-state Markov chain V is irreducible and therefore
ergodic.)

Theorem 2.3 will play a key role in the proof, in Section 3, of property
(B) in Theorem 1.

Proof of Theorem 2.3. By Definition 2.1 (c), (d) and (e), the random
sequence W is strictly stationary. Hence, to prove Theorem 2.3, it
suffices to prove for arbitrary positive integers J and L that the three
random variables W−J , W0 and WL are independent. The proofs for
the two cases J ≥ L and J ≤ L are essentially identical. We shall give
the proof in the latter case.

Accordingly, let J and L be arbitrary fixed integers such that
(2.5) 1 ≤ J ≤ L.

To prove that W−J , W0 and WL are independent, and thereby
complete the proof of Theorem 2.3, our task is to show that, see(2.1),
for all α, β, γ ∈ {−1, 1},
(2.6) P (W−J = α, W0 = β, WL = γ) = 1/8.

Recall from [2, Lemma 2.6] that the random variables Wk, k ∈ Z,
are pairwise independent. If (2.6) holds for a given ordered triplet
(α, β, γ) ∈ {−1, 1}3, then it also holds for (α, β,−γ), since by (2.1),

P (W−J = α, W0 = β, WL = −γ)
= P (W−J = α, W0 = β)
− P (W−J = α, W0 = β, WL = γ)

= 1/4 − 1/8 = 1/8;
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and the same comment applies to (α,−β, γ) and to (−α, β, γ). Hence
(2.6) needs to be verified for only one ordered triplet (α, β, γ) ∈
{−1, 1}3. We shall use what seems to be the easiest one to work with.

Define the event

(2.7) E := {W−J = 1, W0 = −1, WL = 1}.

To complete the proof of Theorem 2.3, it suffices to show that

(2.8) P (E) = 1/8.

Refer to (2.2). If ω ∈ Ω, then ω ∈ D(q, r) where q := max{k ≤
−1, Uk(ω) = 0} and r := min{k ≥ 0 : Uk(ω) = 0}. The events
D(q, r), where q ≤ −1, r ≥ 0, and r − q ∈ {2, 4, 8, 16, . . . }, form
a countable partition of Ω. For what follows, a different “coordinate
system” will be easier to work with. For integers q < r such that
r − q ∈ {2, 4, 8, 16, . . . }, the numbers m := (q + r)/2 (the midpoint)
and I := (r− q)/2 are integers, with I ∈ {1, 2, 4, 8, . . . }, and q = m− I
and r = m + I. The sample space Ω is thereby partitioned into the
events D(m − I, m + I), (m, I) ∈ Γ, where

(2.9) Γ := {(m, I) ∈ Z×{1, 2, 4, 8, . . . } : m− I ≤ −1 and m+ I ≥ 0}.

Hence, see (2.7), the event E is partitioned into the events E ∩D(m−
I, m + I), (m, I) ∈ Γ. To simplify, we need to show that some of these
events are empty.
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Define the following six sets:

Λ(1) := {(m, I) ∈ Z× {1, 2, 4, 8, . . . } :−J ≤ m − I ≤ −1

(2.10)

and 0 ≤ m + I ≤ L − 1};
Λ(2) := {(m, I) ∈ Z× {1, 2, 4, 8, . . . } :−J ≤ m − I ≤ −1, m + I ≥ L,

and 0 ≤ m ≤ L − 1};
Λ∗(2) := {(m, I) ∈ Z× {1, 2, 4, 8, . . . } :−J ≤ m − I ≤ −1, m + I ≥ L,

and m 
∈ {0, . . . , L − 1}};
Λ(3) := {(m, I) ∈ Z× {1, 2, 4, 8, . . . } : m − I ≤ −J − 1,

0 ≤ m + I ≤ L − 1, and − J ≤ m ≤ −1};
Λ∗(3) := {(m, I) ∈ Z× {1, 2, 4, 8, . . . } : m − I ≤ −J − 1,

0 ≤ m + I ≤ L − 1, and m /∈ {−J, . . . ,−1}};
Λ(4) := {(m, I) ∈ Z× {1, 2, 4, 8, . . . } : m − I ≤ −J − 1

and m + I ≥ L}.

These six sets together form a partition of the set Γ in (2.9).

