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Regularity, local behavior and partial
uniqueness for self-similar profiles of
Smoluchowski’s coagulation equation

José A. Cañizo and Stéphane Mischler

Abstract

We consider Smoluchowski’s equation with a homogeneous kernel
of the form a(x, y) = xαyβ + xβyα with −1 < α ≤ β < 1 and
λ := α + β ∈ (−1, 1). We first show that self-similar solutions of
this equation are infinitely differentiable and prove sharp results on
the behavior of self-similar profiles at y = 0 in the case α < 0. We
also give some partial uniqueness results for self-similar profiles: in
the case α = 0 we prove that two profiles with the same mass and
moment of order λ are necessarily equal, while in the case α < 0 we
prove that two profiles with the same moments of order α and β, and
which are asymptotic at y = 0, are equal. Our methods include a
new representation of the coagulation operator, and estimates of its
regularity using derivatives of fractional order.

1. Introduction

1.1. Smoluchowski’s equation

Smoluchowski’s coagulation equation is a well-known model for irreversible
aggregation processes. These processes involve a set of particles which can
join to form groups of two or more of them, which we call clusters. Below we
will briefly present the model; we refer the reader to the reviews [1, 3, 10, 11]
for a more detailed background on the equation.

We study this equation in a continuous setting, meaning that the size
of a cluster may be any positive number y ∈ (0,∞). We are interested
in the time evolution of the density of clusters of each possible size, given
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by a function f = f(t, y) which depends on the time t and cluster size y.
The mass of f at a given time t is given by its first moment

∫∞
0
y f(t, y) dy.

The continuous Smoluchowski equation reads:

(1.1) ∂tf(t, y) = C(f(t), f(t))(y),

where

C(f, f)(y) :=
1

2

∫ y

0

a(z, y − z)f(z)f(y − z) dz

−
∫ ∞

0

a(z, y)f(z)f(y) dz,

(1.2)

where the coagulation kernel a = a(x, y) is a given nonnegative symmetric
function defined on (0,+∞)×(0,+∞), which governs the time rate at which
a cluster of size x and cluster of size y aggregate. We write C(f, f) to
emphasize that C is a quadratic operator, in agreement with later discussions
in which we consider its associated symmetric bilinear form C(f, g).

In many physical models the coagulation kernel a is a homogeneous func-
tion [1] in the sense that for some λ ≥ 0 it holds that

a(hx, hy) = hλa(x, y) for x, y, h > 0.

For our results we will take that as a hypothesis, and in fact we will assume
that a is of the following form:

a(x, y) := xαyβ + xβyα for x, y > 0,(1.3a)

−1 < α ≤ β < 1, λ := α + β ∈ (−1, 1).(1.3b)

In some places, we allow a to be a finite linear combination of such terms.

When the kernel is homogeneous, one may look for self-similar solutions,
also called scaling solutions : solutions which are given by a rescaling of
some fixed function g for all times. In other words, a solution f = f(t, y)
to Smoluchowski’s equation is self-similar if there exists some nonnegative
function g such that

f(t, y) = q(t) g(p(t)y) for all t, y > 0

for some functions q(t), p(t) > 0. Such a function g is called a self-similar
profile (or scaling profile). In this work we will always consider self-similar
solutions with finite mass. If a is homogeneous of degree −1 < λ < 1, it is
known (e.g., [4]) that for f to be a self-similar solution it must happen that

q(t) = (t0 + t)−
2

1−λ and p(t) = (t0 + t)−
1

1−λ
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for some constant t0 > 0, and that g satisfies the self-similar profile equation:

(1.4) 2g + y∂yg + (1 − λ)C(g, g) = 0.

The existence of self-similar profiles has been established in [6, 4] for a gen-
eral class of coefficients which in particular cover the case of a(x, y) satis-
fying (1.3). It is expected (and has been proved in some particular cases)
that in general conditions solutions exhibit a universal self-similar behavior
in the long time, meaning that they are eventually close to a self similar
solution of the equation. The conjecture that this behavior does in fact hold
is called the dynamical scaling hypothesis, and a lot of effort has been done
to rigorously prove its validity. In particular, it is expected that with “regu-
lar” initial conditions (such as compactly supported data) solutions become
eventually close to a self-similar solution with finite mass. For the special
cases a(x, y) = 1 or a(x, y) = x+y rather complete results have been proved
[9, 12, 13], but for a general coefficient almost no information is available.
It seems likely that further study of the scaling profiles is needed before a
more complete understanding of dynamical scaling can be obtained, and our
results aim in this direction.

