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ALGEBRAIC VECTOR BUNDLES ON SL(3,C)

KAZUNORI NAKAMOTO AND TAKESHI TORII

ABSTRACT. We show that all algebraic vector bundles on
SL(3,C) are topologically trivial.

1. Introduction. There are a large number of analogies and
relations between algebra and topology, cf. [7, 8]. For example, Serre’s
conjecture, cf. [4 6], was arising from analogies between projective
modules and vector bundles. In many cases, topological viewpoint
inspires us with several problems on algebraic vector bundles. In this
paper, we deal with algebraic vector bundles over SL(3,C).

We start with Grothendieck’s theorem.

Theorem 1.1 [Grothendieck 1]. Let G be a semi-simple simply
connected affine algebraic group over an algebraically closed field. Then
K0(G) = Z.

From this, all algebraic vector bundles on G are stably free. Here
we say that an algebraic vector bundle E is stably free if there exists a
trivial algebraic vector bundle F such that E⊕F is also trivial. Let us
consider the question whether all algebraic vector bundles over G are
free.

In the case G = SL2, M.P. Murthy has shown the following.

Theorem 1.2 [8]. Let A = k[x, y, z, w]/(xy − zw − 1) be the
coordinate ring of SL2 over any field k. Then all finitely generated
projective A-modules are free.

However, in general the answer to our question is negative. In the
case G = SL4 we have a counterexample.
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Theorem 1.3 (Swan [8]). Let A be the coordinate ring of SL4 over
C. Then there is a nonfree projective A-module of rank 2.

So how about the case G = SL3 ? We introduce the following
conjecture.

Conjecture 1.4. Let A be the coordinate ring of SL3 over any field
k. Then all finitely generated projective A-modules are free.

We say that a commutative ring R is Hermite if all finitely generated
stably free R-modules are free (see [3]). If k is an algebraically closed
field, then Conjecture 1.4 follows from the claim that the coordinate
ring of SL3 is Hermite. Unfortunately, we cannot prove the conjecture
in this article. However, as an evidence that the conjecture is true we
present our main result.

Theorem 1.5 (Theorem 2.1). All algebraic vector bundles on
SL(3,C) are topologically trivial.

Although we do not know whether all algebraic vector bundles over
SL(3,C) are algebraically trivial, we see that they are topologically
trivial. In other words, we can prove that the coordinate ring of
SL(3,C) is “topologically Hermite.” Theorem 1.5 is a topological result
rather than an algebraic one. We prove our main result by using
topological methods in the following sections.

2. Main theorem. Our main theorem is the following:

Theorem 2.1. All algebraic vector bundles on SL(3,C) are topolog-
ically trivial.

The main theorem can be followed by the next proposition.

Proposition 2.2. All stably free topological vector bundles on SU(3)
are trivial.
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Proof of Theorem 2.1. By Theorem 1.1, K0(SL(3,C)) ∼= Z. Hence
any algebraic vector bundle on SL(3,C) is stably free. Since SL(3,C)
is isotopic to SU(3), Proposition 2.2 implies Theorem 2.1.

We only need to prove Proposition 2.2 for our main theorem. For the
proof of Proposition 2.2 we prepare the proposition P (n).

P (n) : f : SU(3) → BU(n) is trivial up to homotopy if

SU(3)
f→ BU(n) → BU(n + 1) is trivial up to homotopy.

Here BU(n) → BU(n + 1) is the morphism associated to E �→ E ⊕ C.

If we prove that the proposition P (n) is true for each n ≥ 1, then we
see that any topological stably free vector bundle on SU(3) is trivial.
In the sequel, we prove P (n) for each n ≥ 1.

Proposition 2.3. P (1) is true.

Proof. Since H2(SL(3,C),Z) ∼= 0, [SL(3,C), BU(1)] = {∗}. This
completes the proof.

Proposition 2.4. P (n) is true for each n ≥ 4.

Proof. Let us consider the fibre sequence S2n+1 → BU(n) →
BU(n + 1). From the assumption, f factors through S2n+1. Because
SU(3) = e0 ∪ e3 ∪ e5 ∪ e8, the morphism SU(3) → S2n+1 is trivial up to
homotopy for n ≥ 4. Hence f is also trivial.

