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PAIRS OF TOPOLOGICAL ALGEBRAS

MART ABEL AND MATI ABEL

ABSTRACT. Let (A, B) be a pair of topological algebras
A and B. Conditions for A, respectively B, to be a Gelfand-
Magzur algebra or an exponentially galbed algebra, if B, re-
spectively A, is one, are given. It is shown that hom A, the
set of all nonzero continuous homomorphisms from A onto
K endowed with Gelfand topology, and hom B are homeo-
morphic if either hom A is equicontinuous or hom B is locally
equicontinuous. Topological algebras A with jointly continu-
ous multiplication for which a) the completion A is a Gelfand-
Mazur algebra or exponentially galbed algebra or b) hom A

and hom A are homeomorphic are described.

1. Introduction. Let A be an associative topological algebra over
the field K (of real or complex numbers) with separately continuous
multiplication (in the sequel, a topological algebra), m(A) the set of
such closed regular two-sided ideals of A which are maximal as left
or right ideals and hom A the set of all nonzero continuous homomor-
phisms from A onto K endowed, as usual, with the topology in which
a base of neighborhoods of ¢y € hom A consists of sets

O(¢o; a1, - ,an,) = [ {e € hom A : (¢ — o) (ax)| < €}
k=1

for some n € N, ¢ > 0 and ay,...,a, € A. The set hom A is
equicontinuous if, for any € > 0, there is a neighborhood O of zero
in A such that |p(a)| < € for each a € O and ¢ € hom A and hom A
is locally equicontinuous if every ¢y € hom A has an equicontinuous
neighborhood. It is known (see, for example, [19, p. 75]) that hom A
is equicontinuous if A is a Q-algebra, that is, a topological algebra in
which the set of quasi-invertible elements is open.
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A topological algebra A is locally pseudoconvexr if it has a base
{Ux : A € A} of neighborhoods of zero consisting of balanced and
pseudoconvex sets, that is, of sets U for which uU C U, whenever
|u| < 1, and U+ U C pU for a p > 2. In particular, when every
Uy in {Uy : A € A} is idempotent, that is, Uy\Uy C Uy, then A is
called a locally m-pseudoconvez algebra. It is well known, see [24, p.
4], that the locally pseudoconvex (locally m-pseudoconvex) topology
on A we can give by a family {p) : A € A} of ky-homogeneous semi-
norms, respectively of kjy-homogeneous submultiplicative semi-norms,
where k) € (0,1] for each A\ € A. In particular, when ky, = 1 for
each A € A, then A is a locally convez, respectively locally m-convex
algebra, and when the topology of A has been defined by only one
k-homogeneous semi-norm with &k € (0, 1], then A is a locally bounded
algebra. Examples of locally m-pseudoconvex algebras' have been given
in [13, pp. 209-213]; of locally m-convex algebras? in several books,
see, for example, [14, 19, 20, 26] and of locally bounded algebras, in
particular Banach algebras, in [25] and [26].

A topological algebra A is called a Gelfand-Mazur algebra (see®, for
example, [1, 2, 4, 5, 8, 10]) if A/M is topologically isomorphic
with K for each M € m(A). In this case every M € m(A) defines
a oy € homA such that M = kerypp,. Herewith, the set m(A)
can be empty both in case of commutative topological algebras, see
[17, pp. 124-125] and of noncommutative topological algebras, even in
case of noncommutative Banach algebras, see [17, p. 706]. Since every
topological algebra A, for which the set m(A) is empty, is a Gelfand-
Mazur algebra, then it is of interest to study only these topological
algebras A for which the set m(A) is not empty.

