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ELLIPTIC FIBRATIONS OF SOME
EXTREMAL K3 SURFACES

MATTHIAS SCHÜTT

ABSTRACT. This paper is concerned with the construction
of extremal elliptic K3 surfaces. It gives a complete treatment
of those fibrations which can be derived from rational elliptic
surfaces by easy manipulations of their Weierstrass equations.
In particular, this approach enables us to find explicit equa-
tions for 38 semi-stable extremal elliptic K3 fibrations, 32 of
which are indeed defined over Q. They are realized as pull-
back of non semi-stable extremal rational elliptic surfaces via
base change. This is related to the work of J. Top and N. Yui
which exhibited the same procedure for the semi-stable ex-
tremal rational elliptic surfaces.

1. Introduction. The aim of this paper is to find all extremal ellip-
tic K3 fibrations which can be derived from rational elliptic surfaces by
direct, relatively simple manipulations of their Weierstrass equations.
The main technique for this purpose will be pull-back by a base change.
We only exclude the general construction involving the induced J-map
of the fibration (considered as a base change generally of degree 24,
conf. [10, Section 2]). The base changes we construct will have degree
at most 8. Additionally there is another effective method if we allow the
extremal K3 surface to have nonreduced fibres. Then we can also ma-
nipulate the Weierstrass equations by adding or transferring common
factors, thus changing the shape of singular fibres rather than intro-
ducing new cusps. In total this approach will enable us to realize 201
out of the 325 configurations of singular fibres which exist for extremal
elliptic K3 surfaces due to the classification of [15]. Note, however,
that the configuration does in general not determine the isomorphism
class.

For most of this paper, we will concentrate on the extremal elliptic
K3 fibrations with only semi-stable fibres. The determination of the
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112 possible configurations of singular fibres goes originally back to
Miranda and Persson [9]. For 20 of them, Weierstrass equations over
Q, or in one case Q(

√
5), have been obtained in [4] or [6, 16, 19]. These

give rise to the elliptic K3 surface with the maximal singular fibre (the
first one from the list in [9]), the modular ones and those coming from
semi-stable extremal (hence modular) rational elliptic surfaces after
a quadratic base change. By way of construction, their isomorphism
classes are indeed known in advance.

The main idea of this paper consists in applying a base change of
higher degree to other extremal rational elliptic surfaces (namely those
with three cusps). Thereby we can substitute the nonreduced singular
fibres by semi-stable ones in the pull-back surface such that it turns
out to be an extremal K3. Indeed five of the modular rational elliptic
surfaces can also be obtained in this way according to [9, Section 7].
Here, we investigate those base changes of the original surfaces with
three cusps, which do not factor through the modular rational ones,
and indeed find Weierstrass equations for 38 further extremal semi-
stable elliptic K3 fibrations, only 6 of which are not already defined
over Q. Again their isomorphism classes are known due to the pre-
determined shape of the Mordell-Weil group. The surfaces over Q
realize the following 32 configurations of singular fibres in the notation
of [10]:

[1, 1, 1, 2, 3, 16] [1, 1, 1, 2, 5, 14] [1, 1, 1, 3, 3, 15] [1, 1, 1, 3, 6, 12]
[1, 1, 1, 5, 6, 10] [1, 1, 2, 2, 3, 15] [1, 1, 2, 3, 3, 14] [1, 1, 2, 4, 4, 12]
[1, 1, 2, 4, 6, 10] [1, 1, 3, 3, 8, 8] [1, 1, 3, 4, 6, 9] [1, 2, 2, 2, 3, 14]
[1, 2, 2, 2, 5, 12] [1, 2, 2, 2, 7, 10] [1, 2, 2, 3, 4, 12] [1, 2, 2, 3, 6, 10]
[1, 2, 2, 5, 6, 8] [1, 2, 2, 6, 6, 7] [1, 2, 3, 3, 3, 12] [1, 2, 3, 4, 4, 10]
[1, 2, 4, 4, 6, 7] [1, 2, 4, 5, 6, 6] [1, 3, 3, 3, 5, 9] [1, 3, 3, 5, 6, 6]
[1, 3, 4, 4, 4, 8] [2, 2, 2, 4, 6, 8] [2, 2, 2, 3, 5, 10] [2, 2, 3, 3, 4, 10]
[2, 2, 3, 4, 5, 8] [2, 2, 4, 4, 6, 6] [2, 3, 3, 3, 4, 9] [2, 3, 4, 4, 5, 6]

The additional fibrations which can only be defined over some
quadratic or cubic extension of Q by this approach are

[1, 1, 2, 2, 4, 14], [1, 1, 2, 6, 6, 8], [1, 2, 2, 4, 5, 10]
[1, 2, 2, 4, 7, 8], [1, 2, 3, 3, 6, 9], [1, 2, 3, 4, 6, 8].
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Finally, the non semi-stable extremal K3 fibrations derived from
rational elliptic surfaces can be found in two tables at the end of this
paper.

After shortly recalling some basic facts about elliptic surfaces in the
next section (2), we will spend the major part of this paper with
constructing the base changes and giving the resulting equations for
the semi-stable extremal elliptic K3 surfaces (Sections 3, 4, 5, 6).
Eventually we will return to the non semi-stable fibrations in the last
section (7) although we will keep their treatment quite concise.

One final remark seems to be in order: There are, of course, many
other ways to produce extremal (or singular) elliptic K3 surfaces. The
perhaps best known is the concept of double sextics as introduced in
[13]. We will not pursue this approach here, so the interested reader is
also referred to [1, 11] for instructive applications.

2. Elliptic surfaces over P1. An elliptic surface over P1, say
Y

r→ P1 with a section, is given by a minimal affine Weierstrass
equation

y2 = x3 + Ax + B

where A and B are homogeneous polynomials in the two variables
of P1 of degree 4M and 6M , respectively, for some M ∈ N. Here,
the term minimal refers to the common factors of A and B: They
are not allowed to have a common irreducible factor with multiplicity
greater than 3 in A and greater than 5 in B, since otherwise we could
cancel these factors out by an admissible change of variables. This also
restricts the singularities of the Weierstrass equation to rational double
points, such that Y is the minimal desingularization. In this paper we
are interested in special examples where both A and B have rational
coefficients (while the work of [10] in accordance with [17], will only
guarantee the existence of A and B over some number field). Of course,
we can also assume A and B to have (minimal) integer coefficients, but
we will not go into detail with this.

As announced in the introduction, we are going to pay special
attention to the singular fibres of Y . For a general choice of A and
B there will be 12M of them (each a rational curve with a node). The
types of the singular fibres, which were first classified by Kodaira in [5],
can be read off directly from the j-function of Y (cf. [18, IV.9, Table
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4.1]). This is the quotient of 4A3 by the discriminant Δ of Y which is
defined as Δ = 4A3 + 27B2:

j =
4A3

Δ
.

Then Y has singular fibres above the zeroes of Δ which we call the
cusps of Y . The fibre above such a cusp x0 is called semi-stable if and
only if it is a rational curve with a node or a cycle of n lines, i.e., of
type In in Kodaira’s notation, where n is the order of vanishing of Δ
at x0. Note that above a cusp x0 there is a semi-stable fibre if and
only if A does not vanish at x0, i.e., if and only if it is not a common
zero of A and B. On the other hand, we get either a nonreduced fibre
(distinguished by an ∗) over x0 if A and B both vanish at x0 to the
orders at least 2 and 3, respectively, or an additive fibre II, III or IV
otherwise. One common property of the singular fibres is that in every
case the vanishing order of Δ at the cusp x0 equals the Euler number
of the fibre above x0. At this point recall the well-known facts that
H1(Y,OY ) = 0 and pg = dim H2(Y,OY ) = M − 1, while the canonical
divisor KY = (M − 2) F for a general fibre F (cf., e.g., [7, Lecture
III]). Hence, Y is K3, respectively rational, if and only if M = 2,
respectively M = 1. Since the Euler number of Y equals the sum
of the Euler numbers of its (singular) fibres, which coincides with the
degree 12M of Δ by the above considerations, we obtain that Y is a
K3 surface if and only if its Euler number equals 24. (On the contrary,
Y is a rational surface if and only if e(Y ) = 12.)

Before discussing the effect of a base change on the elliptic surface
Y , let us at first introduce the following notation: We say that a map
π : P1 → P1 has ramification index (n1, . . . , nr) at x0 ∈ P1 if x0 has
r pre-images under π with respective orders ni, i = 1, . . . , r. The base
change of Y by π is simply defined as the pull-back surface X

π◦r−→ P1,
i.e., we substitute π into the Weierstrass equation and j-function of
Y to obtain X. It is thus immediate that a semi-stable singular
fibre of type In above a cusp x0 of Y where π has ramification index
(n1, . . . , nr) is substituted via π by r fibres of types In1n, . . . , Inrn.
However, for a non semi-stable singular fibre the substitution process
turns out to be nontrivial (especially with respect to our purposes)
for two reasons: On the one hand, the Weierstrass equation might
simply lose its minimality by way of the substitution. On the other
hand, the minimalized Weierstrass equation can also become inflated.
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This expression is meant to describe that the pull-back surface has
more than one nonreduced fibre. Then there is a quadratic twist of
the surface, sending x �→ α2x and y �→ α3y, which replaces an even
number of nonreduced fibres whose cusps are just the zeros of α by
their reduced relatives, i.e., I∗n by In and II∗, III∗, IV ∗ by IV, III, II,
respectively. Following [8] this process will be called deflation. Since
our main interest lies in elliptic (K3) surfaces with only semi-stable
fibres, this provides an appropriate tool to construct such surfaces.

