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A NOTE ON THE EXISTENCE OF
SHAPE-PRESERVING PROJECTIONS

D. MUPASIRI AND M.P. PROPHET

ABSTRACT. Let X denote a (real) Banach space and V
an n-dimensional subspace. We denote by B = B(X, V ) the
space of all bounded linear operators from X into V ; let P be
the set of all projections in B. For a given cone S ⊂ X, we
denote by PS the set projections P ∈ P such that PS ⊂ S.
For a large class of cones S, we characterize when PS �= ∅.

1. Introduction and preliminaries. The theory of minimal
projections attempts to describe ‘optimal’ methods for extending the
identity operator I from a Banach space V to an (Banach) overspace
X. When V is of finite dimension there is no shortage of possible
extensions, and one regards as optimal an extension of smallest possible
operator norm. The possibility of extending I, or any linear operator,
from V to X changes when we place the additional requirement that
the extension leave invariant, or preserve, a particular set. By linearity,
it is natural to choose the subset S ⊂ X to be a cone a convex subset
closed under nonnegative scalar multiplication. And, as is often the
case, S is chosen so that its elements have in common a particular
characteristic, or shape; indeed, we say f ∈ X has shape if f ∈ S (for
example, see [2 4, 7]). Thus, if P : X → V extends I and preserves
S, i.e., PS ⊂ S, then we say P is a shape-preserving projection. For
fixed X, V and S, we denote by PS the set of all shape-preserving
projections from X onto V . We are interested in characterizing when
PS �= ∅.

The intent of this note is to generalize a characterization of PS given
in [3]. We do so by significantly increasing the cones S for which the
characterization is valid. In particular, we include the (rather common)
case in which the intersection of the dual cone of S, defined below, and
the unit sphere ofX∗, the topological dual space ofX, contains a weak*
null net.

2000 AMS Mathematics Subject Classification. Primary 54B20, 54F15.
Received by the editors on July 20, 2004, and in revised form on October 15,

2004.

Copyright c©2007 Rocky Mountain Mathematics Consortium

573



574 D. MUPASIRI AND M.P. PROPHET

Throughout this paper, we will denote the ball and sphere of real
Banach space X by B(X) and S(X), respectively. For fixed positive
integer n, V ⊂ X will denote an n-dimensional subspace. B(X,V ) will
denote the space of linear operators from X into V and P ⊂ B(X,V )
will denote the set of all projections. In a (real) topological vector
space, a cone K is a convex set, closed under nonnegative scalar
multiplication. K is pointed if it contains no lines. For φ ∈ K, let
[φ]+ := {αφ | α ≥ 0}. We say [φ]+ is an extreme ray of K if φ = φ1+φ2

implies φ1, φ2 ∈ [φ]+ whenever φ1, φ2 ∈ K. We let E(K) denote the
union of all extreme rays of K. When K is a closed, pointed cone of
finite dimension we always have K = co (E(K)) (this need not be the
case when K is infinite dimensional; indeed, we note in [5] that it is
possible that E(K) = ∅ despite K being closed and pointed).

Definition 1. Let X be a (fixed) Banach space and V ⊂ X a
(fixed) n-dimensional subspace. Let S ⊂ X denote a closed cone. We
say that x ∈ X has shape, in the sense of S, whenever x ∈ S. If
P ∈ P and PS ⊂ S, then we say P is a shape-preserving projection;
we denote the set of all such projections by PS . For a given cone S,
define S∗ = {φ ∈ X∗ | 〈x, φ〉 ≥ 0 for all x ∈ S}. We will refer to S∗ as
the dual cone of S.

Throughout the remainder of this paper we will consider X∗ equipped
with the weak* topology. Note that S∗ ⊂ X∗ is a (weak*) closed cone;
we will assume throughout that S∗ is pointed. The following lemma
indicates that S∗ is in fact “dual” to S.

Lemma 1. Let x ∈ X. If 〈x, φ〉 ≥ 0 for all φ ∈ S∗, then x ∈ S.