A topological algebra A is an exponentially galbed algebra, (see*, for
example, [1, 2, 4, 5, 8, 23]), if every neighborhood O of A defines
another neighborhood U of zero such that

{Z%:al,...,aneU}CO

k=1

for each n € N. Besides, A is a simplicial® topological algebra, see [6, p.
15] or normal topological algebra in the sense of Michael, see [20, p. 68],
if every closed regular left (right or two-sided) ideal of A is contained in
some closed maximal regular left, respectively right or two-sided, ideal
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of A and A is a strongly simplicial topological algebra, if every closed
regular two-sided ideal of A is contained in some ideal M € m(A4). It
is known that all locally pseudoconvex algebras, in particular, locally
convex and locally bounded algebras, are exponentially galbed algebras
and all exponentially galbed algebras A over C (see, for example,
[5, Corollary 2] or [8, Theorem 2]) are Gelfand-Mazur algebras if all
elements in A are bounded, see [12, p. 400], i.e., for any a € A there is
a number A € C\ {0} such that the set

() e

is bounded in A. Moreover, all commutative locally m-pseudoconvex,
in particular locally m-convex, Hausdorff algebras over C are simplicial
algebras, see [9, Corollary 3]; in the complete case, see [7, Proposition
2]; [13, p. 300] and in the locally m-convex case, see [14, p. 321], and
m(A) is not empty if A is a commutative unital simplicial Gelfand-
Mazur algebra, see [9, Corollary 2].

A net (ax)rea of elements of a topological algebra A is advertibly
convergent in A, see [6, p. 15], if there exists an element a € A such that
(acax)ren and (ayoa)rep converge in A to the zero element. In the case
when every advertibly convergent Cauchy net of A converges in A, then
A is an advertibly complete topological algebra. It is known, see [19, p.
45] that every complete algebra and every (-algebra is an advertibly
complete topological algebra.5 Moreover, a topological algebra A is a
topological algebra with functional spectrum if the spectrum sp4(a) of
element a coincides with the set {¢(a) : ¢ € hom A} for each a €
A. For example, every complex commutative locally m-pseudoconvex
Q-algebra with unit, see [6, Proposition 11], in particular, every Banach
algebra is a topological algebra with functional spectrum. In this case
the spectral radius r4(a) of a is equal to

sup{|p(a)| : ¢ € hom A}.

We will say that two topological algebras (A4,74) and (B,7p) form
a pair of topological algebras and denote it by (A4, B), if a) B is a
dense subalgebra of (A,74); b) the topology 75 is not weaker than the
topology 74|p induced on B by 4.

Properties of pairs (A, B) in case of commutative unital Banach
algebras have been considered in [22] and in [21, Chapter 11] and
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in case of topological algebras in [20, see Appendix B|. The study of
properties of pairs of topological algebras, more general than Banach
algebras, is continued in the present paper.

2. Pairs of Gelfand-Mazur algebras. Let (A, B) be a pair of
topological algebras A and B. To describe the case when one of algebras
A or B is a Gelfand-Mazur algebra, we need the following results.

Proposition 1. a) If A is a Gelfand-Mazur algebra, M € m(A)
and u is a unit of A modulo (meaning that a —ua € M and a —au € M
for each a € A) M, then every element a € A is representable in the
form a = Au+ m for some A € K and m € M.

b) Let A be a topological algebra, M a closed regular two-sided ideal
of A and u a unit of A modulo M. If every a € A is representable in
the form a = Au+ m for some A € K and m € M, then M € m(A).

Proof. a) Let A be a Gelfand-Mazur algebra and M € m(A). Then
there is a ¢y € hom A such that M = kerpys and ¢pr(u) = 1. Since
a—pp(a)u € ker oy for each a € A, then every a € A is representable
in the form a = Au + m for some A € K and m € M.

