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CONVERGENCE BY NONDISCRETE
MATHEMATICAL INDUCTION

OF A TWO STEP SECANT’S METHOD

S. AMAT, C. BERMÚDEZ, S. BUSQUIER AND J. GRETAY

ABSTRACT. We use the nondiscrete mathematical induc-
tion method for the semi-local convergence of a two step se-
cant’s iterative scheme on a Banach space. The scheme does
not need to evaluate neither any Fréchet derivative nor any
bilinear operator, but having a high speed of convergence.

1. Introduction. We consider the problem of approximating locally
the unique solution x∗ of a nonlinear equation

(1) f(x) = 0,

where f is a continuous operator defined on the closed convex domain
D of a Banach space E1 with values in a Banach space E2.

We use the two step Steffensen’s method given by

(2)
yn+1 = xn − [xn, xn + αn(yn − xn); f ]−1f(xn),
xn+1 = yn+1 − [xn, xn + αn(yn − xn); f ]−1f(yn+1), n ≥ 0.

to generate two sequences converging to x∗.

In order to control the stability in practice, the αn can be computed
such that

tolc << |αn(yn − xn)| ≤ tolu,

where tolc is related with the computer precision and tolu is a free
parameter.

Here [x, y; f ] ∈ L(E1, E2) is a divided difference of order one for the
operator f on the points x, y ∈ D. If f is Fréchet differentiable, then

(3) [x, y; f ] =
∫ 1

0

f ′(x+ t(y − x)) dt, for all x, y ∈ D.
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In [12], it is proved that these type of divided differences are charac-
terized by the following property

[x, y; f ] = 2[x, 2y − x; f ] − [y, 2y − x; f ],

for all x, y ∈ D, x �= y and 2y − x ∈ D.

Our iterative method is related with the scheme analyzed in [14] that
writes

(4)
yn+1 = xn − [xn, yn; f ]−1f(xn),
xn+1 = yn+1 − [xn, yn; f ]−1f(yn+1), n ≥ 0.

In practice, as we can see in [2 4], the αn parameter improves the
convergence of the schemes and therefore our scheme becomes more
efficient.

In a collection of papers [11, 13, 14] as well as in the monograph
[15], the authors present a unified theory of convergence based on
the so-called “method of nondiscrete mathematical induction.” The
theory was introduced in the paper [16] where the classical closed graph
theorem and nonlinear mapping are studied.

The basic idea is to define the rate of convergence as a function, not as
a number, giving more information than the classical methods, which
makes possible to give error estimates that are sharp even throughout
the whole process.

In this paper we intend to apply these ideas to the study of the
convergence of (2).

2. The induction theorem. Let p be a natural number. For each
i = 1, 2, . . . , p, let Ti be either the set of all positive numbers, or an
open interval (0, ti) for some ti > 0. Denote by T the cartesian product
T1 × · · · × Tp.

Definition 1. A function w mapping T into T is said to be a rate
of convergence on T if the series

∞∑
n=0

w(n)(r)

is convergent for each r ∈ T .
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Here w(0)(r) = r, and the function w(n) is the nth iterate of w, so
that w(n+1)(r) = w(w(n)(r)).

To simplify some of the formulae it will be convenient to introduce
the following vector function defined for r ∈ T by the formula

(5) ψ(r) = (r1 + · · · , rp, r2 + · · · + rp + w1(r), . . . ,
rp + w1(r) + · · · + wp−1(r)).

Using this function, we can attach to the rate of convergence w the
function

(6) σ(r) =
∞∑

n=0

ψ(w(n)(r))

The functions w and σ are related by

(7) σ(r) = σ(w(r)) + ψ(r), r ∈ T

If a and b are two vectors, we write a ≤ b, a < b, if ai ≤ bi, ai < bi.

Let (E, d) be a complete metric space, and let A be a subset of Ep.
For each i = 1, 2, . . . , p, we assign to A the subset Ai of E consisting
of those x ∈ E for which there exists an a ∈ A whose ith coordinate
is x. If x ∈ Ep we denote by d(p)(x,A) the vector with components
d(xi, Ai), i = 1, 2, . . . , p. If r ∈ Rp, r > 0, we shall denote by U(A, r)
a subset of A of the form

U(A, r) = {x ∈ Ep : d(p)(x,A) ≤ r}

Now we recall the following generalization of the Induction theorem
[14].

Theorem 1. Let (E, d) be a complete metric space. Let T be a p-
dimensional interval, and let w be a rate of convergence on T . Suppose
that the family Z(t) ⊂ Ep, t ∈ T , satisfies

(8) Z(r) ⊂ U(Z(w(r)), ψ(r))
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for each r ∈ T . Then

(9) Z(r) ⊂ U(Z(0), σ(r))

for each r ∈ T , where

Z(0) =
⋂
s∈T

( ⋃
t≤s

Z(t)
)

Let us sketch how the above theorem may be applied to the study of
the convergence of iterative procedures of the form

(10) xn+1 ∈ F (xn),

where F is a multi-valued mapping of Ep into Ep.