Proof. We prove the contrapositive; suppose x ∈ X such that x /∈ S.
Then, since S is closed and convex, there exists a separating functional
φ ∈ X∗ and α ∈ R such that 〈x, φ〉 < α and

(1) 〈s, φ〉 > α, ∀ s ∈ S.

Note that we must have α < 0 because 0 ∈ S. In fact, for every s ∈ S,
we claim

(2) 〈s, φ〉 ≥ 0 > α.
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To check this, suppose there exists s0 ∈ S such that 〈s0, φ〉 = β < 0;
this would imply 〈α

β
s0, φ

〉
= α

while (α/β)s0 ∈ S. And this is in contradiction to (1). The validity of
(2) implies that φ ∈ S∗ and this completes the proof.

Lemma 2. Let P ∈ P. Then PS ⊂ S ⇐⇒ P ∗S∗ ⊂ S∗.

Proof. The proof is an immediate consequence of the duality equation
〈Px, φ〉 = 〈x, P ∗φ〉 and Lemma 1.

2. Main result. Lemma 2 indicates that in the search for shape-
preserving projections on X we may work exclusively in X∗. This is
attractive since, once we fix a basis v1, . . . , vn for V , every element
of P ∈ B(X,V ) is completely determined by n elements u1, . . . , un of
X∗ by expressing P =

∑n
i=1 ui ⊗ vi where Px =

∑n
i=1〈x, ui〉vi. In

fact, we will be interested in the finite dimensional cone S∗
|V . Since

dim(V ) = n we know dim(S∗
|V ) ≤ n. Without loss, we can (and

will) assume dim(S∗
|V ) = n; indeed, suppose S∗

|V were k-dimensional
where 0 ≤ k < n. If k = 0, then every projection onto V is shape-
preserving and the (following) characterization theorem holds trivially.
For k ≥ 1, choose a basis for V , v1, . . . , vn such that, for all φ ∈ S∗,
〈vi, φ〉 = 0 for i = 1, . . . , n − k. With this basis, we can express any
projection P ∈ P as P = u1 ⊗ v1 + · · · + un ⊗ vn for some choice of
ui’s ∈ X∗. And thus we note that projection P : X → V is shape-
preserving if and only if projection P1 : X → V1 is shape-preserving
where V1 := [vn−k+1, . . . , vn] and P1 = un−k+1⊗vn−k+1+· · ·+un⊗vn.
Therefore, we might as well assume S∗

|V is n-dimensional.

Before going forward it is necessary to place an additional assumption
on the cone S∗; we describe this property in the following definition.
Note that, in the context of our current considerations, we say a finite
(possibly) signed measure μ with support E ⊂ X∗ is a generalized
representing measure for φ ∈ X∗ if 〈x, φ〉 =

∫
E
〈s, x〉 du(s) for all

x ∈ X. A nonnegative measure μ satisfying this equality is simply
a representing measure.
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Definition 2. Let X be a Hausdorff topological vector space over
R, and let X∗ be the topological dual of X. We say that a pointed
closed cone K ⊂ X∗ is simplicial if K can be recovered from its
extreme rays, (i.e., K = co (E(K))) and the set of extreme rays
of K form an independent set (independent in the sense that any
generalized representing measure for x ∈ K supported on E(K) must
be a representing measure).

Proposition 1. A pointed closed cone K ⊂ X∗ of finite dimension
n is simplicial if and only if K has exactly n extreme rays.

Proof. It is widely known that a pointed closed cone K of dimension
n has at least n extreme rays; let [y1]+, . . . , [yn]+ be a linearly indepen-
dent set of extreme rays ofK. So to prove the necessity of the condition,
it suffices to show that K has at most n extreme rays. To see this sup-
pose K has n+1 extreme rays; let [yn+1]+ denote the (n+1)st. Because
dim(K) = n, there exist scalars α1, . . . , αn such that yn+1 = Σn

i=1αiyi,
where αi �= 0 for at least two i’s and at least one of these nonzero αi’s
is negative (as each yi belongs to a distinct ray). This gives a gener-
alized representing measure for yn+1 supported on E(K) which is not
a representing measure. Conversely, suppose K has n extreme rays.
Choose linearly independent vectors y1, . . . , yn, one from each of the
distinct n extreme rays. Then for any x ∈ K, x = Σn

i=1βiyi where the
βi are nonnegative scalars (because K is a cone). The uniqueness of
representation with respect to the basis {y1, . . . , yn} implies that there
exists no generalized representing measure for x supported on E(K)
which is not a representing measure.