Indeed, it is exactly these two methods (minimalization and deflation
after a suitable base change) which we will use to resolve the non semi-
stable fibres of the base surface Y . Since the explicit behavior of the
singular fibres under a base change can directly be derived from [18,
IV.9, Table 4.1] or be found in [9, Section 7], we only sketch it in the
next figure where the number next to an arrow denotes the order of
ramification under π (of one pre-image). Note that the fibres of type
I∗n are exceptional in that they allow two possibilities of substitution
by semi-stable fibres: Either by ramification of even index or by the
pairwise deflation process which was described in the last paragraph.
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FIGURE 1. The resolution of the non semi-stable fibres.

3. The deflated base changes. Our main interest lies in finding
equations over Q for extremal semi-stable elliptic K3 surfaces. By
definition these are singular, i.e., the Picard number is maximal,
equalling h1,1, with finite Mordell-Weil group and only semi-stable
fibres. These assumptions turn out to be quite restrictive. In fact,
it is an immediate consequence that the number of cusps has to be
6, and we find the 112 possible configurations of singular fibres in the
classification of [10, Theorem (3.1)]. The main idea of this paper is
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to produce some of these K3 fibrations by the methods described in
the previous section via the pull-back of a rational elliptic surface by
a base change. This approach is greatly helped by the good explicit
knowledge one has of the rational elliptic surfaces (cf. [3, 9, 14]) such
that one only has to construct suitable base changes.

The starting point for our considerations is a rational elliptic surface
Y

r→ P1 with a section. It is natural to also assume Y to be extremal
since its Mordell-Weil group MW (Y ) injects into the Mordell-Weil
group of the pull-back X

π◦r−→ P1 via the base change π : P1 → P1.
Note, however, that by the general theory X is only guaranteed to
be minimal. This has to be stressed since the process of deflation can
a priori change the Mordell-Weil group. Hence it could also seem worth
considering nonextremal rational elliptic surfaces, especially those with
a small number of cusps as presented in [3, 14]. A close observation
nevertheless shows that these would not produce any configurations
different from those known or obtained in this paper, unless one takes
π to have degree 24. Since this is equivalent to the general construction
involving the J-map, making no effective use of the rational elliptic
surface Y , we will skip this possibility here. See [4] for the only
treatment of this method to date, where such a suitable degree 24 map
is constructed giving rise to the configuration [1, 1, 1, 1, 1, 19]. With two
further exceptions, all other members of the list of [10], which have to
our knowledge been realized over Q until now, come from extremal
rational elliptic surfaces after a base change so we turn to these now.

Extremal rational elliptic surfaces have been completely classified
by Miranda-Persson in [9]. At first there are six semi-stable surfaces
with four cusps which had previously been identified to be modular by
Beauville [2]. As explained, these have been exhaustively treated in
[19], giving rise to the semi-stable extremal elementary fibrations of
[13]. Furthermore there are four surfaces with only two cusps (one
of them appearing in a whole continuous family), which are of no
use for our purpose since they have no fibre of type In or I∗n with
n > 0 at all. The remaining six extremal rational elliptic surfaces have
three cusps and each exactly one nonreduced fibre while the other two
singular fibres are semi-stable. These are the surfaces we are going
to investigate for a pull-back via a base change. For the remaining
part of this section we will content ourselves with those (“deflated”)
base changes π which give rise to a noninflated pull-back K3 surface
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X
π◦r→ P1 after minimalizing. The pull-back surfaces coming from

inflating base changes will be dealt with in Section 6.

Given an extremal rational elliptic surface Y with three cusps there
are a number of conditions on the base change π to be met (be it
deflated or not). Evidently, the Euler number e(X) = 24 of the pull-
back surface X predicts the degree of π, only depending on the type of
the nonreduced fibre W ∗ of Y . On the one hand, if W is of additive
type, i.e., W ∈ {II, III, IV }, we will eventually replace it by smooth
fibres after minimalizing and deflating, if necessary. Hence, when the
other two singular fibres are of type Im and In with m, n ∈ N, we have
m + n ≤ 4 and e(X) = (degπ)(m + n). On the other hand, if the
nonreduced fibre has type I∗k and the other singular fibres have again
m and n components, we have k + m + n = 6 and thus degπ = 4.
Furthermore, our assumption for the pull-back X to have exactly the
minimal number of six semi-stable fibres gives another sharp restriction,
which will in some cases lead to a contradiction to the Hurwitz formula

− 2 ≥ − 2 deg π +
∑

x∈P1

(degπ − #π−1(x)).

Finally, as we decided to content ourselves to resolving the nonreduced
fibre W ∗ by a deflated base change in this section, the ramification
index at the corresponding cusp has to be divisible by 2, 3, 4, or 6 if
W = In, IV, III, or II, respectively, by the last figure.

It will turn out that some of the base changes in question can only be
defined over an extension of Q of low degree. Nevertheless, for any base
change it will be immediate from the ramification at the two cusps of
the semi-stable singular fibres that the pull-back surface X has at least
two rational cusps. For simplicity and without loss of generality, we will
choose these by Möbius transformation to be 0 and ∞ (and a further
third rational cusp, if it exists, to be 1). Additionally we will be able
to normalize the Weierstrass equations over Q for every surface such
that the cusps are 0, 1 and ∞ with the nonreduced fibre sitting over
one arbitrary of these. This gives us the opportunity to construct quite
generally the base changes of P1 which will eventually give rise to new
equations of extremal elliptic K3 fibrations before getting too much
into detail with the surfaces themselves. Our requirement that the
pull-back of such a base change π should not factor through a modular
rational elliptic surface is clearly equivalent to π not factoring into a
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composition π′′ ◦ π′ of a degree 2 map π′′ and a further map π′, such
that the nonreduced fibre is already resolved by π′. This is because

then the intermediate pull-back X ′ π′◦r→ P1 would be semi-stable and
necessarily have at most 4 cusps, hence it would be modular by [2].

In what follows we investigate the existence and shape of deflated
base changes with the above listed properties in a case-by-case analysis
depending on the type of the nonreduced fibre W ∗ of the extremal
rational elliptic surface Y with three cusps. Throughout we employ the
notation of [9]. For the computations we wrote a straightforward Maple
program which in all but two cases sufficed completely to determine the
minimal base change. Meanwhile, for the remaining two, we decided to
use Gröbner bases in Macaulay to compute a solution mod p for some
primes p and then lift to characteristic 0.

At first assume W to be II. According to [9, Section 5] there is
up to isomorphism a unique such surface, named X2 1 1, whose other
two singular fibres are both of type I1. Hence, for the pull-back X
to have Euler number e(X) = 24, we would need π to have degree 12
and ramification index 12 or (6, 6) at the cusp of the nonreduced fibre.
Then, the restriction of the other two cusps to have exactly six pre-
images under π leads to a contradiction by the Hurwitz formula.

The situation is similar if W = III which implies Y = X3 2 1 to
have further singular fibres I2, I1. The III∗ fibre requires ramification
of index a multiple of 4, so π must have degree 8 with ramification
index 8 or (4, 4) at the cusp of this fibre. Again, the Hurwitz formula
rules out the pull-back surface X to have only six (semi-stable) singular
fibres. We will realize in the sixth section that it is nevertheless possible
to construct adequate nondeflated base changes which eventually help
resolve the nonreduced fibre and obey the Hurwitz formula.

Turning to W = IV this gives a priori two possibilities for the elliptic
surface Y , one of which, namely X4 3 1 with singular fibres of type
IV ∗, I3, I1, actually exists by [9]. Since a IV ∗ fibre requires the
ramification index to be divisible by 3, we need π to have degree 6 and
ramification of order (3, 3) at the cusp of this fibre (since ramification
index 6 would contradict the other two fibres having six pre-images
again by the Hurwitz formula). The suitable maps are presented in the
next paragraphs. Throughout, we assume the IV ∗ fibre to sit above 1.
Since such an adequate map π, which was totally ramified above one of



ELLIPTIC FIBRATIONS OF EXTREMAL K3 SURFACES 617

the two remaining cusps, would necessarily be composite as excluded
above, we only have to deal with those maps such that 0 has two or
three pre-images (and then exchange 0 and ∞).

At first let us consider those maps π of degree 6 which have ramifi-
cation index (3, 3) at 1 such that both 0 and ∞ have three pre-images.
Our restriction to maps not factoring into a degree 2 map after a de-
gree 3 map is seen to imply at least one of the cusps to have ramification
index (3, 2, 1). Thus we assume ∞ to have this very ramification in-
dex and search for maps such that 0 has ramification index (4, 1, 1),
(3, 2, 1) or (2, 2, 2). However, a map with the last ramification cannot
exist since the corresponding pull-back of X4 3 1 does not appear in
the list of [10]. Meanwhile the computations show that the second is
only realizable over the cubic extension Q(x3 + 12x − 12)/Q. (With
v a solution of 5x3 + 12x2 + 12x + 4 it can be given as π̃((s : t)) =
(s3(s− t)2(s + (2 + 3v)t) : −(2 + 3v)t3(s+ (1 + v)2t)2(s + t/(5v + 2))).)
Hence, we have to content ourselves with the construction of the first
base change:

Consider the map π3,4 given as

π3,4 : P1 −→ P1

(s : t) �−→ (27s4(125t2 − 90st − 27s2) : −3125t3(t − s)2(5t + 4s)).

We have 27s4(125t2 − 90st− 27s2) + 3125t3(t− s)2(5t + 4s) = (25t2 −
10st − 9s2)3, so π3,4 has the desired properties.