b) Let A be a topological algebra, M a closed regular two-sided
ideal of A, mps the canonical homomorphism from A onto A/M and
J a left (right) ideal of A such that M C J. Then mp(J) # A/M.
Indeed, if mp(J) = A/M, then from mp(u) € mar(J) it follows that
mam(u) = mpr(j) for some j € J. Therefore, u —j € M C J. Hence,
u = (u—j)+j € J but it is not possible. Consequently, s (J)
is a left (respectively, right) ideal of A/M. Since every x € A/M is
representable in the form x = mys(a) for some a € A and a = Agu+my
for some A\, € K and m, € M, by assumption, then z = A 7 (u),
where 7y (u) is a unit element of A/M. It means that the map vy
from A/M onto K, defined by va(mar(a)) = A for each a € A, is
an isomorphism. Hence, mp(J) = {0a/p}. (Here, and later on, 64
denotes the zero element of A.) Taking this into account, from

J Cmyf (mr () = myf ({0ayn}) = M € J

it follows that M = J. Consequently, M € m(A). i
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Proposition 2. Let (A, B) be a pair of topological algebras A and
B, M € m(A) and uw € B a unit element of A modulo M. If A is a
Gelfand-Mazur algebra, then M N B € m(B) and cla(M N B) € m(A).

Proof. Let A be a Gelfand-Mazur algebra, b € B, M € m(A),
wrp € hom A such that M = kerpys, and let A = ¢pr(b). Since
M N B # B, then M N B is a closed regular two-sided ideal of B,
u is a unit of B modulo M N B and b — Au € M N B. Therefore, every
b € B is representable in the form b = Au + m for some m € M N B.
Hence, M N B € m(B), by Proposition 1 b).

Let now a be an arbitrary element of A. Since B is dense in A, then
there is a net (by)aca in B which converges to a. As above, every
by € B defines a number A\, € K and an element m, € M N B such
that by, = Aqu + mq. Since ppr(by) = Ao for each a € A and ¢y is
continuous, then the convergence of (¢as(ba))aca to ¢ar(a) means that
(Ao )aea converges to A, = par(a). Hence, the net (mg)aca converges
to a — Agu € cla(M N B). Thus a = Au+ m for some A\ € K and
m € cla(M N B). Since cla(M NB) C M # A, then cly(M N B) is a
closed regular two-sided ideal of A. Therefore, cls(M N B) € m(A), by
Proposition 1 b). o

Corollary 1. Let (A, B) be a pair of topological algebras A and B
with the same unit e. Then

a) cla(M N B) = M for each M € m(A) if A is a Gelfand-Mazur
algebra.

b) cla(M)N B = M for each M € m(B) if A and B are Gelfand-
Mazur algebras and 75 = 74| 5.

Proof. If M € m(A), then cly(MNB) C M. Therefore the statement
a) holds by Proposition 2. Let now M € m(B). If e € cls(M),
then there exists a net (mx)aea in M which converges in A to e.
Since 75 = Ta|p, then every neighborhood Op of zero in B defines
a neighborhood O4 of zero in A such that Op = O4 N B. Now Oy@
defines a number \g € A such that my — e € O4 for every A > Ag.
Since my — e € B for every A > Ao, then (my)rea converges also in
B to e. But this means that e € clg(M) = M, which is not possible.
Hence, cly(M) is a closed two-sided ideal in A.
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Let now a € A be an arbitrary element of A. Then there is a net
(ba)aca in B, which converges to a in the topology of A. If B is
a Gelfand-Mazur algebra, then M = kerp,s for some ¢y € hom B
and every b, is representable in the form b, = A,e + m, for some
Ao € K and m, € M, by Proposition 1 a). As oup(ba) = Ao
for each @ € A and ¢p(by)aca converges to pp(a), then (ma)aca
converges to a — ppr(a)e € cla(M). Hence, a = pp(a)e + m for
some m € cla(M). Consequently, cla(M) € m(A), by Proposition
1 b), and cla(M) N B € m(B), by Proposition 2 because A is a
Gelfand-Mazur algebra. Therefore, from M C cla(M) N B follows
that M = cla (M) N B. O

Proposition 3. Let A be a topological algebra with jointly continuous
multiplication and B a subalgebra of A endowed with the topology T4|p.
Ifhom B is not empty, then every ¢ € hom B defines a @ € homcls(B)
such that ¢(b) = ¢(b) for each b € B.