Throughout the remainder of the paper, we will assume that S∗ is
simplicial.

The main result of the paper is contained in the following theorem.
It says that in order for there to exist a shape-preserving projection,
it is necessary and sufficient that the (n-dimensional) cone S∗

|V have
exactly n extreme rays.
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Theorem 1. PS �= ∅ if and only if the cone S∗
|V is simplicial.

For convenience, we will refer to the condition “S∗
|V is simplicial” as

simply the simplicial condition.

We prove the sufficiency and necessity of the simplicial condition in
Section 4. But before presenting this we include several motivating
examples. Example 1 illustrates the primary advantage of working in
X∗ to determine when PS �= ∅. Examples 2 and 3 showcase how the
necessity of the simplicial condition can fail outside of the projection
case. Specifically, despite the existence of a shape-preserving operator,
we find, in one instance, that S∗

|V is not closed and in another case
S∗
|V is closed but possesses too many extreme rays. Finally, Example 4

indicates that a seemingly natural generalization of Theorem 1 fails
to hold; that is, if P ∈ B and PS ⊂ S, it need not be the case that
(P ∗S∗)|V is contained in a simplicial subcone of S∗

|V .

3. Examples.

Example 1. What is gained by working in X∗ rather than X? For
example, suppose in determining if PS �= ∅, we looked to the cone
D = S ∩ V for information (note D is the dual cone to S∗

|V ). Let
X = C[0, 1] with the uniform norm ‖ · ‖∞, V = Π2 (the space of
quadratic algebraic polynomials) and S denote the cone of monotone
increasing functions. Then D = S ∩ V is a cone that looks like a
three-dimensional ‘wedge’ containing the line of constant functions.
In fact, D remains unchanged (in shape) if we change the overspace
to X = C1[0, 1] (with ‖f‖X = max{‖f‖∞, ‖f ′‖∞}). However, the
cone S∗

|V changes significantly with a change of overspace from not
simplicial (see Example 2) to simplicial (see Example 3). This reveals
that in the former case no shape-preserving projection exists, i.e.,
there is no monotonicity-preserving projection from C[0, 1] onto the
quadratics, while in the latter case we essentially obtain a formula for
a shape-preserving projection. In the proof of the sufficiency of the
simplicial condition below, we will use the “edges” of S∗

|V to construct
a shape-preserving projection.
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Example 2. Let X = C[0, 1] with the uniform norm ‖ · ‖∞ and
S ⊂ X denote the cone of monotone increasing functions. An n-
dimensional subspace V of X is said to be monotonically complemented
if there exists a projection P : X → V that leaves S invariant. This
class of subspaces is studied in [4], where it is also shown that, for every
positive integer k ≥ 2 the space of k-degree algebraic polynomials Πk

is not monotonically complemented. In fact, with V = Π2 we will now
show that the cone S∗

|V fails to be closed. This happens despite the
existence of the monotonicity-preserving (linear) operator B2 : X → Π2

which maps a continuous function to its second degree Bernstein
polynomial (note the relative “closeness” of B2 to a projection: for
i = 0, 1, B2x

i = xi and B2x
2 = (x2 + x)/2). Consider the cone S∗

|V ;
since every element of this cone vanishes on the identically 1 function,
we can regard S∗

|V as a subset of R2 by associating each φ|V ∈ S∗
|V

with the 2-tuple
(〈x, φ〉, 〈x2, φ〉) We claim that the ray determined by

e1 := (1, 0) does not belong to the cone. Suppose, to the contrary,
that there exists φ ∈ S∗ such that φ|V = (1, 0). Let m be an arbitrary
positive integer and consider the function F (t) := mt2 − G(t) where
G(t) is any C1 function such that 0 ≤ G′(t) ≤ 2mt for all t ∈ [0, 1]. F is
monotone so 〈F, φ〉 ≥ 0; but G is also monotone and φ vanishes on t2.
The only possibility then is that φ vanishes on G. However, vanishing
on all such G leads quickly to the conclusion that φ is unbounded.
Therefore, the ray determined by e1 does not belong to the cone and,
moreover, the cone is not closed.