Now we come to those base changes π of degree 6 and ramification
index (3, 3) at 1 such that 0 has only two pre-images and ∞ has four.
Hence, the respective ramification indices have to be (5, 1), (4, 2) or
(3, 3) and (2, 2, 1, 1) or (3, 1, 1, 1). Note that only the first and the last
of the whole of these do not allow a compositum of a degree 3 and a
degree 2 map, so at least one of these two must be at hand for a map
of interest.

Let us first construct those maps with ramification index (5, 1) at 0.
These are:

π5,3 : P1 −→ P1

(s : t) �−→ (729s5(s − t) : −t3(135s3 + 9st2 + t3))

with 729s5(s − t) + t3(135s3 + 9st2 + t3) = (9s2 − 3st − t2)3 and
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π5,2 : P1 −→ P1

(s : t) �−→ (2633s5t : −(s2 − 4st − t2)2(125s2 + 22st + t2))

with 2633s5t + (s2 − 4st− t2)2(125s2 + 22st + t2) = (5s2 + 10st + t2)3.

The other nonfactoring maps require ramification index (3, 1, 1, 1)
at ∞. However, it is immediate that there is no such map π with
ramification index (3, 3) at 0: After exchanging 1 and ∞, the map π
would have to look like (f3

0 g3
0 : f3

1 g3
1) with distinct linear homogeneous

factors fi, gi. Then, with � a primitive third root of unity, f3
0 g3

0−f3
1 g3

1 =
(f0g0 − f1g1)(f0g0 − �f1g1)(f0g0 − �2f1g1) could obviously not have a
cubic factor. Hence the next map completes the list of suitable base
changes for X4 3 1, taking into account the permutation of 0 and ∞
via exchanging s and t:

π4,3 : P1 −→ P1

(s : t) �−→ (729s4t2 : −(s − t)3(8s3 + 120s2t − 21st2 + t3))

with 729s4t2 + (s − t)3(8s3 + 120s2t − 21st2 + t3) = (2s2 − 8st − t2)3.

We conclude this section by considering the nonreduced fibre W∗ to
equal I∗n for some n ≥ 0. By [9] there are three extremal rational
elliptic surfaces with such a singular fibre. They have two further
singular fibres, both semi-stable, and will be introduced in the next
section. Independent of the surface, we have already seen that an
adequate deflated base change π must have degree 4 and ramification
of index (2, 2) or 4 at the cusp of the I∗n fibre. In this setting, the
condition on X to be extremal is equivalent to the two other cusps
having 4 or 5 pre-images, respectively. Assuming the nonreduced fibre
to sit over the cusp ∞ = (1 : 0), we now construct the suitable base
changes π which do not factor into two maps of degree 2. By inspection,
this property is equivalent to one of the cusps having two pre-images
with ramification index (3, 1).

At first let us consider those base changes π which are totally ramified
at ∞. By the above considerations, we have to assume the other two
cusps to have 2 and 3 pre-images with ramification indices (3, 1) and
(2,1,1). Up to exchanging them, for example, by

φ : (s : t) �−→ (t − s : t),
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the map π can be realized as

π4 : P1 −→ P1

(s : t) �−→ (256s3(s − t) : −27t4),

since (256s3(s − t) + 27t4) = (4s − 3t)2(16s2 + 8st + 3t2).

We now come to the case where the ramification of π at ∞ has
index (2, 2). Our restrictions imply ramification of index (3, 1) at one
of the other two cusps (without loss of generality at 1). Then the last
cusp also requires two pre-images and thus ramification of index (3, 1)
or (2, 2). Before we conclude this section with a construction of a
map π with the first ramification index, we sketch an argument why
the second cannot exist: Given such a map it could be expressed as
(f2

0 g2
0 : f2

1 g2
1) with distinct homogeneous linear forms fi, gi in s, t.

For the ramification index at 1, we would compute the difference
f2
0 g2

0 − f2
1 g2

1 = (f0g0 + f1g1)(f0g0 − f1g1) which obviously cannot have
a cubic factor.

As announced, we conclude this section with a base change π2 of
degree 4 which is ramified only at 0, 1 and ∞ with ramification indices
(3, 1), (3, 1) and (2, 2), respectively:

π2 : P1 −→ P1

(s : t) �−→ (64s3(s − t) : (8s2 − 4st − t2)2).

In the next two sections we will substitute the base changes π3,4, π5,3,
π5,2, π4,3, π2 and π4 into the normalized Weierstrass equations of the
extremal rational elliptic surfaces with three singular fibres in order to
get equations over Q for extremal K3 surfaces with six singular fibres,
all of which are semi-stable.

4. The equations coming from degree 4 maps. In this and
the next section we proceed as follows to obtain equations for extremal
K3 surface with six semi-stable fibres: Starting from the Weierstass
equation given for the extremal rational elliptic surfaces in [9, Table
5.2] we apply the normalizing Möbius transformation which maps the
cusps to 0, 1 and ∞ and then substitute s and t by the factors of
the deflated base changes πi constructed in the previous section. After
minimalizing by an admissible change of variables this gives the desired
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Weierstrass equations for 16 extremal elliptic K3 surfaces from the list
of [10]. Throughout we choose the coefficients of the polynomials A
and B involved in the Weierstrass equation to be minimal by rescaling,
if necessary. Note that, for all semi-stable examples in the remainder of
this paper, the pull-back surface X inherits a nontrivial section from the
rational elliptic surface Y by construction. As a consequence, we are
able to derive the isomorphism class of X (in terms of the intersection
form on its transcendental lattice) from the classification in [15].

In this section we consider only the extremal rational elliptic surfaces
with an I∗n fibre, thus requiring a base change of degree 4. Before
substituting by the base changes π4 or π2 we therefore choose the
normalizing Möbius transformation in such a way that the I∗n fibre
sits above ∞.

Let us start with X411 which has Weierstrass equation

y2 = x3 − 3 t2(s2 − 3t2) x + s t3(2s2 − 9t2)

locating an I∗4 fibre over ∞ and two I1 fibres over ±2. Substituting
(s : t) �→ (4s − 2t : t) maps the two I1 fibres to 0 and 1, giving

y2 = x3 − 3 t2(16s2 − 16st + t2) x + 2 t3(2s − t)(32s2 − 32st − t2).

Finally, we substitute by π4 and get the Weierstrass equation of an
extremal K3 surface:

y2 = x3 − 3 (9s8 + 48s7t + 48s4t4 + 64s6t2 + 128s3t5 + 16t8) x

− 2 (3s4 + 8s3t + 8t4)
(9s8 + 48s7t + 48s4t4 + 64s6t2 + 128s3t5 − 8t8).

This provides indeed a realization of the configuration [1,1,1,2,3,16]
in the notation of [10], i.e., three fibres of type I1, one of types I2, I3

and I16 each.
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FIGURE 2. A realization of [1,1,1,2,3,16].
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On the other hand, we can also substitute by π2 in the normalized
Weierstrass equation and obtain:

y2 = x3− 3 (16s8− 64s7t− 224s5t3+392t4s4+ 64s6t2+112t5s3+ 16t6s2

+ 8t7s+t8) x − 2 (2s2−4st− t2)(2s2+ t2)

(16s8− 64s7t +544s5t3− 952t4s4+64s6t2− 272t5s3+16t6s2+ 8t7s+ t8)

which realizes [1,1,3,3,8,8].
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FIGURE 3. A realization of [1,1,3,3,8,8].

The same procedure applied to the surface X141 with Weierstrass
equation

y2 = x3 − 3 (s − 2t)2(s2 − 3t2) x + s(s − 2t)3(2s2 − 9t2)

gives three more examples, connected by the Möbius transformation
φ :

The normalization of the cusps leads to the Weierstrass equation

y2 = x3 − 3 t2(16t2 − 16st + s2) x + 2 t3(s − 2t)(s2 + 32st − 32t2)

which has the I4 fibre sitting above 0. Substitution of π4 produces a
realization of [1,1,2,4,4,12]:

y2 = x3 − 3 (16t8 + 48s4t4 − 64s3t5 + 9s8 − 24s7t + 16s6t2) x

− 2 (2t4 + 3s4− 4s3t)(−32t8− 96s4t4 + 128s3t5 + 9s8− 24s7t + 16s6t2)
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FIGURE 4. A realization of [1,1,2,4,4,12].
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FIGURE 5. A realization of [1,3,4,4,4,8].

Conjugation by φ implies the Weierstrass equation

y2 = x3 − 3 t2(t2 + 14st + s2) x − 2 (t + s)t3(t2 − 34st + s2)

which leads to the following realization of [1,3,4,4,4,8]

y2 = x3 + 3 (−24s7t − 16s6t2 − 9s8 − t8 + 42s4t4 + 56s3t5) x

− 2 (9s8 + 24s7t + 16s6t2 + 102s4t4 + 136s3t5 + t8)(−3s4 − 4s3t + t4)

On the other hand, substitution of π2 in the normalized Weierstrass
equation gives:

y2 = x3− 3 (s8− 4s7t +16s5t3− 28t4s4+ 4s6t2− 8t5s3+16s2t6+ 8st7+ t8) x

− (2s4 − 4s3t + 4st3 + t4)

(s8 − 4s7t − 32s5t3 + 56t4s4 + 4s6t2 + 16t5s3 − 32s2t6 − 16st7 − 2t8).

This is a realization of [1,2,2,3,4,12], which is not changed by conju-
gation by φ.
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FIGURE 6. A realization of [1,2,2,3,4,12].