Proof. Tt is known, see [18, pp. 129-131] that every ¢ € hom B has
a uniformly continuous linear extension @ of ¢ to cla(B). Herewith
@ is nonzero. To show that ¢ is multiplicative, let a1,as € cla(B),
w1 = |@(a1)], p2 = |p(az)|, € > 0 and § > 0 be such that

82 4 6(pr 4+ po +1) < e

Since @ is uniformly continuous on cls(B), then there exists in A a
neighborhood U of zero such that |@(a) — ¢p(a’)| < difa—a’ € U. By
the continuity of the multiplication in A, there exists in A a balanced
neighborhood V of zero and, by density of B in A, elements b1,bs € B
such that V C U, Vas + a1 V+V2CU,by—a; € Vand by —as € V.
Now by

a1a2—b1b2 = (a1 —bl)a2+a1(a2—b2)—(al—bl)(ag—bg) S UﬂClA(B)
we have that

|p(ar1)@(az) — @laraz)| < |@(ar) —@(b1)] |p(az)|+|@(ar)] [p(az) — @ (ba)]
+ |@(a1) — @(b1)] [p(az) — §(ba)]
+ |p(araz) — ¢(b1ba)|
< Opg+ 0 +02+6 <e.
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Consequently, @(a1)@(az2) = @(araz) for each a1,as € cla(B). Thus,
the extension @ € homecly (B). o

Theorem 1. Let (A, B) be a pair of topological algebras A and B
with the same unit e. If the multiplication in A is jointly continuous, B
is a Gelfand-Mazur algebra and Tg = Ta|B, then A is a Gelfand-Mazur
algebra if and only if M N B € m(B) for every M € m(A).

Proof. Let (A, B) be a pair of topological algebras A and B with
the same unit e. If herewith A is a Gelfand-Mazur algebra, then
M N B € m(B) for every M € m(A), by Proposition 2.

Let now A be a topological algebra with jointly continuous multipli-
cation. If the set m(A) is empty, then A is a Gelfand-Mazur algebra.
Therefore, we assume that there is an ideal M € m(A). Let B be a
Gelfand-Mazur algebra and M N B € m(B). Then M N B = ker pp
for some @) € hom B and every b € B is representable in the form
b= on(b)e + m for some m € M N B, by Proposition 1 a). Since the
multiplication in A is jointly continuous then, by Proposition 3, there
is an extension @y of s such that @y € hom A and @pr(b) = @ar(b)
for each b € B. As B is dense in A, then every a € A defines a net
(ba)aca in B which converges to a in the topology of A. Now for each
a € A, there is an element m, € M N B such that b, = @ar(ba)e+meq.
Since the net (@ar(ba))aca converges to @as(a) (because gy is contin-
uous) and b, — @ar(by)e € B for each a € A, then (by — @ar(ba)e€)aca
converges to a — @pr(a)e € cla(M N B). From M N B = ker ¢ follows
that cla(M N B) C ker gy # A. Therefore, cla(M N B) is a closed
(regular) ideal of A and every element a € A is representable in the
form a = A\ye+myg, where A\, = @pr(a) and m, € cla(MNB). It means
that cla(M N B) € m(A), by Proposition 1 b). Thus,