Proposition 2.5. P (3) is true.

Proof. Let us consider the fibre sequence S7 → BU(3) → BU(4). By
the assumption, f factors through S7. Since SU(3) = e0 ∪ e3 ∪ e5 ∪ e8,
the morphism SU(3) → S7 induces S8 → S7 and the next homotopy
commutative diagram:
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S8
� S7

�

SU(3)

�

�

f
BU(3).

Because π8(BU(3)) = π7(U(3)) = 0, the morphism S8 → S7 → BU(3)
is trivial up to homotopy. Hence f is trivial.

By the above propositions, we only have to prove P (2), which will be
shown in the next section.

3. Proof of P (2). For the proof of P (2), we only need to show
the next proposition P ′(2) since [SU(3), BU(n)] = [SU(3), BSU(n)] for
n ≥ 1.

P ′(2) : f : SU(3) → BSU(2) is trivial up to homotopy if

SU(3)
f→ BSU(2) → BSU(3) is trivial up to homotopy.

Here BSU(2) → BSU(3) is the morphism associated to E �→ E ⊕ C.

Before starting the proof of P ′(2), we make several preparations.
Considering the fibre sequence S5 → BSU(2) → BSU(3), we see that
f factors through S5. Since SU(3) = e0 ∪ e3 ∪ e5 ∪ e8, the morphism
SU(3) → S5 induces SU(3)/S3 = S5 ∪ e8 → S5. Set X = S5 ∪ e8. Then
we have the following homotopy commutative diagram:

(1)

X = S5 ∪ e8
� S5

�

SU(3)

�

�

f
BSU(2).

Lemma 3.1. X 	 S5 ∨ S8.

Proof. We have a fibre bundle SU(2) i→ SU(3) π→ S5 and i may be
identified with the inclusion in the bottom cell. Hence the projection
π factors through the quotient map SU(3) → X = SU(3)/S3:
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SU(3)�
�
���π

� X
�
�
�
��

π′

S5.

Then π′ is a retraction of X to S5. This implies that X 	 S5∨S8.

Let us consider the following cofibre sequence

(2) S3 → SU(3) → X 	 S5 ∨ S8 ϕ→ S4.

We determine the morphism ϕ = (ϕ1, ϕ2) : X 	 S5 ∨ S8 → S4. Here
we denote ϕ |S5 and ϕ |S8 by ϕ1 and ϕ2, respectively.

Lemma 3.2. ϕ1 : S5 → S4 is not a trivial element in π5(S4) ∼= Z/2Z.

Proof. This follows from the fact that the attaching map of e5 to S3

in SU(3) = S3 ∪ e5 ∪ e8 is nontrivial.

Before determining ϕ2 : S8 → S4, we recall the homotopy group
π8(S4). (For example, see [2].) The homotopy group π8(S4) is isomor-
phic to Z/2Z⊕Z/2Z. Its generators α and β are given by α = Σ2η◦Σq
and β = q◦Σ5η, where q : S7 → S4 is the Hopf map. Putting γ = α+β,
we have π8(S4) = {0, α, β, γ}.

The class of ϕ2 : S8 → S4 in π8(S4) depends on how to regard X as
S5 ∨ S8. Indeed, the following lemmas imply that the class can be only
determined modulo 〈α, 0〉.

Lemma 3.3. [S5 ∨ S8, S5 ∨ S8] ∼= π5(S5) ⊕ π8(S5) ⊕ π8(S8).

Proof. We have [S5 ∨ S8, S5 ∨ S8] ∼= π5(S5) ⊕ π8(S5 ∨ S8). From the
homotopy exact sequence of the pair (S5 ∨ S8, S5) and the splitting
S5 ∨ S8 → S5, there is a split exact sequence

0 −→ π8(S5) −→ π8(S5 ∨ S8) −→ π8(S5 ∨ S8, S5) −→ 0.
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By the Hurewicz theorem, π8(S5 ∨ S8, S5)
∼=→ π8(S8). This completes

the proof.