Finally for this section of elliptic surfaces requiring a base change of
degree 4, we turn to the surface X2 2 2 in the notation of [9]. Miranda-
Persson give the Weierstrass equation

y2 = x3 − 3 st(s − t)2 x + (s − t)3(s3 + t3)
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which has cusps the third roots of unity with an I∗2 fibre above 1
and I2 fibres above the two primitive roots ω, ω2. By mapping ω to
∞ and likewise ω2 to 0 while fixing 1, taking ω in the upper half
plane, we obtain a Weierstrass equation which is not defined over Q.
Nevertheless, the change of variables x �→ ξ2x, y �→ ξ3y with ξ = 3

√−3
leads to a Weierstrass equation over Q with the same cusps:

y2 = x3 − 3 (s2 − st + t2)(s − t)2x + (s − 2t)(2s − t)(t + s)(s − t)3.

We exchange the cusps 1 and ∞ and subsequently substitute by π4

or π2. The first substitution produces a realization of [2,2,2,4,6,8]:

y2 = x3 − 3 (9s8 − 24s7t + 16s6t2 + 3s4t4 − 4s3t5 + t8) x

− (2t4 + 3s4 − 4s3t)(3s4 − 4s3t − t4)(6s4 − 8s3t + t4)
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FIGURE 7. A realization of [2,2,2,4,6,8].

Meanwhile the second realizes [2,2,4,4,6,6]:

y2 = x3−3 (16s8−64ts7+64t2s6+16t3s5−28t4s4−8t5s3+16t6s2+8t7s+t8) x

+ 2 (2s2−4st−t2)(8s4−16s3t+4st3+ t4)(t2+2s2)(2s4−4s3t+4st3+t4).
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FIGURE 8. A realization of [2,2,4,4,6,6].
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5. The equations coming from degree 6 maps. The extremal
rational elliptic surface X4 3 1 gives rise to 9 extremal elliptic K3
surfaces, 8 of which can be realized over Q as pull-back by a base
change of P1. They are presented in the following:

We modify the Weierstrass equation of X4 3 1 given in [9] by ex-
changing 1 and ∞ such that it becomes

y2 = x3 − 3 (s − t)3(s − 9t) x − 2(s − t)4(s2 + 18st − 27t2)

with the I3 fibre above 0 and the I1 fibre above ∞ while the IV ∗ fibre
sits above 1. Thus, we can resolve the nonreduced fibre by substituting
one of the degree 6 base changes of the third section into the normalized
Weierstrass equation of X4 3 1 (which is also possible after permuting
0 and ∞).

At first let us look at the effect of π3,4. This leads to the Weierstrass
equation

y2 = x3−3 (−15s4t2+54s5t+81s6+15s2t4−100s3t3+6st5−t6)(9s2+2st−t2)x

− 2 (19683s12+26244s11t +1458s10t2+43740s9t3+25785s8t4− 16776s7t5

− 10108s6t6+ 3864s5t7 + 885s4t8 − 380s3t9 − 6s2t10 + 12st11 − t12)

which realizes [1,2,3,3,3,12].
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FIGURE 9. A realization of [1,2,3,3,3,12].

Permuting 0 and ∞ before the substitution gives a realization of
[1,1,3,4,6,9]:

y2 = x3 − 3 (−t6 + 6st5 + 15s2t4 − 100s3t3 − 1215s4t2 + 4374s5t + 6561s6)

(9s2 + 2st − t2) x

+ 2 (14348907s12 + 19131876s11t + 1062882s10t2 − 4855140s9t3

− 185895s8t4 + 452952s7t5 − 7084s6t6 − 20328s5t7

+ 3405s4t8 − 380s3t9 − 6s2t10 + 12st11 − t12).
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FIGURE 10. A realization of [1,1,3,4,6,9].

We now turn to the substitutions by π5,3. These provide the following
realizations of [1,1,1,3,3,15] as

y2 = x3 − 3 (s2 − ts − t2)(s6 − 3s5t + 45t3s3 − 27t5s − 9t6) x

+ 2 (−s12 + 6s11t − 9s10t2 + 90s9t3 − 270t4s8 − 54t5s7 + 819t6s6

+ 54t7s5 − 810t8s4 − 270t9s3 + 243t10s2 + 162st11 + 27t12);
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FIGURE 11. A realization of [1,1,1,3,3,15].

and of [1,3,3,3,5,9] as

y2 = x3 − 3, (s2 − st − t2)(5s3t3 − 3st5 − t6 + 9s6 − 27s5t) x

+ 2 (27s12 − 162s11t + 243s10t2 + 90s9t3 − 270s8t4 − 54s7t5

+ 119s6t6 + 54s5t7 + 30s4t8 + 10s3t9 − 9s2t10 − 6st11 − t12).
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FIGURE 12. A realization of [1,3,3,3,5,9].
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Similarly, substitution by π5,2 allows us to realize [1,1,2,2,3,15] by
virtue of the Weierstrass equation

y2 = x3− 3 (125s6 − 786s5t + 1575s4t2 + 1300s3t3 + 315s2t4 + 30st5 + t6)

(5s2 + 10st + t2) x

+ 2 (15625s12 + 112986s10t2 − 100500s11t − 941300s9t3

+ 1514175s8t4 + 3849240s7t5 + 2658380s6t6 + 912696s5t7

+ t12 + 180375s4t8 + 21500s3t9 + 1530s2t10 + 60st11)
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FIGURE 13. A realization of [1,1,2,2,3,15].

and [1,3,3,5,6,6] by

y2 = x3− 3 (125s6 + 14574s5t + 1575s4t2 + 1300s3t3 + 315s2t4 + 30st5 + t6)

(5s2 + 10st + t2) x

− 2 (15625s12 − 4132500s11t − 48851622s10t2 − 51744500s9t3

− 40418625s8t4 − 6311400s7t5 + 1690700s6t6 + 880440s5t7

+ 180375s4t8 + 21500s3t9 + 1530s2t10 + 60st11 + t12).
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FIGURE 14. A realization of [1,3,3,5,6,6].
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Furthermore, we can also substitute by π4,3 and produce Weierstrass
equations for [1,1,1,3,6,12] as

y2 = x3− 3 (−276s4t2 + 8s6 + 96s5t + 416s3t3 − 186s2t4 + 24st5 − t6)

(2s2 + 8st − t2) x

+ 2 (11160s8t4 + 7392s10t2 − 15232s9t3 − 130176s7t5

+ 220056s6t6 − 160416s5t7 + 54792s4t8 + 64s12

+ 1536s11t − 9760s3t9 + 948s2t10 − 48st11 + t12)
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FIGURE 15. A realization of [1,1,1,3,6,12].

and for [2,3,3,3,4,9] as

y2 = x3− 3 (8s6 + 96s5t + 6204s4t2 + 416s3t3 − 186s2t4 + 24st5 − t6)

(2s2 + 8st − t2) x

− 2 (68400s4t8 + 64s12 − 101472s10t2 + 1536s11t

+ 2751144s6t6 − 1321600s9t3 − 9460008s8t4 − 5791104s7t5

− 487008s5t7 − 9760s3t9 + 948s2t10 − 48st11 + t12).
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FIGURE 16. A realization of [2,3,3,3,4,9].
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Let us finally remark that substitution by π̃ allows us to realize the
configuration [1,2,3,3,6,9] over the number field Q(x3 + 12x− x), but
we will not give the equations here.

6. The inflating base changes and the resulting equations. As
announced, we now turn to the other possibility to resolve nonreduced
fibres in the pull-back surface X of an extremal rational elliptic surface
Y under a base change π. In this case we allow π to be inflating, i.e., X
may contain nonreduced fibres of type I∗n for n ≥ 0 apart from its semi-
stable fibres. The only additional assumption to be made is that their
number is even, since then we can substitute them by their semi-stable
reduced relatives after a quadratic twist of X via deflation.

Although one should hope to produce a number of new configurations
by this method, a close inspection shows that in fact none arise from the
extremal rational elliptic surfaces considered in the last two sections.
Nevertheless this approach is indeed quite useful, since it enables us to
work with the extremal rational elliptic surface X3 2 1 as well. The
reason is that the Hurwitz formula is not violated if we choose the
degree 8 base change π of P1 to have ramification index (2, 2, 2, 2) at
the cusp of the III∗ fibre (instead of being divisible by 4 before). The
fibre is thus replaced by four fibres of type I∗0 which can easily be twisted
away. Therefore, we have to assume the other two cusps to have six
pre-images in total. Indeed there are (up to exchanging the cusps 0 and
∞) 13 such base changes which do not allow a factorization through an
extremal rational elliptic surface. In the following we concentrate on
the 9 of these which can be defined over Q and present the resulting 17
further extremal semi-stable elliptic K3 surfaces which arise from them
by pull-back from X321. The four base changes which are not defined
over Q will be shortly sketched at the end of this section.

Remember that X3 2 1 has singular fibres of type III∗, I2 and I1.
We normalize the Weierstrass equation for X3 2 1 given in [9] such that
the III∗ fibre sits above 1 and the I2 and I1 fibre above 0 and ∞,
respectively:

y2 = x3 − 3 (s − t)3(s − 4t) x − 2 (s − t)5(s + 8t).

Hence, in the following we investigate the degree 8 base changes of P1

with ramification index (2, 2, 2, 2) at 1 such that the further cusps 0
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and ∞ have six pre-images in total. We will only concentrate on those
adequate base changes which give rise to new examples of extremal
elliptic K3 fibrations, i.e., the configuration of singular fibres has not
been realized over Q yet, and assume without loss of generality that 0
does not have more pre-images than ∞ (since we can exchange these
afterwards). By inspection, the three base changes which are totally
ramified at 0 realize known constellations of singular fibres. So, we now
turn to the base changes π such that 0 has two pre-images under π and
list them by ramification indices at 0.