For any element (m, I) ∈ Λ(4), the event E∩D(m−I, m+I) is empty.
Let us verify that. Suppose ω ∈ E∩D(m−I, m+I). By Definition 2.1
(d), (e), the numbers Wk(ω), k ∈ {m−I+1, m−I+2, . . . , m+I} change
sign only once (from +1’s to −1’s or from −1’s to +1’s). However, see
(2.5), all three indices −J , 0, and L are in that set {m−I+1, . . . , m+I},
and hence, by (2.7), those numbers Wk(ω) change sign at least twice.
Thus a contradiction occurs.

For any element (m, I) ∈ Λ∗(2), the event E ∩ D(m − I, m + 1) is
empty. Let us verify that. Suppose ω ∈ E ∩ D(m − I, m + I). Then,
see (2.5), the indices 0 and L are both in {m − I + 1, . . . , m + I}.
By (2.7) and Remark 2.2 (e), 0 and L cannot be in the same “half,”
{m− I +1, . . . , m} or {m+1, . . . , m+ I}, hence 0 is in the first “half”
and L in the second “half,” hence 0 ≤ m ≤ L − 1, contradicting the
definition of the set Λ∗(2).

Similarly, for any element (m, I) ∈ Λ∗(3), the event E∩D(m−I, m+
I) is empty. If ω ∈ E ∩D(m− I, m + I) were to exist, then the indices
−J and 0, see (2.5), would be in {m− I +1, . . . , m+ I}, but, see (2.7),
in opposite “halves,” forcing −J ≤ m ≤ −1 and a contradiction.
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By the three preceding three paragraphs, the sentence after (2.10),
and the sentence after (2.9), the event E is partitioned into the events
E ∩ D(m − I, m + I), (m, I) ∈ Λ(1) ∪ Λ(2) ∪ Λ(3), and one has that

(2.11) P (E) =
3∑

s=1

∑
(m,I)∈Λ(s)

P (E ∩ D(m − I, m + I)).

Here and below, an “empty sum”
∑

∅
(anything) is defined to be 0.

Let us simplify (2.11) a little. For a given (m, I) ∈ Λ(1), one has by
(2.10) that −J ≤ m − I, 0 ∈ {m − I + 1, . . . , m + I}, and L > m + I,
and hence by (2.7) and Remark 2.2 (g), (i),

P (E|D(m − I, m + I))

=
∏

u∈{−J,0,L}
P (Wu = zu | D(m − I, m + I)) = (1/2)3 = 1/8,

where z−J = zL = 1 and z0 = −1. For a given (m, I) ∈ Λ(2),
one has by (2.10) that −J ≤ m − I, 0 ∈ {m − I + 1, . . . , m}, and
L ∈ {m + 1, . . . , m + I}, and hence by (2.7) and Remark 2.2 (g) (ii),

P (E|D(m − I, m + I)) = P (W−J = 1|D(m − I, m + I))
× P ((W0, WL) = (−1, 1)|D(m − I, m + I))

= 1/2 · 1/2 = 1/4.

Similarly, for a given (m, I) ∈ Λ(3), one has that L > m + 1,
−J ∈ {m− I +1, . . . , m}, and 0 ∈ {m+1, . . . , m+ I}, and by Remark
2.2 (g) (ii), P (E|D(m − I, m + I)) = 1/4. Hence by (2.11) and (2.3),

(2.12)

P (E) =
∑

(m,I)∈Λ(1)

P (D(m − I, m + I)) · 1/8

+
∑

s∈{2,3}

∑
(m,I)∈Λ(s)

P (D(m − I, m + I)) · 1/4

=
1
8

∑
(m,I)∈Λ(1)

1/(2I)2 +
1
4

∑
s∈{2,3}

∑
(m,I)∈Λ(s)

1/(2I)2.

For each s ∈ {1, 2, 3} and each I ∈ {1, 2, 4, 8, . . . }, define the
nonnegative integer

(2.13) c(s, I) := card {m ∈ Z : (m, I) ∈ Λ(s)}.
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Then, by (2.12),

(2.14)

P (E) =
∑

I∈{1,2,4,8,... }
(2I)−2[(1/8)c(1, I) + (1/4)c(2, I) + (1/4)c(3, I)].

The integers c(s, I) will be calculated in the next three lemmas.