By Lemma 3.3, the group of self-homotopy equivalences of S5 ∨ S8 is

{(
ε1 κ
0 ε2

) ∣∣∣∣ ε1 = ±1 ∈ π5(S5), ε2 = ±1 ∈ π8(S8),
κ ∈ π8(S5)

}
.

Note that π8(S5) ∼= Z/24Z and the generator may be Σq. Then the
following composition

S8 ↪→ S5 ∨ S8 A−→ S5 ∨ S8 ϕ−→ S4, A =
[

ε1 κ
0 ε2

]
,

is homotopic to ϕ2 + m · α, where κ = m · Σq. Hence we see that
ϕ2 ∈ π8(S4) is determined modulo 〈α, 0〉. Note that ΣSU(3) is the
cofibre of ϕ. Hence, if ϕ2 = 0 or α, then ΣSU(3) 	 Σ2P 2(C) ∨ S9.

Recall that there are inclusions S3 ⊂ ΣP 2(C) ⊂ SU(3). The product
map SU(3) × SU(3) → SU(3) induces a map h : S3 × ΣP 2(C) ↪→
SU(3) × SU(3) → SU(3). Then the following diagram commutes:

S3 × S3

�

�
m S3

�

S3 × ΣP 2(C) �
h SU(3),

where m is the product map of S3 and the vertical arrows are inclusions.

Lemma 3.4. The class of ϕ2 : S8 → S4 in π8(S4) is β modulo 〈α, 0〉.

Proof. There is a homotopy equivalence Σ(S3 × S3) 	 S4 ∨ S4 ∨ S7

and the map S7 ↪→ S4 ∨ S4 ∨ S7 	 Σ(S3 × S3) Σm→ Σ(S3) = S4 is the
Hopf map q. There is also a homotopy equivalence Σ(S3 ×ΣP 2(C)) 	
S4 ∨ Σ2P 2(C) ∨ Σ5P 2(C) and the map Σ5P 2(C) ↪→ S4 ∨ Σ2P 2(C) ∨
Σ5P 2(C) 	 Σ(S3 × ΣP 2(C)) Σh→ ΣSU(3) makes the following diagram
homotopy commute:
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S7

�

�

q
S4

�

Σ5P 2(C) � ΣSU(3),

where the vertical arrows are the inclusions in the bottom cell.

If ϕ2 = 0 or α, then ΣSU(3) 	 Σ2P 2(C) ∨ S9. Let φ be the map
Σ5P 2(C) → ΣSU(3) 	 Σ2P 2(C) ∨ S9 → Σ2P 2(C), where the last
map is the projection. Then φ makes the following diagram homotopy
commute:

S7

�

�

q
S4

�

Σ5P 2(C) �

φ
Σ2P 2(C).

Let C be the cofibre of φ. By the above homotopy commutative
diagram, we see that the cohomology of C is given as follows:

H̃∗(C;Z) = Z{x4, x6, x8, x10}, |xi| = i

and

Sq2x4 = x6, Sq4x4 = x8, Sq2x8 = x10,

where xi ∈ H̃i(C;Z/2) is the mod 2 reduction of xi. The unstable
condition implies that Sq4x4 = x2

4. By the Cartan formula, Sq2(x2
4) =

2x4x6 = 0. On the other hand, Sq2Sq4x4 = Sq2x8 = x10 �= 0. This is
a contradiction. This completes the proof.

Lemma 3.5. Let j : S4 → BSU(2) be the inclusion in the bottom
cell. The morphism j∗ : [S8, S4] → [S8, BSU(2)] = Z/2Z maps α and β
to [1] and [0], respectively.

Proof. First we show that j∗(α) = [1]. Note that the morphism
S5 → BSU(2) in the fibre sequence S5 → BSU(2) → BSU(3) is equal

to S5 Σ2η→ S4 j→ BSU(2). Since π8(S5) → π8(BSU(2)) is surjective, the
generator Σq is mapped to [1]. Hence j∗(α) = j ◦ Σ2η ◦ Σq = [1].
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Next, we show that j∗(β) = [0]. The morphism S7 q→ S4 j→ BSU(2)

is trivial up to homotopy. Hence S8 Σ5η→ S7 q→ S4 j→ BSU(2) is trivial.
Therefore j∗(β) = j ◦ q ◦ Σ5η = [0].