There are a priori four base changes with ramification index (7,1) at
0, since ramification (2, 2, 2, 2) at both other cusps, 1 and ∞, would
contradict high ramification at the third cusp by the before mentioned
considerations. However, the computations show that a base change
with ramification index (4, 2, 1, 1) at ∞ can only be defined over the
quadratic extension Q(

√−7). Hence we content ourselves with the
remaining three base changes for the moment:

The first has ramification (5, 1, 1, 1) at ∞ and can be given as

π : P1 −→ P1

(s : t) �−→ (s7(s − 4t) : −4t5(14s3 + 14ts2 + 20t2s + 25t3))

since

s7(s − 4t) + 4t5(14s3 + 14ts2 + 20t2s + 25t3)
= (−10t4 − 4st3 − 2s2t2 + 2s3t + s4)2.

Substituting π into the normalized Weierstrass equation of X3 2 1

gives, after an appropriate change of variables, a realization of
[1,1,1,2,5,14]:

y2 = x3− 3 (16s8 + 32s7t − 112t5s3 + 56t6s2 − 40t7s + 25t8) x

− 2 (−5t4 + 4t3s − 4s2t2 + 8s3t + 8s4)
(8s8 + 16s7t + 112t5s3 − 56t6s2 + 40t7s − 25t8).
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FIGURE 17. A realization of [1,1,1,2,5,14].

Furthermore, permuting the cusps 0 and ∞ before the substitution
leads to the following realization of [1,2,2,2,7,10]:

y2 = x3− 3 (−14t5s3 + 14t6s2 − 20t7s + 25t8 + s8 + 4s7t) x

+ (−10t4 + 4t3s − 2s2t2 + 2s3t + s4)
(14t5s3 − 14t6s2 + 20t7s − 25t8 + 2s8 + 8s7t)
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FIGURE 18. A realization of [1,2,2,2,7,10].

The second base change, this time with ramification index (3,3,1,1)
at ∞, can be chosen as

π : P1 −→ P1

(s : t) �−→ (1728s7t : −(s2 − 35st + 49t2)3(7s2 − 13st + 7t2))

since we have

1728s7t + (s2 + 48t) − 12544t3(7s2 − 28st + 24t2)2(s − t)
= (384t4 − 640t3s + 288s2t2 − 24s3t − s4)2.
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As pull-back of X321 via π we realize the constellations [1,2,2,2,3,14]:

y2 = x3− 3 (49s8 − 316s7t + 4018s6t2 − 8624s5t3 + 5915s4t4 − 1904s3t5

+ 322s2t6 − 28st7 + t8) x

+ 2 (49s8 − 964s7t + 4018s6t2 − 8624s5t3 + 5915s4t4 − 1904s3t5

+ 322s2t6 − 28st7 + t8)(t4 − 14st3 + 63s2t2 − 70s3t − 7s4).
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FIGURE 19. A realization of [1,1,2,3,3,14].

and [1,2,2,6,6,7]:

y2 = x3 − 3 (49s8 + 6164s7t + 4018s6t2 − 8624s5t3

+ 5915s4t4 − 1904s3t5 + 322s2t6 − 28st7 + t8) x

− 2 (49s8 − 14572s7t + 4018s6t2 − 8624s5t3

+ 5915s4t4 − 1904s3t5 + 322s2t6 − 28st7 + t8)
(t4 − 14st3 + 63s2t2 − 70s3t − 7s4).
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FIGURE 20. A realization of [1,2,2,6,6,7].

At this point, we should recall that all our pull-back surfaces in-
herit the group of sections of the rational elliptic surfaces. As a con-
sequence the above fibration of [1, 1, 2, 3, 3, 14] necessarily has Mordell-
Weil group Z/(2). Hence, it differs substantially from the surface with
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the same configuration and MW = (0), as obtained as a double sextic
over Q in [1, p. 55].

For the third base change, which has ramification index (3, 2, 2, 1) at
∞, we consider the map

π : P1 −→ P1

(s : t) �−→ (s7(s + 48t) : 256t3(7s2 − 28st + 24t2)2(s − t))

with

s7(s + 48t) − 12544t3(7s2 − 28st + 24t2)2(s − t)
= (384t4 − 640t3s + 288s2t2 − 24s3t − s4)2.

The pull-back via π gives rise to the constellations [1,2,2,2,3,14]:

y2 = x3 − 3 (s8 + 12s7t − 784t3s5 + 1764t4s4 − 1512t5s3 + 616t6s2

− 120t7s + 9t8) x

+ (−s8 − 12s7t − 1568t3s5 + 3528t4s4 − 3024t5s3 + 1232t6s2

− 240t7s + 18t8)(−2s4 − 12s3t + 36s2t2 − 20st3 + 3t4).
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FIGURE 21. A realization of [1,2,2,2,3,14].

and [1,2,4,4,6,7]:

y2 = x3− 3 (s8 − 392s5t3 + 1764s4t4 − 3024s3t5 + 2464s2t6 − 960st7

+ 144t8 + 24s7t) x

+ 2 (−24t4 + 80st3 − 72s2t2 + 12s3t + s4)

(196s5t3− 882s4t4+ 1512s3t5−1232s2t6+ 480st7− 72t8 + s8+ 24s7t).
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FIGURE 22. A realization of [1,2,4,4,6,7].

Turning to base changes with ramification index (6,2) at 0, we
immediately conclude that all possible maps either do not exist, e.g.,
since the configuration of singular fibres resulting from the pull-back
does not meet the criteria of [10] or realize configurations known from
[19] or the previous sections. Since the situation is exactly the same
for ramification index (4,4) at 0, the only other ramification index at 0
which we have to deal with at this point is (5,3). Again we can exclude
the ramification index at ∞ to be (2, 2, 2, 2) or (3, 3, 1, 1) by the above
considerations, so we have three possibilities left.

For ramification index (5, 1, 1, 1) at ∞ consider the map

π : P1 −→ P1

(s : t) �−→ (214s5(s − t)3 : t5(273s3 − 2511s2t − 48st2 − 9t3))

with

(214s5(s − t)3 − t5(273s3 − 2511s2t − 48st2 − 9t3))
= (3t4 + 8st3 + 48s2t2 − 192s3t + 128s4)2.

This base change realizes [1,1,1,5,6,10]:

y2 = x3− 3 (16s8− 96s7t +192s6t2−128s5t3− 48s3t5+ 88s2t6+ 24st7+ 9t8) x

− 2 (3t4 + 4st3 + 12s2t2 − 24s3t + 8s4)

(8s8 − 48s7t + 96s6t2 − 64s5t3 + 48s3t5 − 88s2t6 − 24st7 − 9t8)
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FIGURE 23. A realization of [1,1,1,5,6,10].

and, after exchanging 0 and ∞, also [2,2,2,3,5,10]:

y2 = x3 − 3 (s8 − 6s3t5 + 22s2t6 + 12st7 + 9t8 − 12s7t + 48s6t2 − 64s5t3) x

+ (6t4 + 4st3 + 6s2t2 − 6s3t + s4)

(6s3t5 − 22s2t6 − 12st7 − 9t8 + 2s8 − 24s7t + 96s6t2 − 128s5t3).
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FIGURE 24. A realization of [2,2,2,3,5,10].

The ramification index (4, 2, 1, 1) at ∞ can be obtained by the
following base change:

π : P1 −→ P1

(s : t) �−→ (222s5(s − t)3 : t4(24s + t)2(320s2 − 2421st − 9t2))

with

222s5(s − t)3 − t4(24s + t)2(320s2 − 2421st − 9t2)
= (211s4 − 3072s3t + 768s2t2 + 128st3 + 3t4)2.
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This realizes [1,1,2,4,6,10]:

y2 = x3 − 3 (16s8 − 192s7t + 768s6t2 − 1024s5t3 − 720s4t4

+ 2784s3t5 + 1312s2t6 + 192st7 + 9t8) x

− 2 (8s4 − 48s3t + 48s2t2 + 32st3 + 3t4)
(8s8 − 96s7t + 384s6t2 − 512s5t3 + 720s4t4

− 2784s3t5 − 1312s2t6 − 192st7 − 9t8).
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FIGURE 25. A realization of [1,1,2,4,6,10].

In this case the permutation of 0 and ∞ leads to the constellation
[2,2,3,4,5,8]:

y2 = x3 − 3 (−45s4t4 + 348s3t5 + 328s2t6 + 96st7 + 9t8 + s8 − 24s7t

+ 192s6t2 − 512s5t3) x + (s4 − 12s3t + 24s2t2 + 32st3 + 6t4)

(45s4t4−348s3t5−328s2t6−96st7−9t8+2s8−48s7t +384s6t2−1024s5t3)
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FIGURE 26. A realization of [2,2,3,4,5,8].

The final possible ramification index at ∞ is (3, 2, 2, 1) which is
encoded in the following base change:

π : P1 −→ P1

(s : t) �−→ (218s5(s − t)3 : −t3(16s + 9t)(160s2 − 2327st + 81t2)2)
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with

218s5(s − t)3 + t3(16s + 9t)(160s2 − 2327st + 81t2)2

= (512s4 − 768s3t + 192s2t2 + 432st3 − 243t4)2.