Lemma 2.4. Suppose I ∈ {1, 2, 4, 8, . . . }. Then, under the assump-
tion of (2.5),

(2.15) c(1, I) =

⎧⎪⎪⎨
⎪⎪⎩

2I if 1 ≤ I ≤ J/2
J if J/2 ≤ I ≤ L/2
L + J − 2I if L/2 ≤ I ≤ (L + J)/2
0 if (L + J)/2 ≤ I.

Proof. Suppose I ∈ {1, 2, 4, 8, . . . }. In order for m ∈ Z to be such
that (m, I) ∈ Λ(1), the restrictions on m are, see (2.10),

(2.16) m ≥ I − J, m ≥ −I, and m ≤ I − 1, m ≤ L − I − 1.

If 1 ≤ I ≤ J/2, then 2I ≤ J ≤ L by (2.5), hence I − J ≤ −I and
I ≤ L−I, and the restrictions on m in (2.16) are simply −I ≤ m ≤ I−1,
and hence c(1, I) = 2I. If J/2 ≤ I ≤ L/2, then J ≤ 2I ≤ L, hence
−I ≤ I − J and I ≤ L − I, and the restrictions on m in (2.16) are
simply I − J ≤ m ≤ I − 1. If L/2 ≤ I < (L + J)/2, then J ≤ L ≤ 2I
by (2.5), hence −I ≤ I − J and L − I ≤ I, and the restrictions on m
in (2.16) are simply I − J ≤ m ≤ L − I − 1 (satisfied by L + J − 2I
integers m). If (L + J)/2 ≤ I, then L + J ≤ 2I, hence L − I ≤ I − J ,
and the first and last inequalities in (2.16) conflict. Thus all cases of
(2.15) hold. (The third case in (2.15) was not formally shown above
for I = (L + J)/2, but holds for that I by the fourth case in (2.15).)
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Lemma 2.5. Suppose I ∈ {1, 2, 4, 8, . . . }. Then, under the assump-
tion of (2.5),

(2.17) c(2, I) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if 1 ≤ I ≤ L/2
2I − L if L/2 ≤ I ≤ (L + J)/2
J if (L + J)/2 ≤ I ≤ L

J + L − I if L ≤ I ≤ L + J

0 if L + J ≤ I

Proof. Suppose I ∈ {1, 2, 4, 8, . . . }. In order for m ∈ Z to be such
that (m, I) ∈ Λ(2), the restrictions on m are, see (2.10),

(2.18)

m ≥ I − J, m ≥ L − I, m ≥ 0, and m ≤ I − 1, m ≤ L − 1.

If 1 ≤ I ≤ L/2, then I ≤ L−I, and the second and fourth inequalities
in (2.18) conflict. If L/2 < I ≤ (L + J)/2, then L < 2I ≤ L + J ≤ 2L,
and thus I ≤ L, by (2.5), hence 0 ≤ L − I and I − J ≤ L − I, and
the restrictions on m in (2.18) are simply L − I ≤ m ≤ I − 1. If
(L + J)/2 ≤ I ≤ L, then 0 ≤ L − I ≤ I − J , and the restrictions on
m in (2.18) are I − J ≤ m ≤ I − 1. If L ≤ I < L + J , then J ≤ I by
(2.5), hence L− I ≤ 0 ≤ I − J , and the restrictions on m in (2.18) are
I − J ≤ m ≤ L − 1. If I ≥ L + J , then the first and last inequalities
in (2.18) conflict. Thus all cases of (2.17) hold. (The second case of
(2.17) for I = L/2, and the fourth case for I = L + J , hold by the first
and last cases.)

Lemma 2.6. Suppose I ∈ {1, 2, 4, 8, . . . }. Then, under the assump-
tion of (2.5),

(2.19) c(3, I) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if 1 ≤ I ≤ J/2
2I − J if J/2 ≤ I ≤ J

J if J ≤ I ≤ L

L + J − I if L ≤ I ≤ L + J

0 if L + J ≤ I
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Proof. Suppose I ∈ {1, 2, 4, 8, . . . }. In order for m ∈ Z to be such
that (m, I) ∈ Λ(3), the restrictions on m are, see (2.10),

(2.20)
m ≥ −I, m ≥ −J, and m ≤ I−J−1, m ≤ L−I−1, m ≤ −1.