If we can attach to the pair (F, x0) a family of sets Z(r) ⊂ Ep, r ∈ T ,
and a rate of convergence w on T , so that the following conditions are
satisfied:

1) For a given r0 ∈ T

(11) x0 ∈ Z(r0)

2) r ∈ T and x ∈ Z(r) imply

(12) F (x)
⋂
Z(w(r))

⋂
U(x, ψ(r))

is nonvoid.

Then it follows from the induction theorem that Z(0) is nonvoid.
Moreover, the sequence {xn} obtained by successive applications of 2)
converges to a point x∗ ∈ Ep and satisfies the following relations

xn ∈ Z(w(n)(r0))(13)

d(p)(xn, x0) ≤ σ(r0) − σ(w(n)(r0))(14)

d(p)(xn, x
∗) ≤ σ(w(n)(r0)).(15)

The equation (15) gives us an a priori estimate of the distance between
the approximations and the solution. Moreover, if we find rn−1 ∈ T
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such that xn−1 ∈ Z(rn−1), taking xn−1 and rn−1 for x0 and r0, we
have, by (15), the following a posteriori estimates,

(16) d(p)(xn, x
∗) ≤ σ(w(n)(rn−1)) = σ(rn−1) − ψ(rn−1).

Usually, an rn−1 ∈ T such that xn−1 ∈ Z(rn−1) can be found as a
function of xn−1 and xn.

3. Convergence analysis. In this section we give sufficient
conditions for the convergence of (2).

The iterations to be considered are successive constructions of pairs
of points. Thus, we shall work in two dimensions so that p = 2. We
take for T the positive quadrant; instead of r1, r2 we shall write q, r.

Following [14], we consider the real polynomial

f(x) = x2 − a2

If a < x0 < y0, then the algorithm

yn+1 = xn − (xn + αn(yn − xn)) − xn

f(xn + αn(yn − xn)) − f(xn)
f(xn)

xn+1 = yn+1 − (xn + αn(yn − xn)) − xn

f(xn + αn(yn − xn)) − f(xn)
f(yn+1)

yields two nonincreasing sequences {xn} and {yn} which converge to
a.

Choosing y0 = x0 + q and x0 such that x0 − y1 = r, if we define

w1(q, r) = y1 − x1, w2(q, r) = x1 − y2,

then, from the convergence of the process, the pair of functions (w1, w2)
is a rate of convergence on T .

We observe also that the following relations hold:

yn − xn = w
(n)
1 (q, r)

xn − yn+1 = w
(n)
2 (q, r)

xn − x0 = σ2(q, r) − σ2(w(n)(q, r))
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yn − x0 = σ2(q, r) − σ1(w(n)(q, r))
xn − a = σ2(q, r)
yn − a = σ1(q, r).

We shall use the above results in the proof of the following theorem.

Theorem 2. Let E and F be two Banach spaces, let x0 be a point
of E, and let f be a mapping from the closed disc U = U(x0,m) into
F . Let a divided difference of f be given which satisfies a Lipschitz
condition with constant H. Let y0 be a given point of U .

Suppose that the following conditions are satisfied :

a) The operator [x0, x0 + α0(y0 − x0); f ] is invertible and

d([x0, x0 + α0(y0 − x0); f ]) ≥ d0,

where d([x0, x0 + α0(y0 − x0); f ]) = |[x0, x0 + α0(y0 − x0); f ]−1|−1;

b) max{|y0 − x0|, tolu} ≤ q0;

c) |[x0, x0 + α0(y0 − x0); f ]−1f(x0)|;
d) 2r0(tolu + r0) + tolu + r0 ≤ d0/H;

e) m ≥ σ2(q0, r0);

then the iterative procedure

(17)
yn+1 = xn − [xn, xn + αn(yn − xn); f ]−1f(xn),
xn+1 = yn+1 − [xn, xn + αn(yn − xn); f ]−1f(yn+1), n ≥ 0.

is well defined, the sequences {yn}, {xn} converge to a root x∗ of the
equation f(x) = 0, and the following estimates hold :

|yn − x∗| ≤ σ1(w(n)(q0, r0))

|xn − x∗| ≤ σ2(w(n)(q0, r0)).

Proof. We shall consider a family of sets depending on two positive
parameters q, r as follows:

Z(q, r) =
{

(y, x) ∈ E2 : |y−x| ≤ q, |[x, x+ α(y, x)(y−x); f ]−1f(x)|

≤ rd([x, x+ α(y, x)(y − x)) ≥ h(q, r)
}



CONVERGENCE OF A TWO STEP SECANT’S METHOD 365

where α(y, x) is a function in (0, 1) such that |α(y, x)(y − x)| ≤ tolu
and h is a positive function to be determined later.