1.2. Description of the main results

We first give a proof of the infinite differentiability of self-similar profiles.
This fact was already known in the case α < 0 [4], and here we generalize
this result to include the α ≥ 0 case:

Theorem 1.1. Assume that the coefficient a is of the form (1.3), or is a fi-
nite linear combination of terms of that form, all with the same homogeneity
degree λ. Then, any self-similar profile with finite mass for Smoluchowski’s
equation is infinitely differentiable on (0,∞).

We remark that in the paper [7], self-similar profiles for α = 0 were
shown to be C1, and in [4, Th. 4.3] solutions for α ≥ 0 were proved to have
a C0,θ Hölder regularity for any 0 ≤ θ < 1 − λ.

Regarding the asymptotic behavior of scaling profiles at 0 and ∞, some
estimates have been rigorously proved [6, 5, 4], and are consistent with the
very complete previous formal calculations by van Dongen and Ernst [17].
Exponential decay of solutions as y → ∞ was proved in [4, 7], but the rate
of decay is still far from the rate expected by formal calculations in [17].
As for the behavior at y = 0, one has to separately treat the α = 0, α > 0
and α < 0 cases:

1. For α = 0, a very precise result was given by Fournier and Laurençot
in [7], making rigorous the conclusions in [17]: a self-similar solution
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is asymptotic to a constant times y−τ as y → 0, for some 1 < τ <
min{3/2, 1 + λ}. An intriguing property of this result is that in order
to know the numerical value of τ one needs to compute the solution
itself, as τ is given in terms of the λ-moment of the solution.

2. For α > 0, the formal arguments in [17] suggest that a scaling profile g
should be asymptotic to a constant times y−1−λ when y → 0. So far,
it has been rigorously proved that all the moments of order σ > λ of g
are finite, while all moments of order σ < λ are infinite.

3. For α < 0, exponential decay of solutions at y = 0 was proved in [4].
Our contribution here is a refinement of this behavior which coincides
with the formal result in [17], and which is needed in the proof of
uniqueness for α < 0.

Our precise result for α < 0 is the following:

Theorem 1.2. Assume that the coagulation kernel is of the form (1.3) with
α < 0. Then, if g is a (nonzero) self-similar profile for Smoluchowski’s
coagulation equation, it holds that

(1.5) g(y) ∼ K0e
−Λ(y) as y → 0

for some strictly positive constant K0, where

Λ(y) := 2 log y − (1 − λ)

(
Mβ

α
yα +

Mα

β
yβ

)
,

and Mα, Mβ are the moments of order α and β of g. In addition, the
function y �→ g(y)eΛ(y) is decreasing on (0,∞).

Remark 1.3. Notice that in the case β > 0 the term in yβ inside Λ does
not play any role in the behavior of g as y → 0.

Remark 1.4. The constant K0 that appears here is just the one related to
the asymptotic behavior of a particular self-similar profile g; in particular,
it may be different for different self-similar profiles.

We do not prove the asymptotic behavior of self-similar profiles at y = 0
in the case α = 0 because this was already proved in [7]. However, the
same techniques employed in this paper, in particular the rewriting of the
equation in Section 5, may be used to give a proof of it which is somewhat
different from the one in [7]. Lemma 5.4 below easily implies the following
additional information on a profile g:
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Theorem 1.5. Assume that the coagulation kernel is of the form (1.3) with
α = 0. If g is a self-similar profile for Smoluchowski’s coagulation equation,
then the function y �→ yτ−1

∫∞
y
g(z) dz is decreasing on (0,∞), where

τ := 2 − (1 − λ)Mλ[g].

We also prove the following partial uniqueness results:

Theorem 1.6. Consider a coagulation kernel of the form (1.3) with α = 0.
Assume that g1 and g2 are two self-similar profiles of the same mass for
Smoluchowski’s equation, and also that Mλ[g1] = Mλ[g2]. Then, g1 = g2.

Here and in the rest of the paper we use the notation Mμ[g] to denote
the μ-moment of a function g, for any μ ∈ R:

(1.6) Mμ[g] :=

∫ ∞

0

yμg(y) dy.

For coefficients with α < 0 our result is:

Theorem 1.7. Consider a coagulation kernel of the form (1.3) with α < 0.
Assume that g1 and g2 are two self-similar profiles for Smoluchowski’s equa-
tion such that

Mα[g1] = Mα[g2] =: Mα,(1.7)

Mβ [g1] = Mβ [g2] =: Mβ ,(1.8)

lim
y→0

g1(y) e
Λ(y) = lim

y→0
g2(y)e

Λ(y),(1.9)

where

Λ(y) := 2 log y − (1 − λ)

(
Mβ

α
yα +

Mα

β
yβ

)
.