This base change enables us to realize [1,2,2,3,6,10]:

y2 = x3 − 3 (9s8 − 36s7t + 48s6t2 + 112s5t3 − 380s4t4 + 312s3t5 + 72s2t6

− 216st7 + 81t8) x + (−6s4 + 12s3t − 4s2t2 − 12st3 + 9t4)

(−9s8 + 36s7t − 48s6t2 + 288s5t3 − 760s4t4 + 624s3t5

+ 144s2t6 − 432st7 + 162t8)
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FIGURE 27. A realization of [1,2,2,3,6,10].

and furthermore [2,3,4,4,5,6]:

y2 = x3 − 3 (−208s5t3 − 380s4t4 + 312s3t5 + 72s2t6 − 216st7

+ 81t8 + 144s8 − 576s7t + 768s6t2) x

− 2 (−6s4 + 12s3t − 4s2t2 − 12st3 + 9t4)
(816s5t3 − 380s4t4 + 312s3t5 + 72s2t6 − 216st7

+ 81t8 − 288s8 + 1152s7t − 1536s6t2).
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FIGURE 28. A realization of [2,3,4,4,5,6].
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We end this part by investigating the base changes of P1 such that
both cusps, 0 and ∞ have three pre-images. As a starting point we
take ramification index (6,1,1) at 0. Of the three ramification indices
at ∞ which prevent the base change from factorization one, namely
(4, 2, 2), cannot occur while, for another, (4, 3, 1), a corresponding map
can only be defined over the number field Q(

√−3). So there is only
one base change, with ramification index (5, 2, 1) at ∞, remaining to
construct. It can be given as

π : P1 −→ P1

(s : t) �−→ (4s6(9s2 + 24st + 70t2) : t5(14s − 5t)2(4s − t))

with

4s6(9s2 + 24st + 70t2) − t5(14s − 5t)2(4s − t)
= (5t4 − 24t3s + 18s2t2 + 8s3t + 6s4)2.

The pull-back surface has the singular fibres [1,2,2,2,5,12]:

y2 = x3 − 3 (9s8 + 24s7t + 70s6t2 − 784t5s3 + 756t6s2 − 240t7s + 25t8) x

+ (50t82 − 9s8 − 24s7t − 70s6t2 − 1568t5s3 + 1512t6s2 − 480t7s)

(5t4 − 24st3 + 18s2t2 + 8s3t + 6s4)

�

��

�

�

��

�

�

���

�
�
�
�
�

�

�

��

�
�
�
�
�

�

�

�
�

�

�
�

�
�
�

�

�

�
�

�

�
�
�
��

�

� �

���
�

�

�
�

�

�
�
�
�
�

�

�

�
�

�

�
�
�
��

�

�

��

�

�

��

�

�

��

�
�
�
�
�

�

�

��

�
�
�
�
�

�

�
�

�
�
�

�

FIGURE 29. A realization of [1,2,2,2,5,12].

As permuting 0 and ∞ gives rise to the constellation [1,1,2,4,6,10]
which we already realized in the preceding paragraphs where 0 was
assumed to have only two pre-images, we now come to base changes
with ramification index (5,2,1) at 0. Again, the other cusp ∞ can
be excluded to have ramification index (4, 2, 2). Furthermore, the base
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change with ramification index (5, 2, 1) at ∞ can only be defined over
the number field Q(7x3 + 19x2 + 16x + 8). So, we only construct the
remaining base changes with ramification index (4, 3, 1) or (3, 3, 2) at
∞. For the first, consider the map

π : P1 −→ P1

(s : t) �−→ (28s5(24s − 49t)2(4s + 21t) : −77t4(s − t)3(15s − 7t))

with

(28s5(24s − 49t)2(4s + 21t) + 77t4(s − t)3(15s − 7t))
= (−2401t4 + 6174t3s − 3381s2t2 + 224s3t + 384s4)2.

This enables us to realize the configurations [1,2,3,4,4,10]:

y2 = x3 − 3 (36864s8 + 6144s7t − 12992s6t2 + 2352t3s5

+ 5145t4s4 − 2548t5s3 + 462t6s2 − 36t7s + t8) x

− 2 (−t4 + 18st3 − 69s2t2 + 32s3t + 384s4)
(18432s8 + 3072s7t − 6496s6t2 + 1176t3s5

− 5145t4s4 + 2548t5s3 − 462t6s2 + 36t7s − t8).
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FIGURE 30. A realization of [1,2,3,4,4,10].

and [1,2,2,5,6,8]:

y2 = x3 − 3 (5145t4s4 − 2548t5s3 + 462t6s2 − 36t7s + t8

+ 589824s8 + 98304s7t − 207872s6t2 + 37632t3s5) x

+ 2 (−t4 + 18st3 − 69s2t2 + 32s3t + 384s4)
(−5145t4s4 + 2548t5s3 − 462t6s2 + 36t7s − t8

+ 1179648s8 + 196608s7t − 415744s6t2 + 75264t3s5).
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FIGURE 31. A realization of [1,2,2,5,6,8].

The second base change with ramification index (3, 3, 2) at ∞ can be
constructed in the following way

π : P1 −→ P1

(s : t) �−→ (9s5(s + 6t)2(9s + 4t) : −4t2(10s2 + 24st + 9t2)3)

with

9s5(s + 6t)2(9s + 4t) + 4t2(10s2 + 24st + 9t2)3

= (9s4 + 56s3t + 234s2t2 + 216st3 + 54t4)2.

This enables us to realize the configurations [2,2,3,3,4,10]:

y2 = x3 − 3 (1296s8 + 8064s7t + 77392s6t2 + 232992s5t3 + 319680s4t4

+ 214272s3t5 + 71928s2t6 + 11664st7 + 729t8) x

− 2 (27t4 + 216st3 + 468s2t2 + 224s3t + 72s4)
(648s8 + 4032s7t − 57304s6t2 − 229104s5t3 − 319680s4t4

− 214272s3t5 − 71928s2t6 − 11664st7 − 729t8)
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FIGURE 32. A realization of [2,2,3,3,4,10].
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and [1,2,4,5,6,6]:

y2 = x3 − 3 (4348s6t2 + 8496s5t3 + 19980t4s4 + 26784t5s3

+ 17982t6s2 + 5832t7s + 729t8 + 81s8 + 1008s7t) x

+ (54t4 + 216st3 + 234s2t2 + 56s3t + 9s4)
(5696s6t2 − 4608s5t3 − 19980t4s4 − 26784t5s3

− 17982t6s2 − 5832t7s − 729t8 + 162s8 + 2016s7t).
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FIGURE 33. A realization of [1,2,4,5,6,6].

Eventually coming to the remaining base changes with ramification
index (4,3,1), (4,2,2) or (3,3,2) at 0, we realize that all but one of
these either cannot exist or give rise to known configurations of singular
fibres. The final one with ramification index (4, 3, 1) at both cusps,
0 and ∞, however, can only be defined over the quadratic extension
Q(

√
2) of Q.

We conclude this section by collecting the four base changes discussed
above which are only defined over an extension of Q. They are
presented in the order of appearance in the course of this section:

• With v a solution of 2x2 − 7x + 28, a base change with ram-
ification indices (7, 1) and (4, 2, 1, 1) at 0 and ∞ can be given by
π((s : t)) = (s7(s + 2vt) : (10633/4v − 2401)/40 t4(s − t)2(s2 + (6 −
2v)st/5+(3v−14)t2/10)). It realizes the configurations [1,1,2,2,4,14]
and [1,2,2,4,7,8] over Q(

√−7). We strongly conjecture the field of
definition given above to be optimal for these isomorphism classes.

• The base change with ramification indices (6, 1, 1) and (4, 3, 1) can
be defined over Q(

√−3). If v is a solution to 3x2 − 3x + 7, then
we have π((s : t)) = (s6(s2 + 4vst − (19v + 14)/5 t2) : (1763v −
259)/20 t4(s − t)3(s − (4v − 7)/5 t)). On the one hand we can thereby
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produce the configuration [1,1,2,6,6,8]. Note that the field of definition
of this fibration is the same as for the double sextic in [13, p. 313].
The other pull-back has the configuration [1,2,2,3,4,12], which has
already been obtained over Q in Section 4. However, these two
fibrations have different Mordell-Weil groups MW : For each fibration,
consider the pull-back of a primitive section of the basic rational surface
X321, respectively X141. It can be directly computed in terms of the
actual components of the singular fibres which it meets. Comparing
this shape to [1, Remark 0.4 (5)], we conclude that in both cases
the induced section is already a generator of MW of the pull-back
surface. In particular, MW of basic surface and pull-back coincide
where MW (X321) = Z/(2) and MW (X141) = Z/(4). This proves the
claim.

• A base change with ramification index (5,2,1) at both cusps, 0
and ∞, is obtained by choosing a zero v of the polynomial 7x3 +
19x2 + 16x + 8 and setting π((s : t)) = (167s5(s− 2t)2(s + 4(v + 1) t) :
−(15v2 + 55v + 52) t5(4s + (3v2 + 3v − 4) t)2(8s − (7v2 + 15v + 4) t)).
The pull-back gives rise to the configuration [1,2,2,4,5,10] over the
extension Q(x3 − 75x + 5150).

• The final base change of this section which has ramification in-
dex (4, 3, 1) at 0 and ∞, is defined over Q(

√
2). For this, we consider

π((s : t)) = (2473s4(s − t)3(s + (8v + 3) t) : (8v + 3) t4(14s + (9v +
4) t)3(2s − (5v + 4) t)) where we let v be a root of 7x2 + 8x + 2. This
map leads to the extremal K3 surface with singular fibres [1,2,3,4,6,8].

It is an immediate consequence of the computations that the previous
three sections together with [19] exhaust the extremal semi-stable
elliptic K3 surfaces which can be realized as nongeneral pull-back of
rational elliptic surfaces. Here the term “general” refers to the general
pull-back construction involving the induced J-map and the rational
elliptic surface with singular fibres I1, II, III∗. Its construction as a
base change of degree 24 with very restricted ramification is far beyond
the scope of this paper, as it essentially makes no use of the elliptic
fibration of the basic rational elliptic surface. We intend, however, to
pursue it in a future project.