We intend to prove that

(18) (y0, x0) ∈ Z(q0, r0)

and, given (y, x) ∈ Z(q, r), that the pair (y′, x′)

y′ = x− [x, x+ α(y, x)(y − x); f ]−1f(x)
x′ = y′ − [x, x+ α(y, x)(y − x); f ]−1f(y′)

satisfies the inclusion

(19) (y′, x′) ∈ Z(w(q, r))
⋂
U((y, x), ψ(q, r))

for a suitable rate of convergence w on T .

The inclusion (19) is equivalent to

|y′ − x′| ≤ w1(q, r)(20)
d([x′, x′ + α(y′, x′)(y′ − x′); f ]) ≥ h(w(q, r))(21)

|[x′, x′ + α(y′, x′)(y′ − x′); f ]−1f(x′)| ≤ w2(q, r)(22)
|y′ − y| ≤ q + r(23)
|x′ − x| ≤ r + w1(q, r).(24)

Suppose (y, x) ∈ Z(q, r); it follows from the definition of the scheme
that

y′ − x = − [x, x+ α(y, x)(y − x); f ]−1f(x).

Using this, we have

f(y′) = f(x) + [y′, x; f ](y′ − x)
= ([y′, x; f ] − [x, x+ α(y, x)(y − x); f ])(y′ − x)

whence

(25) |f(y)| ≤ H |y′ − (x+ α(x, y)(y − x))| |y′ − x|.
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From the definition of Z and the scheme, we have |y′ − x| ≤ r; thus,

|y′ − y| ≤ |y′ − x| + |x− y| ≤ r + q

so that (23) follows, and

|y′ − (x+ α(y, x)(y − x))| ≤ |y′ − x| + |x− (x+ α(y, x)(y − x))|
≤ r + tolu.

Furthermore,

(26)

|y′ − x′| = | − [x, x+ α(y, x)(y − x); f ]−1f(y′)|
≤ f(y′)
h(q, r)

≤ Hr(r + tolu)
h(q, r)

.

It follows that (20) will be satisfied if we assume that

Hr(r + tolu)
h(q, r)

≤ w1(q, r).

Let us do that. Now

d([x′, x′ + α(y′, x′)(y′− x′); f ])
≥ d([x, x+ α(y, x)(y − x); f ]) − |[x′, x′ + α(y′, x′)(y′− x′); f ]

− [x, x+ α(y, x)(y − x); f ]|
≥ h(q, r) −H(|x′− x| + |α(y′, x′)(y′− x′) − α(y, x)(y − x)|).

Since
|x′ − x| ≤ |x′ − y′| + |y′ − x| ≤ w1(q, r) + r,

we have (24), similarly

|α(y′, x′)(y′ − x′) − α(y, x)(y − x)| ≤ w1(q, r) + 2tolu

and

(27) d([y′, x′; f ]) ≥ h(q, r) − 2H(w1(q, r) + r + tolu).
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To estimate f(x′) we write

f(x′) = f(y′) + [x′, y′; f ] (x′ − y′)
= (− [x, x+ α(y, x)(y − x); f ] + [x′, y′; f ]) (x′ − y′).

Thus,

(28)

|[x′, x′+α(y′, x′)(y′ − x′); f ]−1f(x′)|
≤ H(|x− x′| |x+ α(y, x)(y − x) − y′|)w1(q, r)

h(q, r) − 2H(tolu + r + w1(q, r))

≤ H(2r + tolu + w1(q, r))w1(q, r)
h(q, r) − 2H(tolu + r + w1(q, r))

.

To simplify the formulae, set h(q, r) = Hk(q, r). To satisfy (20) (22),
it will be sufficient, in view of (26) (28), to consider k such that

w1 =
r(tolu + r)

k
k ◦ w = k − 2(w1 + r + tolu)

w2 = w1
2r + tolu + w1

k ◦ w ,

where w1 and w2 are the functions of the discussion above the present
theorem.

These functional equations are satisfied if we set

k(q, r) = tolu + r + 2(r(tolu + r) + a2)1/2.

Here, the free parameter a will be chosen so as to have (x0, y0) ∈
Z(q0, r0). For this it suffices to satisfy h(q0, r0) = d0, which leads to
the choice

(29) a2 =
1
2

(
d0

H
− tolu − r0

)
− r0(tolu + r0).

The condition d) of the theorem implies that

1
2

(
d0

H
− tolu − r0

)
− r0(tolu + r0) ≥ 0.
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Then the formula (29) makes sense. The rest of the proof is a
consequence of the induction theorem [14].

If the condition d) is strict, then x∗ is the only root of the equation
f(x) = 0 in the set

U
⋂

{x ∈ E : |x− x0| < σ2(q0, r0) + 2a},
see [14] for more details.

The application of the method of nondiscrete mathematical induction
to any iterative processes carries to definitive results; not only has it
yielded estimates sharp in every step, but also the conditions on the
initial data obtained turn out to be optimal [14].
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