Then, g1 = g2.

Remark 1.8. The limit at y = 0 which appears in this result is proved to
exist in Section 6; see Theorem 1.2 below. Using it it is easy to see that
condition (1.9) in the above theorem is equivalent to the requirement that
g1 ∼ g2 when y → 0, this is, limy→0 g1(y)/g2(y) = 1.

To our knowledge, no uniqueness result at all was available for self-similar
profiles of Smoluchowski’s equation. The natural conjecture is that the full
uniqueness result should hold, this is, that two scaling profiles with the same
mass are necessarily equal. This does hold in the better understood cases
with a(x, y) = 1 and a(x, y) = x+ y, but the techniques we use here do not
seem enough to show this for general λ. A central difficulty is the fact that
the moments of the equation (Mλ when α = 0, or Mα,Mβ when α < 0) are
a global property of the solution that cannot be computed a priori (unlike
the a(x, y) = 1 or a(x, y) = x + y cases), and which are even not easy to
approximate numerically [2].
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1.3. Tools and method of proof

Among the tools used to prove the above results we highlight a new rep-
resentation of the coagulation operator, which is given in Section 3, and
a rewriting of the self-similar profile equation, given in Section 5. Let us
comment on them briefly.

In order to rewrite the coagulation operator, define a distribution asso-
ciated to any function f of finite mass. We use the Banach space L1

1 of real
measurable functions on (0,∞) with finite first moment:

(1.10) L1
1 := L1((0,∞); y dy).

In general, we use the notation

(1.11) L1
k := L1((0,∞); yk dy)

for k ∈ R.

Definition 1.9. (Distribution associated to f ∈L1
1). Given a function f ∈L1

1,
we define the distribution {f} on R as

(1.12) 〈{f}, φ〉 :=

∫ ∞

0

f(z) (φ(z) − φ(0)) dz for φ ∈ C∞
0 (R).

Note that when f is not absolutely integrable at 0, this is just the classical
definition of the finite part of the integral

∫∞
0
φ(y)f(y) dy [16]. Here, we

keep the same expression even when f is integrable. Then, for a coagulation
kernel of the form (1.3), the coagulation operator may be written as

C(g, g) = {yαg} ∗ {yβg}.
Here we are considering C(g, g) defined as a distribution; for a more precise
statement, see Section 3.

The above expression has the advantage of being simple and lending
itself to convenient and perfectly rigorous manipulations. For example, it
is easy to recover the known expression for the primitive of C(g, g), as the
convolution above commutes with integration and derivation operators. Fur-
thermore, it gives some insight into the way C(g, g) works: if we are working,
say, in the case α = 0, where g(y) ∼ K y−τ when y → 0 for some K > 0,
one can see that C(g, g) is in many respects analogous to a fractional deriva-
tive of g of order τ − 1, as a fractional derivative of this order is precisely
the convolution with {y−τ}, times a constant. This is crucially used in the
proof of the differentiability of profiles in Section 4, where we carry out a
bootstrap argument which shows that if a profile g is k times differentiable,
then the self-similar profile equation implies that it must be in fact k+1−λ
times differentiable. The use of fractional derivatives comes naturally in
this context, and actually a different version of this bootstrap argument has
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already been used in [7] to show that profiles for α = 0 are C1. There, it
was necessary to first show a certain Hölder regularity of the solution, and
then use this information to obtain C1 regularity. Formulating this in terms
of gain of fractional derivatives makes it easy to iterate the argument to
obtain C∞ regularity and extend it to other kernels.

For the study of the behavior of solutions near y = 0 and the proof of
uniqueness we rewrite the self-similar profile equation by solving the differ-
ential part, along with any other term which can be separated and solved;
see Section 5 for a statement of this.

Finally, let us sketch the idea of the proof of our uniqueness result. A
fundamental obstacle that makes equation (1.4) difficult to study is the fact
that it involves the nonlocal term C(g, g), which makes it very different from
an ordinary differential equation. However, the coagulation operator for a
constant coefficient has a gain part which only uses values of the function g
less than y, and a loss part which is nonlocal only through the appearance
of the integral of g. The idea is then to solve the latter part of the equation,
which is simpler, assuming the value of the involved moments is given, and
then look at the remaining part as an equation which is local near 0, to
which the kind of arguments used in the theory of o.d.e.s can be adapted.