Example 3. Here we give an example in which S is preserved by
an operator and S∗

|V is closed. However, S∗
|V will fail to be simplicial

because the number of extreme rays of S∗
|V exceeds the dimension of

S∗
|V . At the end of this example, we fulfill a promise of Example 1

and verify that S∗
|V is simplicial when V = Π2. Let X = C1[0, 1]

with ‖f‖X = max{‖f‖∞, ‖f ′‖∞} and V = Π3 ⊂ X. Let S ⊂ X
denote the cone of monotone increasing functions. Note that the third-
degree Bernstein operator leaves S invariant. From the definition
of X, we see that, for each t ∈ [0, 1], derivative evaluation at t is
a bounded linear functional; denote this functional by δ′t and thus
δ′t ∈ S∗ ⊂ X∗. In fact, for each t, [δ′t]

+ defines an extreme ray of S∗

and moreover E(S∗) = ∪t∈[0,1][δ′t]+. Now, as done in Example 2, we
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can associate S∗
|V with a cone in R3 via φ|V ↔ (〈x, φ〉, 〈x2, φ〉, 〈x3, φ〉).

Consider the restriction of E(S∗) to V : in general, we always have
E(S∗

|V ) ⊂ E(S∗)|V ; however, in our current setting, we have that
E(S∗

|V ) = E(S∗)|V . Thus, E(S∗
|V ) = ∪t∈[0,1][(δ′t)|V ]+ and so S∗

|V has
infinitely many extreme rays. That S∗

|V is closed follows from the
observation that the convex hull of {(δ′t)|V }t∈[0,1] is a compact set that
misses the origin. Notice the change in S∗

|V if we replace V = Π3 with
V = Π2; in this case S∗

|V becomes a closed two-dimensional cone with

(δ′t)|V = t(δ′1)|V + (1 − t)(δ′0)|V

and thus it is simplicial.

Example 4. If P ∈ PS , then, as shown in the proof of Theorem 1,
the cone P ∗S∗ must be simplicial. Suppose A ∈ B and AS ⊂ S; then
A∗S∗ ⊂ S∗ and so (A∗S∗)|V ⊂ S∗

|V . While neither (A∗S∗)|V nor S∗
|V

need be simplicial, one might hope that (A∗S∗)|V must belong to a
simplicial subcone of S∗

|V . We now show this is not the case. Let X be
a Banach space with three-dimensional subspace V = [v1, v2, v3] and
dual space X∗. We define the shape using four dual elements. Choose
φ1, φ2, φ3 ∈ X∗ so that 〈vi, φj〉 = δij . Choose a fourth element φ4 so
that

〈v1, φ4〉 = − 1 and 〈v2, φ4〉 = 〈v3, φ4〉 = 1

(thus S∗ = cone({φi}4
i=1)). Let A =

∑3
i=1 ui ⊗ vi ∈ B where

u1 = φ1 + φ2, u2 = φ1 + φ3, and u3 = φ2 + φ4.

To show AS ⊂ S, we need only establish A∗S∗ ⊂ S∗; thus, with
A∗φj =

∑3
i=1 ui〈vi, φj〉, we note

(3)

A∗φ1 = u1 = φ1 + φ2

A∗φ2 = u2 = φ1 + φ3

A∗φ3 = u3 = φ2 + φ4

A∗φ4 = −u1 + u2 + u3 = φ3 + φ4.

Therefore, A∗S∗ ⊂ S∗. However, we claim that every subcone of S∗
|V

possessing exactly three extreme rays fails to contain (A∗S∗)|V . Now
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the extreme rays of A∗
|V are precisely [φi|V ]+, for i = 1, . . . , 4; and thus

the extreme rays of (A∗S∗)|V are [A∗φi|V ]+, for i = 1, . . . , 4. From
(3) we see that each of these extreme rays belongs to a distinct two-
dimensional face of S∗

|V . Therefore, no simplicial (3-edged) subcone of
S∗
|V can contain (A∗S∗)|V .