M =cla(MNB)=kergy

Let now 7y be the canonical homomorphism of A onto A/M, T4/n
the quotient topology on A/M and vj; the isomorphism from A/M
onto K defined by vps(mar(a)) = @u(a) for each a € A. Then
7w (a) = @ar(a)mar(e) for each a € A, where mj(e) is the unit element
of A/M. Since (A/M,74/0) is a topological algebra, then 1/]\_/11 is
continuous. To show the continuity of vy in the topology 74/, let
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O be a neighborhood of zero in K. Then there is a number ¢ > 0
such that O, = {A € K : |\ < e} € O. If Ay € O, \ {0}, then
Xomar(e) # 0 0. Hence, there is a balanced neighborhood U of zero
in (A/M,74/0) such that Aomas(e) & U (because (A/M,Ta/p) is a
Hausdorff space). If now |@ar(a)l = |Ao|, then [No@ar(a)™t| < 1.
Therefore A\omar(e) = (Mo@rr(a) )mar(a) € U for each mpr(a) € U.
Since this is not possible, then @r(a) € O for each 7y (a) € U because
of which vys is continuous. It means that (A/M,74/y) and K are
topologically isomorphic for each M € m(A). Consequently, A is a
Gelfand-Mazur algebra. o

Theorem 2. Let (A, B) be a pair of topological algebras A and B. If
A is a Gelfand-Mazur algebra for which for every M € m(B) there is
My € m(A) such that cla(M) C Ma, then B is also a Gelfand-Mazur
algebra.

Proof. 1If B is a topological algebra for which the set m(B) is
empty, then B is a Gelfand-Mazur algebra. Therefore, we assume that
M € m(B). Then there is M4 € m(A) such that cly(M) C My. Since
A is a Gelfand-Mazur algebra, then M4 = ker v for some 1 € hom A.
Now ¢ = 9| € hom B because B is dense in A and M C ker ¢. Thus
M = ker ¢ and B/M and K are topologically isomorphic (see the proof
of Theorem 1). It means that B is a Gelfand-Mazur algebra. O

Corollary 2. Let (A, B) be a pair of topological algebras A and B.
If A is a strongly simplicial, in particular, commutative and simplicial,
Gelfand-Mazur algebra, then B is also a Gelfand-Mazur algebra in the
topology Ta|B.

Proof. Let M € m(B) and u be a unit of B modulo M. Then
cla(M) # A. Indeed, if cly (M) = A, then there exists a net (my)rea
in M which converges to u in the topology of A. Let Op be a
neighborhood of w in B. Then there is a neighborhood O4 of w in
A such that Og = O4 N B. Now O4 defines an index A\g € A such that
my —u € Oz whenever A > )\g. Since my —u € B for each A\ € A,
then my —u € Op whenever A > Ag. It means that (my)xeca converges
to u in B. Since M is closed in B, then v € M but it is not possible.
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Hence, I = cly(M) is a closed regular two-sided ideal in A. Since A
is strongly simplicial, then there is an ideal M4 € m(A) such that
I C M4. Consequently, B is a Gelfand-Mazur algebra by Theorem 2.
O

3. Pairs of exponentially galbed algebras. To show that A in
the pair (A, B) of topological algebras A and B is exponentially galbed
if and only if B is exponentially galbed we use the following

Lemma 1. Let (A, B) be a pair of topological algebras A and B. If
T8 = Tal|B, then cla(Op) is a neighborhood of zero in A for each open
neighborhood Op of zero in B.

Proof. Let Op be an open neighborhood of zero in B and O 4 an open
neighborhood of zero in A such that Og = Oa N B. If a € O4 and
O(a) is an arbitrary neighborhood of a in A, then O4 N O(a) is also a
neighborhood of a in A. Since B is dense in A, then (04 N O(a)) N B
is not empty. Hence, O(a) NOp = O(a) N (O4 N B) is also not empty.
Therefore, a € cla(Op) for each a € O4. It means that cls(Op) is a
neighborhood of zero in A. ni

Theorem 3. Let (A, B) be a pair of topological algebras A and B.
If T3 = TalB, then A is an exponentially galbed algebra if and only if
B is an exponentially galbed algebra.