This idea works well for coefficients with α < 0, as then the solution
decays rapidly near y = 0, but it is not directly applicable for coefficients
with α = 0, as then solutions are known not to be integrable near 0 and the
gain and loss parts cannot be separated in the same way (one cannot separate
the integral of g, as this term does not make sense). But, one can still find a
way to separate the equation for the primitive of g in a similar way, and then
carry out the argument on it. This line of reasoning is followed in Section 7,
where Theorems 1.6 and 1.7 are proved. This idea depends crucially on the
fact that in the case α ≤ 0 the self-similar solution behaves better than y−1−λ

near y = 0, so that the linear operator Lg(f) := C(f, g) is regularizing near
y = 0. Hence, this method does not give new information in the case α > 0,
where solutions are expected to be asymptotic to y−1−λ [17].

1.4. Organization of the paper

In the next section we give the basic definitions of self-similar profile, and
precisely define the coagulation operator as a distribution on (0,∞). In
Section 3 we give the representation of this operator in the way mentioned
above, which in particular extends it naturally to a distribution on (0,∞).
This result is a central idea in the proof of infinite differentiability of scaling
profiles, to which Section 4 is devoted. Section 5 proves that the self-similar
profile equation can be rewritten, as we briefly explained before, in a way
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which is very useful to prove the asymptotic behavior of α < 0 profiles
at y = 0 (given in Section 6). Finally, we prove our uniqueness Theorems 1.6
and 1.7 in Section 7.

In an appendix (Section 8) we include a very brief introduction to frac-
tional derivatives in order to clarify the notation and definitions we are using,
as they are not completely standard in the literature. We also prove some
simple but delicate results on fractional differentiation which are used in this
paper, and for which we could not find a reference which gives the explicit
statement.

2. Preliminaries: self-similar profiles

When one wants to define precisely the concept of self-similar profile, it
is a well-known inconvenience that in order for C(g, g) to be well defined
by expression (1.2), g must meet certain conditions; the ones which are
usually imposed are finiteness conditions on certain moments near 0 and ∞,
which are not satisfied by the natural solutions of (1.4), known to have
a nonintegrable singularity at y = 0 [7, 17, 4, 6]. Hence, the definition of
C(g, g) is often changed for a less restrictive weak formulation by integrating
against a suitably regular test function φ with compact support on (0,∞),
which we will do next. Also, C(g, g) is quadratic in g, and we will need to
consider its associated symmetric bilinear operator, so we actually give a
weak definition for the latter:

Definition 2.1. Let a be a symmetric nonnegative measurable function
defined on (0,∞) × (0,∞), and f, g be locally integrable functions defined
on (0,∞) such that

(2.1)

∫ ∞

0

∫ ∞

0

a(y, z) y z |f(y)g(z)| dy dz <∞.

We define the coagulation operator C(f, g) associated to the coagulation co-
efficient a as the following distribution on (0,∞):

〈C(f, g), φ〉 =
1

2

∫ ∞

0

∫ ∞

0

a(y, z)f(y)g(z)(φ(y + z) − φ(y) − φ(z)) dx dz(2.2)

for φ ∈ C∞
0 (0,∞).

Remark 2.2. For φ ∈ C∞
0 (0,∞) there is always a constant M > 0 (which

depends on the compact support of φ) such that

|φ(y + z) − φ(y) − φ(z)| ≤ C y z, for y, z > 0,

which can be readily seen by the Mean Value Theorem. Then, the inte-
gral (2.2) is finite by (2.1).
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When f is regular enough, 〈C(f, f), φ〉 can be see to be equal to the
integral

∫∞
0
φ(y)C(f, f)(y) dy, where C(f, f)(y) is given by expression (1.2).

Condition (2.1) can be somewhat weakened in some cases by loosening the
integrability condition on f at +∞, but the above one is simpler and will
be enough for our purposes.

Definition 2.3. (Self-similar profile). Assume that the coagulation coeffi-
cient a is homogeneous of degree λ. A nonnegative locally integrable function
g : (0,∞) → [0,∞) for which∫ ∞

0

y g(y) dy <∞,∫ ∞

0

∫ ∞

0

a(y, z) y z |g(y)g(z)| dy dz <∞

is a self-similar profile for Smoluchowski’s coagulation equation if equa-
tion (1.4) holds in the sense of distributions on (0,∞); this is, if

(2.3) 2g + y ∂yg + (1 − λ)C(g, g) = 0.

3. A representation of the coagulation operator

In this section we want to give a representation of the coagulation operator
when a has the form (1.3) which sheds some light on its structure, and
in particular will be very helpful to prove our regularity results later. To
begin with, let us give a natural extension of C(f, g) from Definition 2.1 to
a distribution on R:

Definition 3.1. Take a coagulation coefficient a and functions f, g in the
conditions of Definition 2.1. We define the coagulation operator associated
to the coagulation coefficient a, applied to f, g, as the distribution C(f, g)
on R given by

〈C(f, g), φ〉 :=
1

2

∫ ∞

0

∫ ∞

0

a(x, z)f(x)g(z)(φ(x+z)−φ(x)−φ(z)+φ(0)) dx dz

(3.1)

for all φ ∈ C∞
0 (R).