4. Lemmas and proofs. The following lemma establishes the
sufficiency of the simplicial condition. While Theorem 1 is proven under
the assumption that S∗ is simplicial, we note that the proof of Lemma 3
does not require this assumption.

Lemma 3. If S∗
|V is simplicial, then PS �= ∅.

Proof. Suppose the number of extreme rays of S∗
|V equals n.

Choose one (nonzero) point from each ray and label the points as
u1|V , . . . , un|V . Thus, we have

(4) S∗
|V = cone (u1|V , . . . , un|V ).

Let u = (u1, . . . , un) ∈ (S∗)n and v = (v1, . . . , vn)T be a basis for
V ; note that we may then write 〈v, u〉 = 〈v,u〉cu where cu is the
vector of nonnegative coefficients guaranteed by (4). Since S∗

|V has n
independent elements, the matrix M = 〈v,u〉 is nonsingular. Thus we
may solve for cu and write cu = M−1〈v, u〉. Let P := uM−1 ⊗ v;
obviously, P is a projection from X into V . Moreover, for any u ∈ S∗,
we have P ∗u = uM−1〈v, u〉 ∈ S∗ since M−1〈v, u〉 has nonnegative
entries. By Lemma 2 the proof is complete.

To establish the necessity of the simplicial condition will require more
work. The approach we take is to attempt to represent, in a useful way,
elements of S∗ using only points that belong to extreme rays of S∗. To
facilitate this, we define E1 := E(S∗) ∩ S(X∗). One might hope that
every element of S∗ can be written as a positive scalar multiple of an
element from co (E1) (where the closure is taken with respect to the
weak* topology). However this is not always possible. For example,
consider X = l2 and S∗ ⊂ X∗ = l2 consisting of all nonnegative
sequences. S∗ is clearly a simplicial cone and E(S∗) = ∪i∈N[ei]+
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where ei(j) = δij . Note that co (E1) contains only summable sequences
(x ∈ l2 is summable if

∑
i x(i) is finite valued). But of course S∗

contains sequences which are strictly square summable, i.e., sequences
x(i) which are not summable but for which (x(i)2) is summable, and
thus it is exactly these elements that cannot be expressed as positive
scalar multiples of elements from co (E1). The following proposition
gives a condition which will allow (a set homeomorphic to) co (E1) to
‘reach’ every element of S∗. Note in the following that all closures are
taken with respect to the weak* topology.

Proposition 2. Let E1 = E(S∗) ∩ S(X∗). If 0 �∈ E1, then there
exists a compact convex set C ⊂ S∗ such that every element of S∗ is
a positive scalar multiple of an element from C. Moreover, distinct
extreme points of C belong to distinct extreme rays of S∗.

Proof. We construct the set C in two steps. First we define the cone
K := {ρe | ρ ≥ 0, e ∈ co (E1)}. Note that K ⊂ S∗; we claim K = S∗.
From the definitions of K and S ⊂ X, it is clear that f ∈ S if and
only if 〈f, φ〉 ≥ 0 for all φ ∈ K. Therefore, if K is closed then, by
an argument identical to that in the proof of Lemma 1, we will have
K = S∗. We now verify that K is closed. To do this, we first establish
that 0 /∈ co (E1). From our assumption, 0 /∈ E1 and therefore, by the
Krein-Milman theorem, 0 is not an extreme point of co (E1). Suppose
0 ∈ co (E1); since 0 is not extreme there exists nonzero x, y ∈ co (E1)
such that 0 = x + y; but this would imply that −x ∈ S∗ and this
contradicts the fact that S∗ is pointed. Thus, 0 /∈ co (E1). Now let
{yα} ⊂ K be a net that converges to y; we may write yα = ραeα,
where eα ∈ co (E1). By compactness, there exists a convergent subnet
{eαβ

} of {eα} possessing a nonzero limit point, call it e, contained in
co (E1). The (real) net {ρα} is bounded and thus, passing to subnets
if necessary, we have ραβ

→ ρ for some ρ ∈ R+. Therefore

y = lim yα = lim yαβ
= lim ραβ

eαβ
= ρe

and hence K is closed which implies K = S∗.