Proof. Let A be an exponentially galbed algebra, B a topological
algebra, Op a neighborhood of zero in B, Up a closed neighborhood of
zero in B such that Ug C Op and Vg an open neighborhood of zero in
B such that Vg C Up. Then cla(Vp) is a neighborhood of zero in A,
by Lemma 1, and there is a neighborhood W4 in A such that

n
a
{ZQ—Z:al,... ,anEWA} C cla(Vp)
k=1
foreachn € N. Let Wg =W,NB, n € N and by,...,b, € Wg. Then

" b
> 2—@ €cly(Ve)NB =clp(Vg) C Ug C Op
k=1
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for each n € N, because 75 = 7a|p. Consequently, B is also an
exponentially galbed algebra.

Let now A be a topological algebra, B an exponentially galbed
algebra and O4 a neighborhood of zero in A. Then there is a closed
neighborhood U4 of zero in A such that Uy C O4, Ug =UaN B is a
closed neighborhood of zero in B and there is an open neighborhood
Vg of zero in B such that

)
{ZQ—ﬁ:bl,...,bneVB}cUB

k=1
for each n € N. Since 75 = 74l|p, then cls(Vg) is a neighborhood of
zero in A, by Lemma 1.

Let now n € N and aq,...,a, € cla(Vg). Then for each k €
{1,...,n} there is a net (b(k)a)aca in Vp which converges to aj in
the topology of A. Hence

n

n
a . b(k
g 2—::11515 (2k)a€UACOA.
k=1 k=1

It means that A is also an exponentially galbed algebra. ]

4. Pairs of topological algebras A and B for which hom A
and hom B are homeomorphic. The next result describes such pairs
(A, B) of topological algebras A and B for which hom A and hom B are
homeomorphic.

Theorem 4. Let (A, B) be a pair of such topological algebras A and
B for which the multiplication in A is jointly continuous, T = Ta|B
and hom B is not empty. Then there is a bijection A from hom B
onto hom A such that A=' is continuous. If, in addition, hom A is
equicontinuous or hom B is locally equicontinuous, then hom A and
hom B are homeomorphic.

Proof. Let (A, B) be a pair of topological algebras A and B. If A
and B are such as described in the formulation of Theorem 4, then
every ¢ € hom B defines a ¢ € hom A such that @(b) = ¢(b) for each
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b € B, by Proposition 3, because B is dense in A. Let A be a map from
hom B into hom A defined by A(y) = @ for each ¢ € hom B. Then A
is a bijection by density of B in A.

To show that A~! is continuous, let O(yo) be a neighborhood of ¢
in hom B. Then there exist n € N, ¢ > 0 and by, ... ,b, € B such that
U = O(po;b1,... ybp,e) C O(pg). Since V = O(@g; b1,... ,by,e) is a
neighborhood of @y in hom A and A(U) = V, then A~ is continuous.

To show the continuity of A, let ¢y € hom A and O(v¢y) be a
neighborhood of ¥y in hom A. Then there exist n € N, ¢ > 0 and
ai,...,a, € Asuch that U = O(¢o;a1,...,an,e) C O(¢p). If hom A
is equicontinuous, then there is a neighborhood O of zero in A such that
[(a)] < e/4 for each a € O and ¥ € hom A. For each k € {1,... ,n},
let by € B be such that by — ax, € O (because B is dense in A). Then
V =0(to;b1,...,bk,e/4) is a neighborhood of ¥y in hom A. Since

(1 — o) (ar)| < [¥(be — ar)| + (v — 10) (bi)| + |tho(be — ar)| < % <e

for each ¢p € V, then V. C U C O(¢g). If o9 = | and W =
O(p0; b1, ... ,bn,e/4), then ¢ € hom B (because B is dense in A), W
is a neighborhood of ¢y in hom B and A(W) C V' C O(vy). Hence, A

is continuous.