Let us now turn to the last section which gives a short treatment
of the non semi-stable extremal elliptic K3 fibrations coming directly
from rational elliptic surfaces.
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7. The non semi-stable fibrations. The final section of this paper
is devoted to a brief analysis of the non semi-stable extremal elliptic
K3 fibrations. The treatment is significantly simplified due to the fact
that every such surface has a nonreduced fibre by the classification
of [15]. To go one step further, every K3 fibration with more than
one nonreduced fibre is easily turned into a rational elliptic surface by
way of the deflation process described in the second section. As such
an extremal K3 surface necessarily has three or four cusps, we find
either the original surfaces directly in [12] in the case of three cusps
or the corresponding rational elliptic surfaces in [3] for four cusps.
Note that all but one of the corresponding rational surfaces can be
uniquely defined over Q up to C-isomorphism. Except for the three
cases given below, this also holds for the deflation processes, considered
as manipulations of the Weierstrass equations.

The next table collects the extremal K3 fibrations with three or four
cusps. The numbering refers to the classification in [15] and will be
employed throughout this section.

TABLE 1. The extremal K3 fibrations with three or four cusps.

No. Config. No. Config.

113 5,5,1*,1* 206 1,1,2*,8*
121 2,8,1*,1* 209 1,1,1*,9*
124 1,9,1*,1* 219 IV*,IV*,IV*
136 2*,2*,2* 220 4,4,IV*,IV*
137 4,4,2*,2* 222 2,4,IV*,IV*
153 3,6,1*,2* 226 1,7,IV*,IV*
154 1,8,1*,2* 243 4,5,1*,IV*
155 3,3,3*,3* 244 2,7,1*,IV*
167 2,6,1*,3* 245 1,8,1*,IV*
168 1,6,2*,3* 246 2*,IV*,IV*
169 2,2,4*,4* 247 3,5,2*,IV*
177 1*,1*,4* 248 1,7,2*,IV*
178 2,4,2*,4* 249 2,5,3*.IV*
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TABLE 1. (Continued).

No. Config. No. Config.

179 1,1,5*,5* 250 1*,3*,IV*
187 1,5,1*,5* 251 1,5,4*,IV*
195 2,3,1*,6* 252 2,3,5*,IV*
196 1,3,2*,6* 253 1,4,5*,IV*
197 1,2,3*,6* 254 1,2,7,IV*
205 1,2,1*,8* 255 1,1,8*,IV*
256 3,3,III*,III* 293 2,5,III*,IV*
257 2,4,III*,III* 294 1,6,III*,IV*
258 1,5,III*,III* 295 1*,III*,IV*
279 0*,III*,III* 296 2,2 II*,II*
280 3,5,1*,III* 297 IV,II*,II*
281 2,6,1*,III* 313 1*,1*,II*
282 1,7,1*,III* 314 2,5,1*,II*
283 3,4,2*,III* 315 1,6,1*,II*
284 1,6,2*,III* 316 3,3,2*,II*
285 1*,2*,III* 317 1,5,2*,II*
286 2,4,3*,III* 318 2,3,3*,II*
287 1,5,3*,III* 319 1,2,5*,II*
288 2,3,4*,III* 320 1,1,6*,II*
289 1,3,5*,III* 321 2,4,II*,IV*
290 1,2,6*,III* 322 1,5,II*,IV*
291 1,1,7*,III* 323 0*,II*,IV*
292 3,4,III*,IV* 324 2,3,II*,III*
325 1,4,II*,III*

As appointed, there are three K3 fibrations in the above list which
cannot be defined over Q by this approach although the corresponding
rational elliptic surfaces indeed are. This is due to the appearance of
cusps which are conjugate in some quadratic field. As a result, for the
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surfaces with No. 187, No. 245 and No. 282 fields of definition can only
be given as Q(

√
5), Q(

√−2) and Q(
√−7), respectively. Meanwhile the

rational elliptic surface which corresponds to No. 294 can itself only be
defined over Q(

√−3), thus giving rise to two nonisomorphic models.

The remaining set of extremal K3 fibrations which is still missing
with respect to the classification in [15] consists of those with one
nonreduced fibre. In order to derive half of them from rational elliptic
surfaces, we return to our concept of base change and further make
use of the “transfer of *” as explained in [8]. Essentially this just
moves the * from one fibre to another (a priori not necessarily singular)
by changing the common factor of the polynomials A and B in the
Weierstrass equation. We will have to take base changes of degree
ranging from 2 to 6 into account, depending on the shape of the basic
rational elliptic surface. For each degree we are going to exploit one
example in more detail, but only sketch the remaining quite roughly.

Degree 2. These base changes involve the rational elliptic surfaces
with four singular fibres, which have one fibre of type III. For example,
take the surface Y with singular fibres I1, I3, I5, III. According to [3]
this surface as well as all its cusps can be defined over Q. Consider
a quadratic base change π of P1 which is ramified at the cusp of the
III-fibre and at one further cusp. The pull-back of Y via π is a K3
surface over Q with five semi-stable singular fibres and one of type I∗0 .
Transferring the * gives rise to three extremal K3 surfaces with one
nonreduced and four semi-stable fibres. For instance, the configuration
[2,3,3,5,5,0*] can be taken to [3,3,5,5,2*] (No. 138), [2,3,5,5,3*]
(No. 157) or [2,3,3,5,5*] (No. 180).

Degree 3. The rational elliptic surfaces which serve for pull-back by a
base change of degree 3 are X141, X222 and X411 as given in Section 4.
The K3 surfaces which they give rise to (after deflating if necessary) are
seen to be extremal if and only if the base change is maximally ramified
at the three cusps (such that these obtain 5 pre-images in total). We
will refer to them as triple covers without specifying the particular base
change.
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Degree 4. The surface X431, as introduced in Section 5, serves as an
object for base changes of degree 4. To obtain an extremal K3 fibration
we only have to select the ramification index (3, 1) at the cusp of the
IV ∗-fibre and minimize the number of pre-images of the other two cusps
at 4. Indeed, we can adequately choose both base changes π2 and π4

from the third section after exchanging cusps. A further useful base
change has ramification index (3, 1) at every cusp and can be given by
π3((s : t)) = (s3(s − 2t) : t3(t − 2s)). This base change, for example,
gives rise to the constellation [1,3,3,9,IV*] (No. 233).

Degree 5. For these and for the next base changes the basic rational
elliptic surface will be X321, defined in Section 6. The base changes
of degree 5 have to be chosen with ramification index (2,2,1) at 1 (the
cusp of III∗), such that only one original III∗ remains in the pull-
back after deflation. The extremality of the resulting K3 fibrations is
guaranteed by the other two cusps having again the minimal number
of four pre-images. It turns out that there are five such base changes,
all but one defined over Q. We will only go into detail for one of them
and then list the others:

• A first base change can be given as πE((s : t)) = (s(s2−5st+5t2)2 :
4t5), since s(s2−5st+5t2)2−4t5 = (s−4t)(s2−3ts+t2)2. As pull-back
we are able to realize [2,4,4,5,III*] (No. 259) and [1,2,2,10,III*] (No.
275).

• πF((s : t)) = (4s3(3s − 5t)2 : t4(15s + 2t)).

• πG((s : t)) = (s3(4s − 5t)2 : t3(4t − 5s)2).

• πH((s : t)) = (64t5 : (t − s)3(9s2 − 33st + 64t2)).

• πI((s : t)) = (s4(s− 5t) : t4(2i− 11)(5s + (3 + 4i)t) with imaginary
unit i.

Degree 6. We pull back X321 by a base change of degree 6 with
ramification index (2, 2, 2) at 1. By deflation and transfer of * we
obtain an elliptic K3 fibration with singular fibres only above the pre-
images of the other two cusps 0 and ∞. Restricting their number to
the minimum 5, we achieve the extremality of our K3 surface. Due to
the choice in the transfer of * which turns a distinct semi-stable fibre
In into its nonreduced relative of type I∗n, one base change produces
indeed up to nine different fibrations. Of the six base changes with the
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above properties existing, exactly three cannot be factorized into the
composition of two maps. We give them below:

• πA((s : t)) = (4(s2 − 4st + t2)3 : 27t4s(s − 4t)), or alternatively,
πA′((s : t)) = (4s3(s − 2t)3 : t4(3s2 − 6st − t2)).

• πB((s : t)) = (−4t5(6s + t) : s3(2s − 5t)2(s − 4t)).

• πC((s : t)) = (s4(s2 + 2st + 5t2) + 4t5(t − 2s)).

Let us discuss one particular example in more detail: We want to
realize the configuration [1,2,3,10,2*] (No. 148). This can be achieved
as pull-back from X321 via the base change πB since then we have
ramification index (3, 2, 1) at the I1-fibre and (5, 1) at the I2. The
remarkable point about this construction is that we still have a choice
of where to move the * after the pull-back: We can transfer it either
to the I2 at 5/2 which sits above the original I1 or to the I2 over −1/6
which comes from the I2-fibre of X321. Indeed, we can already prove
that the two resulting extremal fibrations are nonisomorphic.