We begin the second step by noting that 0 and co (E1) can be strictly
separated with a hyperplane H, i.e., there exists α > 0 and x ∈ X such
that 〈x, φ〉 ≥ α for all φ ∈ co (E1). So H = x−1({α}). Let

C := {αφ/〈x, φ〉 | φ ∈ co (E1)};
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thus, C is the intersection of H and S∗ and, as such, is convex and
compact. Clearly every element of S∗ can be (positively) scaled into C.
Let T denote the set of extreme points of C. Since T ⊂ H ∩ S∗, it is
clear that distinct points of T belong to distinct rays of S∗. To see that
the elements of T belong to extreme rays, i.e., [T ]+ ⊂ E(S∗), consider
the set C1 := co (C ∪ 0). It follows from the definition of C that C1 is
convex and compact, that S∗\C1 is convex and that the set of nonzero
extreme points of C1 is T . We show [T ]+ ⊂ E(S∗) by contradiction;
let x ∈ T and assume [x]+ �⊂ E(S∗). Then x ∈ co ([φ]+, [ψ]+) for
some φ, ψ ∈ S∗\[x]+. The properties of C1 guarantee the existence of
positive constants s, t ∈ R such that sφ, tψ ∈ C1 and

(5) s = sup{c ∈ R | cφ ∈ C1} and t = sup{c ∈ R | cψ ∈ C1}.

Finally consider the triangle formed by vertices 0, sφ and tψ. If x
belongs to this triangle then x is not an extreme point of C1 and we
have a contradiction; if x fails to belong to the triangle, then there
exist ŝ > s and t̂ > t such that x = ŝφ/2 + t̂ψ/2 which, by (5) and
the convexity of S∗\C1, would imply x /∈ C1 again a contradiction.
Therefore [T ]+ ⊂ E(S∗).

Note 1. Using the language of convex analysis, Proposition 2 verifies
that S∗ possesses a compact base whenever 0 /∈ E1. The discussion
prior to the proposition illustrates that not every closed, pointed cone
contains a base. A base is generalized by the notion of a cap: a compact,
convex subset of a cone such that the cone, take away the subset, is
still convex. An introduction to bases and caps can be found in [6] and
a more definitive treatment in [1].

Lemma 4. If PS �= ∅, then the cone S∗
|V is closed.

Proof. Let P ∈ PS , and let v = [v1, . . . , vn]T denote a fixed basis for
V . Let P ∗S∗ denote the closure of P ∗S∗, and let P ∗φ ∈ P ∗S∗ ⊂ P ∗X∗.
Choose a sequence {P ∗φk}∞k=1 ⊂ P ∗S∗ such that P ∗φk → P ∗φ. Notice,
by Lemma 2, {P ∗φk}∞k=1 ⊂ S∗. S∗ is weak*-closed and therefore
P ∗φ ∈ S∗; this implies P ∗φ ∈ P ∗S∗ since (P ∗)2 = P ∗. Thus P ∗S∗

is closed. Note that P ∗S∗ is homeomorphic to (P ∗S∗)|V and thus
(P ∗S∗)|V is closed. Finally, we claim (P ∗S∗)|V = S∗

|V . To verify this,
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choose φ ∈ S∗, v ∈ V and consider

〈v, P ∗φ〉 = 〈Pv, φ〉 = 〈v, φ〉,
where the last equality follows from the fact that P is a projection. But
this equation simply says that P ∗φ and φ agree on V , thus establishing
the claim. From here we can conclude that S∗

|V is closed.

Lemma 5. If PS �= ∅, then S∗
|V is simplicial.