If 1 ≤ I ≤ J/2, then I − J ≤ −I, and the first and third inequalities
in (2.20) conflict. If J/2 < I ≤ J , then −I ≥ −J and I ≤ L (by
(2.5)) and I − J − 1 ≤ −1 ≤ L − I − 1, and the restrictions on m in
(2.20) are −I ≤ m ≤ I − J − 1. If J ≤ I ≤ L, then −J ≥ −I and
−1 ≤ I − J − 1 and −1 ≤ L − I − 1, and the restrictions on m in
(2.20) are −J ≤ m ≤ −1. If L ≤ I < L + J , then J ≤ I by (2.5), and
−J ≥ −I and L− I − 1 ≤ −1 ≤ I −J − 1, and the restrictions on m in
(2.20) are −J ≤ m ≤ L−I−1. If I ≥ L+J , then the second and fourth
inequalities in (2.20) conflict. Thus all cases of (2.19) hold. (The second
case of (2.19) for I = J/2, and the fourth case for I = L + J , hold by
the first and last cases.) That completes the proof of Lemma 2.6.

Now let us represent the elements I ∈ {1, 2, 4, 8, . . . } by I = 2n,
n ∈ {0, 1, 2, 3, . . . }. Equation (2.14) can be rewritten as

(2.21)

P (E) =
∞∑

n=0

4−n−1 · [(1/8)c(1, 2n) + (1/4)c(2, 2n) + (1/4)c(3, 2n)] .

For any interval I ⊂ (0,∞) (open, closed, or half-open), define the
(possibly empty) set

(2.22) QI := {n ∈ {0, 1, 2, . . . } : 2n ∈ I}.

(In the calculations below, interpret (x, x] := ∅, [x, y] := ∅ if y < x,
and Q∅ := ∅.) With that notation, let us “decompose” the right side
of (2.21). By Lemma 2.4,

(2.23)
∞∑

n=0

4−n−1c(1, 2n) =
∑

n∈Q[1,J/2]

4−n−1 · (2 · 2n) +
∑

n∈Q(J/2,L/2]

4−n−1J

+
∑

n∈Q(L/2,(J+L)/2)

4−n−1 · (L + J − 2 · 2n).
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By Lemma 2.5,

(2.24)

∞∑
n=0

4−n−1c(2, 2n) =
∑

n∈Q(L/2,(J+L)/2)

4−n−1 · (2 · 2n − L)

+
∑

n∈Q[(J+L)/2,L]

4−n−1J

+
∑

n∈Q(L,L+J)

4−n−1(J + L − 2n).

By Lemma 2.6,
(2.25)

∞∑
n=0

4−n−1c(3, 2n) =
∑

n∈Q(J/2,J]

4−n−1(2 · 2n − J) +
∑

n∈Q(J,L]

4−n−1J

+
∑

n∈Q(L,L+J)

4−n−1(L + J − 2n).

Referring to (2.5), let G and H denote the nonnegative integers such
that 2G ≤ J < 2G+1 and 2H ≤ L < 2H+1. Then, see (2.5),

(2.26) 0 ≤ G ≤ H, 2G−1 ≤ J/2 < 2G ≤ J,

and
2H−1 ≤ L/2 < 2H ≤ L < 2H+1.

By (2.5), (2.22), and (2.26), the index sets in the right sides of
(2.23) (2.25) are as follows:

Q[1, J/2] =
{

∅ if G = 0

{0, . . . , G − 1} if G ≥ 1,
(2.27)

Q(J/2, J ] = {G},

Q(J/2, L/2] =
{

∅ if G = H

{G, . . . , H − 1} if G < H

Q(J, L] =
{

∅ if G = H

{G + 1, . . . , H} if G < H,
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Q(L/2, (J + L)/2) =

{
∅ if J + L ≤ 2H+1

{H} if J + L > 2H+1,

Q[(J + L)/2, L] =

{
{H} if J + L ≤ 2H+1

∅ if J + L > 2H+1,

Q(L, L + J) =

{
∅ if J + L ≤ 2H+1

{H + 1} if J + L > 2H+1.