For this purpose, consider the nontrivial section of the pull-back
which is induced from X321. It necessarily meets the fibres above the
original I1-fibre at the identity component (the one meeting the 0-
section) whereas it meets the fibres above the I2 at the “opposite”
component. So the sections differ for the two fibrations as do the
Mordell-Weil groups lattice-theoretically. As a consequence we com-
pute the two distinguished intersection forms on the transcendental
lattice. This fact is illustrated by the following observation: Consider
the quotients of the two fibrations by the respective nontrivial (torsion)
section and proceed to their minimal resolutions. Again these are ex-
tremal K3 fibrations (conf. [10, Section 5]). To be precise, we obtain
the configuration [1,2,5,6,4*] (No. 173) for the first choice of transfer
of * and [2,4,5,6,1*] (No. 116) for the second. Clearly, these are not
isomorphic by virtue of the intersection form and unique up to isomor-
phism by the classification of [15]. Note, however, that this is the only
example where there is such ambiguity concerning the transfer of *.

We are now in the position to compute all the remaining extremal el-
liptic K3 fibrations which can be derived from rational elliptic surfaces
by our simple methods. The following table collects their configurations
together with the number at which they appear in [15]. We further add
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the Mordell-Weil group MW and the reduced coefficients of the inter-
section form

(
a b

b c

)
on the transcendental lattice which determine the

isomorphism class of the surface (up to orientation if there is ambiguity
in the sign of b). The right-hand part of the table consists of a very
brief description of the construction and the field of definition for the
fibration. For brevity we will indicate the occurrence of a transfer of *
only by a * at the end of the construction while not even mentioning
deflation.

TABLE 2. The extremal K3 fibrations with five cusps.

No. Config. MW a b c Construction def.

114 1,4,6,6,1* Z/(2) 12 0 12 pull-back from Q

X321 via πA∗
115 1,5,5,6,1* (0) 20 0 30 double cover of Q

[1, 3, 5, III]∗
116 2,4,5,6,1* Z/(2) 12 0 20 pull-back from Q

X321 via πB *

117 1,2,7,7,1* (0) 14 0 28 double cover of Q(
√−7)

[1, 1, 7, III]∗
122 2,3,4,8,1* Z/(4) 6 0 8 triple cover of X141 Q

123 2,2,5,8,1* Z/(2) 8 0 20 pull-back from Q

X321 via πC *

127 1,3,3,10,1* (0) 6 0 60 double cover of Q

[1, 3, 5, III]∗
128 2,2,3,10,1* Z/(2) 2 0 60 pull-back of Q

X321 via πB *

129 1,2,4,10,1* Z/(2) 8 4 12 pull-back from Q(
√−1)

X321 via πC *

132 1,2,2,12,1* Z/(4) 2 0 6 triple cover of X141 Q

133 1,1,3,12,1* Z/(2) 6 0 6 triple cover of X141 Q

135 1,1,1,14,1* (0) 6 2 10 double cover of Q(
√−7)

[1, 1, 7, III]∗
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TABLE 2. (Continued).

No. Config. MW a b c Construction def.

138 3,3,5,5,2* (0) 30 0 30 double cover of Q

[1, 3, 5, III]∗
139 2,2,6,6,2* Z/(2)×Z/(2) 6 0 6 triple cover of X222 Q

140 2,4,4,6,2* Z/(2)×Z/(2) 4 0 12 triple cover of X222 Q

141 1,4,5,6,2* Z/(2) 4 0 30 pull-back from Q

X321 via πB *

142 1,1,7,7,2* (0) 14 0 14 double cover of Q(
√−7)

[1, 1, 7, III]∗
144 2,3,3,8,2* Z/(2) 6 0 24 pull-back from Q

X321 via πA *

145 1,3,4,8,2* Z/(2) 4 0 24 triple cover of X141 * Q

146 1,2,5,8,2* Z/(2) 6 2 14 pull-back from Q(
√−1)

X321 via πC *

148 1,2,3,10,2* Z/(2) 6 0 10 pull-back from Q

4 2 16 X321 via πB *

149 1,1,4,10,2* Z/(2) 4 0 10 pull-back from Q

X321 via πC *

151 1,1,2,12,2* Z/(2) 4 0 6 triple cover of X141 * Q

156 3,4,4,4,3* Z/(4) 8 4 8 triple cover of X141 Q

157 2,3,5,5,3* (0) 10 0 60 double cover of Q

[1, 3, 5, III]∗
161 2,2,3,8,3* Z/(2) 4 0 24 pull-back from Q

X321 via π′
A *

162 1,2,4,8,3* Z/(4) 2 0 8 triple cover of X141 Q

163 1,2,2,10,3* Z/(2) 4 0 10 pull-back from Q

X321 via πB *

164 1,1,3,10,3* (0) 2 0 60 double cover Q

of [1, 3, 5, III]∗
166 1,1,1,12,3* Z/(4) 2 1 2 triple cover of X141 Q

170 3,3,4,4,4* Z/(2) 12 0 12 double cover Q

of [2, 3, 4, III]∗
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TABLE 2. (Continued).

No. Config. MW a b c Construction def.

171 1,1,6,6,4* Z/(2) 6 0 6 pull-back from Q

X321 via πA *

172 2,2,4,6,4* Z/(2)×Z/(2) 2 0 12 triple cover of X222 * Q

173 1,2,5,6,4* Z/(2) 2 0 30 pull-back from Q

X321 via πB *

175 1,2,3,8,4* Z/(2) 2 0 24 triple cover of X411 Q

176 1,1,2,10,4* Z/(2) 2 0 10 pull-back from Q

X321 via πC *

180 2,3,3,5,5* (0) 12 0 30 double cover of Q

[1, 3, 5, III]∗
181 1,2,4,6,5* Z/(2) 4 0 12 pull-back from Q

X321 via πB *

182 1,1,5,6,5* (0) 4 0 30 double cover Q

of [1, 3, 5, III]∗
184 1,2,2,8,5* Z/(2) 4 0 8 pull-back from Q

X321 via πC *

188 2,2,4,4,6* Z/(2)×Z/(2) 4 0 4 triple cover of X222 Q

189 1,1,5,5,6* (0) 10 0 10 double cover Q

of [1, 3, 5, III]∗
190 1,2,4,5,6* Z/(2) 2 0 20 pull-back from Q

X321 via πB *

191 2,2,2,6,6* Z/(2)×Z/(2) 4 2 4 triple cover of X222 Q

192 1,1,4,6,6* Z/(2) 2 0 12 pull-back from Q

X321 via π′
A *

201 1,1,2,7,7* (0) 6 2 10 double cover Q(
√−7)

of [1, 1, 7, III]∗
202 2,2,3,3,8* Z/(2) 6 0 6 pull-back from Q

X321 via πA *

203 1,2,3,4,8* Z/(2) 4 0 6 triple cover of X411 * Q

204 1,2,2,5,8* Z/(2) 2 0 4 pull-back from Q

X321 via πC *
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TABLE 2. (Continued).

No. Config. MW a b c Construction def.

210 1,1,3,3,10* (0) 6 0 6 double cover of Q

[1, 3, 5, III]∗
211 1,2,2,3,10* Z/(2) 2 0 6 pull-back from Q

X321 via πB *

212 1,1,2,4,10* Z/(2) 2 0 4 pull-back from Q

X321 via πC *

215 1,1,2,2,12* Z/(2) 2 0 2 triple cover of X411 Q

216 1,1,1,3,12* Z/(2) 2 1 2 triple cover of X411 Q

218 1,1,1,1,14* (0) 2 0 2 double cover of Q

[1, 1, 7, III]∗
223 1,3,6,6,IV* Z/(3) 6 0 6 pull-back from Q

X431 via π2

224 3,3,4,6,IV* Z/(3) 6 0 12 pull-back from Q

X431 via π4

233 1,3,3,9,IV* Z/(3) 6 3 6 pull-back from Q

X431 via π3

234 2,2,3,9,IV* Z/(3) 2 0 18 pull-back from Q

X431 via π2

241 1,1,2,12,IV* Z/(3) 2 0 4 pull-back from Q

X431 via π4

259 2,4,4,5,III* Z/(2) 4 0 20 pull-back from Q

X321 via πE

261 1,4,4,6,III* Z/(2) 4 0 12 pull-back from Q

X321 via πF

262 2,3,4,6,III* Z/(2) 6 0 12 pull-back from Q

X321 via πG

263 2,2,5,6,III* Z/(2) 8 2 8 pull-back from Q

X321 via πH

270 2,2,3,8,III* Z/(2) 2 0 24 pull-back from Q

X321 via πF

271 1,2,4,8,III* Z/(2) 4 0 8 pull-back from Q(
√−1)

X321 via πI
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TABLE 2. (Continued).

No. Config. MW a b c Construction def.

275 1,2,2,10,III* Z/(2) 2 0 10 pull-back from Q

X321 via πE

276 1,1,3,10,III* Z/(2) 4 1 4 pull-back from Q

X321 via πH

298 3,3,4,4,II* (0) 12 0 12 double cover Q

of [3, 4, II, III]∗
299 2,2,5,5,II* (0) 10 0 10 double cover Q

of [2, 5, II, III]∗
301 1,1,6,6,II* (0) 6 0 6 double cover Q

of [1, 6, II, III]∗

This table completes the treatment of extremal elliptic K3 fibrations
which can be derived from rational elliptic surfaces by direct manip-
ulation of the Weierstrass equation or as pull-back via a nongeneral
base change. We would like to finish with the following remark which
concerns K3 surfaces which possess an extremal elliptic fibration with
nontrivial Mordell-Weil group. For every such surface this paper, com-
bined with [19], gives at least one explicit extremal fibration which is
obtained as pull-back from a rational elliptic surface. This result might
be compared to the idea of elementary fibrations proposed in [11, Sec-
tion 6]. We should, however, note that our pull-backs in general cannot
be called elementary in the strict sense of [11, 13].
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