Proof. From Lemma 4 we have E(S∗
|V ) �= ∅. We will show that the

number of extreme rays of S∗
|V is exactly n. Let P =

∑n
i=1 ui⊗vi ∈ PS

and, from Lemma 2, we have P ∗S∗ ⊂ S∗. There is an obvious bijection
between P ∗S∗ and (P ∗S∗)|V ; and from our work above in Lemma 4,
we have (P ∗S∗)|V = S∗

|V . This implies that the number of extreme rays
of S∗

|V is equal to the number of extreme rays of P ∗S∗, which we now
show must be n. Since P ∗S∗ is n-dimensional, there exists a linearly
independent subset {P ∗w1, . . . , P

∗wn} such that [P ∗wi]+ ∈ E(P ∗S∗)
for each i. We will now show that it is impossible for there to be
any other extreme rays. Consider first the case that 0 /∈ E1. From
Proposition 2 (and the positive scaling of each wi), there exists a
compact set C such that P ∗wi ∈ C ⊂ S∗ for each i. This implies that,
for each P ∗wi, we have a representing (probability) measure μi on C
(in the sense of Choquet; see [6]) supported on a subset Si containing
extreme points of C such that

(6)

P ∗wi = P ∗(P ∗wi) =
n∑

j=1

〈P ∗wi, vj〉uj

=
n∑

j=1

∫
Si

〈vj , s〉 dμi uj

=
∫

Si

n∑
j=1

〈vj , s〉uj dμi

=
∫

Si

P ∗s dμi.

But each P ∗wi belongs to an extreme ray of P ∗S∗ and thus for μi

almost everywhere s ∈ Si we must have P ∗s = csP
∗wi, where cs ≥ 0
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(note that if cs = 0 then P ∗s = 0 and, consequently, we may remove
such s from Si and not affect (6)). Therefore, we may conclude that,
for each i, there exists Ŝi ⊂ Si such that

(7) μi(Ŝi) > 0 and μj(Ŝi) = 0 whenever j �= i.

Now suppose there exists P ∗wn+1 ∈ E(P ∗S∗) such that [P ∗wn+1]+ �=
[P ∗wi]+, i = 1, . . . , n. Then the n-dimensionality of P ∗S∗ implies the
existence of constants ci, i = 1, . . . , n such that, for all x ∈ X,

(8) 〈P ∗wn+1, x〉 = 〈c1P ∗w1 + · · · + cnP
∗wn, x〉.

Since each ray [P ∗wi]+ is extreme, it follows that there exists i ∈
{1, . . . , n} such that ci < 0. Let μ =

∑n
i=1 ciμi, where each μi is the

representing measure from (6). Note from (7) that μ is necessarily a
signed measure. And finally, by rewriting (8) as

(9) 〈P ∗wn+1, x〉 =
∫

S1∪···∪Sn

〈s, x〉 dμ,

we obtain a contradiction to the fact that S∗ is simplicial, since μ
is a signed measure with support on E(S∗). Thus we must have
|E(P ∗S∗)| = n.

In the case that 0 ∈ E1, begin by writing

(10) P =
n∑

i=1

ui ⊗ vi for P ∈ PS .

Via a change basis, we may assume ui ∈ S∗ for each i and recall, for
each i, P ∗ui = ui ∈ S∗ since P ∈ PS . Consider the simplicial cone

Q∗ := co
( ⋃{

[es + u1]+ | es ∈ E1 := E(S∗) ∩ S(X∗)
})

and note that P ∗Q∗ ⊂ Q∗. By construction we have E(Q∗) =
∪{[es + u1]+}. Since S∗ is pointed, and thus −u1 /∈ S∗, it follows
that there exists λ > 0 such that λ < ‖es + u1‖ ≤ 1 + ‖u1‖ for every
es ∈ E1. Let Ê1 := {es + u1 | es ∈ E1} (we regard Ê1 as the set
of “normalized” extreme rays of Q∗, as we do for E1 relative to S∗).
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Now 0 is not in the weak* closure of Ê1, and thus, as in the previous
case, we must conclude that Q∗

|V has exactly n extreme rays. And,
since u1 ∈ S∗, the cones Q∗

|V and S∗
|V must have the same number of

extreme rays, which completes the proof.
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