Let now g € hom B, ¢y € hom A be the extension of ¢g, defined
by Proposition 3, and O(@p) a neighborhood of @y in hom A. Then
there exist n € N, ¢ > 0 and ai,...,a, € A such that U =
O(po;ar, ... an,€) C O(@o). If hom B is locally equicontinuous, then
o has an equicontinuous neighborhood O(yp). Therefore, there is
an open neighborhood of zero Op in B such that |p(b)| < /3 for each
b€ Op and ¢ € O(pg). Since @ is continuous for every ¢ € O(pg), then
?(cla(Op)) C clk(@(0p)) = clk(p(Op)). It means that |p(a)| < /3
for each a € clu(Op) and ¢ € O(pg). Herewith, cla(Op) is a
neighborhood of zero in A, by Lemma 1, because 75 = 74|p. Now
for each k € {1,...,n} there is an element by € (ar + cla(Og)) N B.
Hence, |@(br, — ax)| < €/3 for each k € {1,...,n} and ¢ € O(po).
Taking this into account,

[(? = ®o)(ar)| < [P(ar = br)|+ (@ — @o) (br)[ + |Polar — bi)| <€

for each ¢ € V = O(po) N O(po; b1, ... ,bk,e/3). As V is a neighbor-
hood of ¢y in hom B and A(V) C U C O(@y), then A is continuous.
Consequently, hom B and hom A are homeomorphic. |
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Corollary 3. Let (A, B) be a pair of such topological algebras A
and B that the multiplication in A is jointly continuous, T = Tal|p
and hom A and hom B are not empty. Then hom B is equicontinuous
if and only if hom A is equicontinuous.

Proof. Let (A, B) be a pair of topological algebras A and B described
in the formulation of Corollary 3. Let £ > 0 and ¢ € (0,¢). If hom B
is equicontinuous, then there is an open neighborhood Op of zero in
B such that |@(b)] < 6 for each b € Op and ¢ € hom B. Since
O4 = cla(Op) is a neighborhood of zero in A, by Lemma 1, and
?(04) C clkp(Op) for each ¢ € hom A, then |p(a)] < § < € for
each a € O4 and ¢ € hom A. Hence, hom A is equicontinuous. On
the other hand, if hom A is equicontinuous, then the sets hom B and
hom A are homeomorphic, by Theorem 4. Therefore, hom B is also
equicontinuous. O

5. Properties of the completion of a topological algebra.
Let A be a topological Hausdorff algebra. Then A has the completion
A which is a linear topological Hausdorff space, see [18, p. 131], but
not necessarily an algebra, see [16, p. 311] or [11, the example in
Remark 3.3]. In particular, when the multiplication in A is jointly
continuous, then A is a topological algebra with jointly continuous
multiplication, see [19, p. 22] or [13, Theorem 2.3.14], and there is
a topological isomorphism v from A into A such that v(A) is dense
in A and Tu(4) = Tilv(a). Hence, (A,v(A)) is a pair of topological
Hausdorff algebras. Next we apply results proved above to the pair
(A,v(A)). By Theorems 1 and 3 and Corollary 2, we have

Theorem 5. a) Let A be a unital Gelfand-Mazur algebra with
jointly continuous multiplication. Then the completion A of A is also
a Gelfand-Mazur algebra if and only if M Nv(A) € m(v(A)) for each
M € m(A).

b) A topological algebra with jointly continuous multiplication is a
Gelfand-Mazur algebra if the completion A of A is a strongly simplicial
(in particular, a commutative simplicial) Gelfand-Mazur algebra.

c) A topological algebra A is an erponentially galbed algebra if and
only if the completion A of A is an exponentially galbed algebra.
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Theorem 6. Let A be a topological algebra with jointly continuous
multiplication. If the set hom A is not empty, then

a) the sets hom A and hom A are homeomorphic if either hom A is
equicontinuous or hom A is locally equicontinuous.

b) the set hom A is equicontinuous if and only if the set hom A is
equicontinuous.

Corollary 4. Let A be a topological algebra with jointly continuous
multiplication. If hom A is not empty and Aisa Q-algebra, then hom A
and hom A are homeomorphic. (Since A is a Q-algebra, then hom A is
equicontinuous.)