The map ϕ : S5 ∨ S8 → S4 induces a map ϕ∗ : [S4, BSU(2)] →
[S5 ∨ S8, BSU(2)]. Note that ϕ∗ is not a homomorphism of abelian
groups.

Lemma 3.6. The map ϕ∗ : [S4, BSU(2)] → [S5 ∨ S8, BSU(2)] is
surjective.

Proof. It is sufficient to show that ϕ∗ = (ϕ∗
1, ϕ

∗
2) : π4(BSU(2)) →

π5(BSU(2))⊕π8(BSU(3)) is surjective. The inclusion j : S4 → BSU(2)
in the bottom cell gives a generator of π4(BSU(2)). Since ϕ1 = Σ2η,
the map ϕ∗

1 is a surjective homomorphism. More precisely,

(3) ϕ∗
1(mj) =

{
j ◦ Σ2η �= 0 if m is odd
0 if m is even.

Next, let us consider the map ϕ∗
2 : π4(BSU(2)) ∼= Z → π8(BSU(2)) ∼=

Z/2Z. Let ι be a generator of π4(S4) and ξ : S6 → S3 the characteristic
map associated to the Sp(1)-bundle Sp(1) → Sp(2) → S7. Then we
have

(4) 2q = [ι, ι] + εΣξ

in π7(S4), where [∗, ∗] is the Whitehead product and ε = ±1, see [2].
By using (4), we obtain

2(mι ◦ q) = mι ◦ (2q) = mι ◦ [ι, ι] + mι ◦ εΣ ξ

= [mι, mι] + εm(Σ ξ)
= m2[ι, ι] + εm(Σ ξ)
= m2(2q − εΣ ξ) + εm(Σ ξ)
= 2m2q + ε(m − m2)Σ ξ

in π7(S4) = Z⊕Z/12Z. Note that the free part and the torsion part of
π7(S4) are generated by q and Σ ξ, respectively. The calculation above
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implies that

mι ◦ q = m2q + ε
m − m2

2
Σ ξ mod 6 · Z/12Z.

Hence

mι ◦ β = mι ◦ q ◦ Σ5η = m2q ◦ Σ5η + ε
m − m2

2
Σ ξ ◦ Σ5η

= m2β + ε
m − m2

2
α

in π8(S4) = Z/2Z⊕ Z/2Z. Note that α = Σ2η ◦ Σq 	 Σ ξ ◦ Σ5η.

By Lemma 3.4, ϕ2 	 β or ϕ2 	 α + β. If ϕ2 	 β, then

(5)

ϕ∗
2(mj) = mj ◦ β = j ◦ mι ◦ β

= j ◦ m2β + j ◦ ε
m − m2

2
α

= ε
m − m2

2
(j ◦ α).

Here we use Lemma 3.5. If ϕ2 	 α + β, then

(6)

ϕ∗
2(mj) = mj ◦ (α + β) = j ◦ mι ◦ α + j ◦ mι ◦ β

= j ◦ m2β + j ◦
(

ε
m − m2

2
+ m

)
α

=
(

ε
m − m2

2
+ m

)
(j ◦ α).

The results (3), (5) and (6) imply that ϕ∗ : Z → Z/2Z ⊕ Z/2Z is
surjective. This completes the proof.

Proposition 3.7. P (2) is true.

Proof. Recall the diagram (1). By Lemma 3.6, any morphism
X → BSU(2) factors through S4. Considering the cofibre sequence
SU(3) → X → S4, we see that f is trivial.
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théorème de Riemann-Roch (SGA 6), Lecture Notes in Math., vol. 225, Springer-
Verlag, Berlin-New York, 1971.

2. S.T. Hu, Homotopy theory, Pure Appl. Math., vol. 8, Academic Press, New
York, 1959.

3. T.Y. Lam, Serre’s conjecture, Lecture Notes in Math., vol. 635, Springer-
Verlag, Berlin-New York, 1978.

4. D. Quillen, Projective modules over polynomial rings, Invent. Math. 36 (1976),
167 171.
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