Let us evaluate the first two sums in the right side of (2.23). If G ≥ 1,
then by (2.27),

∑
n∈Q[1,J/2] 4

−n−1 · (2 · 2n) =
∑G−1

n=0 2−n−1 = 1 − 2−G.
If instead G = 0, then by (2.27), one still has

∑
n∈Q[1,J/2] 4

−n−1 =
1 − 2−G, with both sides being 0. If G < H, then by (2.27),∑

n∈Q(J/2,L/2] 4
−n−1J =

∑H−1
n=G 4−n−1J = (J/3)(4−G − 4−H). If

instead G = H, then by (2.27), one still has
∑

n∈Q(J/2,L/2] 4
−n−1J =

(J/3) · (4−G − 4−H), with both sides being 0. Hence, regardless of the
values of G and H, subject to (2.26), by (2.23),

(2.28)

∞∑
n=0

4−n−1c(1, 2n) = 1 − 2−G + (J/3)(4−G − 4−H)

+
∑

n∈Q(L/2,(J+L)/2)

4−n−1(L + J − 2n+1).

Next let us evaluate the first two sums in the right side of (2.25). By
(2.27),

∑
n∈Q(J/2,J] 4

−n−1(2 · 2n − J) = 2−G−1 − 4−G−1J . By (2.27)
and a calculation like the one just prior to (2.28),

∑
n∈Q(J,L] 4

−n−1J =
(J/3)(4−G−1 − 4−H−1), regardless of whether, see (2.26), G < H or
G = H. Hence, by (2.25),

(2.29)
∞∑

n=0

4−n−1c(3, 2n) = 2−G−1 − 4−G−1J + (J/3)(4−G−1 − 4−H−1)

+
∑

n∈Q(L,L+J)

4−n−1(L + J − 2n).

Now we are ready to prove (2.8), and thereby complete the proof of
Theorem 2.3.
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Consider first the case where J +L ≤ 2H+1. Then, by (2.27), the sets
Q(L/2, (J + L)/2) and Q(L, L + J) are empty, Q[(J + L)/2, L] = {H},
and hence by (2.24),

∑∞
n=0 4−n−1c(2, 2n) = 4−H−1J . Substituting that

and (2.28) and (2.29) into (2.21), one obtains after some arithmetic,

P (E) = (1/8) · [1 − 2−G + (J/3)(4−G − 4−H) + 0
]
+ (1/4) · 4−H−1J

+ (1/4) · [2−G−1 − 4−G−1J + (J/3)(4−G−1 − 4−H−1) + 0
]
.

After some arithmetic, one obtains P (E) = 1/8; everything else cancels
out. Thus (2.8) holds in the case where J + L ≤ 2H+1.

Now consider the case where J + L > 2H+1. By (2.27), the set
Q[(J +L)/2, L] is empty, Q(L/2, (J +L)/2) = {H}, and Q(L, J +L) =
{H+1}. Hence by substituting (2.28), (2.24), and (2.29) (in that order)
into (2.21), one obtains

P (E)

= (1/8) · [1 − 2−G + (J/3)(4−G − 4−H) + 4−H−1(L + J − 2H+1)
]

+ (1/4) ·
[
4−H−1(2 · 2H − L) + 0 + 4−(H+1)−1(L + J − 2H+1)

]
+ (1/4) · [2−G−1 − 4−G−1J + (J/3)(4−G−1 − 4−H−1)

+ 4−(H+1)−1(L + J − 2H+1)].

After some arithmetic, one obtains P (E) = 1/8; everything else cancels
out. Thus (2.8) holds in the case where J +L > 2H+1. That completes
the proof of (2.8) and of Theorem 2.3.

3. Proof of Theorem 1 (property (B)). Let us repeat here
the construction of the random sequence X := (Xk, k ∈ Z) in [2,
Definition 3.1]. We retain all of the definitions, remarks, and random
sequences in Section 2.

Definition 3.1. (a) Let ε := (εk, k ∈ Z) be a sequence of
i.i.d. random variables taking only the values 0 and 1, with P (ε0 =
0) = P (ε0 = 1) = 1/2, with this sequence ε being independent of
(Tk, Uk, Vk, Wk, k ∈ Z). As a trivial technical formality, assume that
for every ω ∈ Ω, εk(ω) = 1 for infinitely many negative integers k and
infinitely many positive integers k.
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(b) Define the random integers . . . , I−1, I0, I1, . . . by the conditions

· · · < I−2 < I−1 < I0 ≤ 0 < 1 ≤ I1 < I2 < I3 < · · ·

and for all ω ∈ Ω,

{k ∈ Z : εk(ω) = 1} = {. . . , I−1(ω), I0(ω), I1(ω), . . . }.