Theorem 7. Let A be an advertibly complete topological Hausdorff
algebra over C and the completion A of A a topological algebra with
functional spectrum. Then A is a Q-algebra if and only if A is a
Q-algedbra.

Proof. Let A be an advertibly complete topological Hausdorff alge-
bra over C the completion A of which is a topological algebra with
functional spectrum. Then A is also a topological algebra with func-
tional spectrum, see [6, Corollary 7]. If A is a Q-algebra, then the set
hom A is equicontinuous. Hence, the set hom A is equicontinuous too,
by Corollary 3. It means that there is a neighborhood O of zero in A
such that |p(a)| < 1 for each a € O and ¢ € hom A. Thus, ra(a) <1
for each a € O because of which {a € A : r4(a) < 1} is a neighborhood
of zero in A. Consequently, (see [19, Lemma 11.4.2] or [26, Proposition
12.19]) A is a Q-algebra.

Let now A be a Q-algebra. Then hom A is equicontinuous. Therefore,
the set hom A is equicontinuous too, by Corollary 3, and similarly as
in the above we have that A is a Q-algebra (because Aisa topological
algebra with functional spectrum). u]

Corollary 5. Let A be a commutative advertibly complete locally
m-pseudoconver Hausdorff algebra over C. Then A is a Q-algebra if
and only if A is a Q-algebra.
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Proof. By the assumption of Corollary 5, A is a commutative
advertibly complete (because A is complete) locally m-pseudoconvex
Hausdorff algebra over C. Therefore, A has functional spectrum, see
the proof of Proposition 11 in [6]. Hence, Corollary 5 is true, by
Theorem 7. u]

Remark. Corollary 1 has been proved in [21, Chapter III, part 11] in
case of commutative Banach algebras with unit, a part of Theorem 6
in [19, Theorem 2.1, p. 150, Lemma 2.2, p. 146] and Corollaries 4 and
5 in [19, pp. 150-151] in the case of commutative locally m-convex
algebras.

ENDNOTES

1. One of the simplest examples of locally m-pseudoconvex algebra is C(K; (kn))
with 0 < k, < 1 of all K-valued continuous functions f on K with respect to the
point-wise algebraic operations and the topology defined by the system {p, : n € N}
of kp-homogeneous semi-norms, where

pn(f) = sup |f(t)|"" for each f € C(K; (kn)).

lz|<n

2. One of the simplest examples of locally m-convex algebra is C(X,K) of all
K-valued continuous functions on a topological space X with respect to point-wise
algebraic operations and the uniform topology on compact subsets of X.

3. The class of Gelfand-Mazur algebras is very large. In addition to Banach
algebras, it contains all locally m-pseudoconvex, in particular, locally m-convex and
locally bounded, algebras, all locally pseudoconvex Fréchet, in particular p-Banach,
algebras and many other topological algebras, see [5, 8]. Moreover, there exist
topological algebras (see, for example, [26, p. 86]) which are not Gelfand-Mazur
algebras.

4. It is known, see [3, Proposition 5] that the algebra 1(Pn) | with coordinate-
wise algebraic operations, of all sequences (z) of complex numbers such that
Z|xn|"" < o0, is not exponentially galbed if 0 < p, < 1 and (pn) converges
to zero.

5. For example, C(K; (kn)) and C(X,K) are simplicial topological algebras.

6. It is known (see, for example, [15, Example 3]) that the algebra of all
measurable functions f on [0, 1], endowed with the topology defined by the system
{pr : ko < k <1, ko € (0,1]} of k-norms, where

pk(f)=/ | ()[* dt
[0.1]

for each measurable f on [0, 1], is a sequentially advertibly complete algebra, which
is neither a Q-algebra, a complete algebra nor a locally m-pseudoconvex algebra.
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