(c) Define the random sequence X := (Xk, k ∈ Z) as follows: For all
k ∈ Z and all ω ∈ Ω,

Xk(ω) :=
{

Wj(ω) if k = Ij(ω) for some j ∈ Z
0 if k 
∈ {. . . , I−1(ω), I0(ω), I1(ω), . . . }.

Note that for all k ∈ Z,

(3.1) {Xk = 0} = {εk = 0} and {Xk = −1 or 1} = {εk = 1}.

Also note that the σ-fields σ(εk, Ik, i ∈ Z) and σ(Wk, k ∈ Z) are
independent. Also, for any given ω ∈ Ω, Ik(ω) ≤ k for all k ≤ 0
and Ik(ω) ≥ k for all k ≥ 1. If ε0(ω) = 0, then I0(ω) ≤ −1 and (by
induction) Ik(ω) ≤ k − 1 for all k ≤ 0.

From [2, Theorem 1 and Section 3], one has that the sequence X
is strictly stationary and satisfies properties (A), (C), (D) and (E) in
Theorem 1 as well as pairwise independence. Our task is just to prove
property (B) in Theorem 1, that is, to show that if a, b and c are
distinct integers then the three random variables Xa, Xb and Xc are
independent. By strict stationarity, it suffices to show this for a = −J ,
b = 0, and c = L for arbitrary positive integers J and L. Thus our task
is to show that, if J ≥ 1, L ≥ 1, and α, β, γ ∈ {−1, 0, 1}, then

(3.2) P (X−J = α, X0 = β, XL = γ)
= P (X−J = α) · P (X0 = β) · P (XL = γ).

There are 27 choices of α, β and γ. We shall verify (3.2) for two choices:
(i) α = 1 and β = γ = 0, and (ii) α = β = −1 and γ = 1. The proofs
of (3.2) for the other twenty-five choices are similar.
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By Definition 3.1, equation (3.1) and the subsequent observations,
equation (2.1), and property (A) in Theorem 1,

P (X−J = 1, X0 = 0, XL = 0) = P (X−J = 1, ε−J = 1, ε0 = 0, εL = 0)

=
J−1∑
j=0

P (X−J = 1, I−j = −J, ε0 = 0, εL = 0)

=
J−1∑
j=0

P (W−j = 1, I−j = −J, ε0 = 0, εL = 0)

=
J−1∑
j=0

P (W−j = 1) · P (I−j = −J, ε0 = 0, εL = 0)

=
J−1∑
j=0

(1/2) · P (I−j = −J, ε0 = 0, εL = 0)

= (1/2) · P (ε−J = 1, ε0 = 0, εL = 0) = (1/2) · (1/8)
= (1/4) · (1/2)2 = P (X−J = −1) · P (X0 = 0) · P (XL = 0).

Thus (3.2) holds for α = 1 and β = γ = 0. By a similar argument,
using Theorem 2.3,

P (X−J = −1, X0 = −1, XL = 1)
= P (X−J = −1, X0 = −1, XL = 1, ε−J = 1, ε0 = 1, εL = 1)

=
J∑

j=1

L∑
l=1

P (X−J = −1, X0 = −1, XL = 1, I−j = −J, I0 = 0, Il = L)

=
J∑

j=1

L∑
l=1

(W−j = −1, W0 = −1, Wl = 1, I−j = −J, I0 = 0, Il = L)

=
J∑

j=1

L∑
l=1

P (W−j = −1, W0 = −1, Wl = 1)P (I−j = −J, I0 = 0, Il = L)

=
J∑

j=1

L∑
�=1

(1/8) · P (I−j = −J, I0 = 0, I� = L)

= (1/8) · P (ε−J = 1, ε0 = 1, εL = 1) = (1/8) · (1/8)
= (1/4)3 = P (X−J = −1) · P (X0 = −1) · P (XL = 1).
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Thus (3.2) holds for α = β = −1 and γ = 1. The proofs of (3.2) for the
other 25 choices of α, β, and γ are similar and are left to the reader.
That completes the proof of property (B) in Theorem 1.

Acknowledgment. The author thanks the editor for helpful com-
ments that improved the exposition.
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