It is easy to see that this is well defined as a distribution on R, even with
the weak requirements on f and g, and that it extends Definition 2.1. Note
the addition of the term φ(0), which does not make a difference when φ has
compact support on (0,∞); later we will see how this extension comes about
naturally. To give our representation for C(f, g) we will use the notation
from Definition 1.9. Let us initially treat the case of a constant coefficient
a ≡ 1, and then see how it extends to other coefficients:
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Proposition 3.2. Take f, g ∈ L1
1, and let C0 be the coagulation operator

with a constant coefficient a ≡ 1 as given in Definition 3.1. Then,

C0(f, g) =
1

2
{f} ∗ {g} as distributions on R.

Here, the convolution {f} ∗ {g} is understood as a convolution of distri-
butions with compact support to the left [16]. This expression is surprisingly
simple, and is well-suited for the study of the coagulation operator when the
functions f , g have a singularity at 0, which is the case with some self-similar
profiles. Its proof just consists of writing out the definitions:

Proof. For φ ∈ C∞
0 (R),

(3.2) 〈{f} ∗ {g}, φ〉 = 〈{f}, (R{g}) ∗ φ〉 ,

(where R is the reflection operator, Rφ(y) := φ(−y), defined by duality on
distributions) and

((R{g}) ∗ φ)(x) = 〈{g}, τ−xφ〉 =

∫ ∞

0

g(z)(φ(x+ z) − φ(x)) dz,

so from (3.2) we have

〈{f} ∗ {g}, φ〉 =

∫ ∞

0

f(x)
(
((R{g}) ∗ φ)(x) − ((R{g}) ∗ φ)(0)

)
dx

=

∫ ∞

0

f(x)

(∫ ∞

0

g(z)(φ(x+ z) − φ(x)) dz

−
∫ ∞

0

g(z)(φ(z) − φ(0)) dz

)
dx

=

∫ ∞

0

∫ ∞

0

f(x)g(z) (φ(x+ z) − φ(x) − φ(z) + φ(0)) dx dz,

which is our result, in view of expression (3.1). �
This directly gives a representation of the coagulation operator C(f, g)

with a coagulation kernel a satisfying (1.3), as the following relation holds
for any f, g satisfying (2.1):

C(f, g) = C0(y
αf, yβg) + C0(y

βf, yαg),

where C(f, g) is the operator associated to a, and the equality is an equality
of distributions on R.
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Theorem 3.3. Assume that the coagulation operator a is of the form (1.3),
and take f, g which satisfy (2.1). Then, the coagulation operator associated
to a (as given in Definition 3.1) can be written as

C(f, g) =
1

2

({yαf} ∗ {yβg} + {yβf} ∗ {yαg}) ,
where equality holds as distributions on R.

We emphasize that this operator is defined as a distribution on R and,
as pointed out after Definition 3.1, extends the usual operator C from Defi-
nition 2.1 (which is a distribution on (0,∞)).

4. Local regularity

With the representation of the coagulation operator C(g, g) given in The-
orem 3.3, the study of its regularity can be viewed as the study of the
regularity of convolutions of the above type, which is a more manageable
problem. The difficulty here is that when α ≥ 0 a scaling solution g is not
integrable near 0, but is expected to be very regular locally, and hence we
need to study the convolution of functions which have singularities at 0.
Precisely, the following general result on the local integrability of scaling
profiles near y = 0 is known (see [6] or [4] for a proof):

Proposition 4.1. Assume that the coagulation coefficient a is of the
form (1.3), or is a finite linear combination of terms of that form, all with
the same homogeneity degree λ. Then, all self-similar profiles g for Smolu-
chowski’s equation (in the sense of Definition 2.3) satisfy that

∫ R

0

ykg(y) dy <∞ for all R > 0 and all k > λ.

For convenience, we will measure the regularity of a function by looking
at how many of its derivatives are locally integrable on (0,∞). To study
the regularity of C we will need to use an interesting relationship between
the kind of singularity of a function near 0 and the local integrability of its
fractional integrals, which we give in lemma 4.3 below. Let us start with the
following elementary lemma that we state without proof:

Lemma 4.2. For 0 < k < 1,

(4.1)

∫ ∞

0

(xk−1 − (z + x)k−1) dx =
1

k
zk for z > 0.
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Lemma 4.3. If f ∈ L1
k, with 0 < k ≤ 1, then

∥∥D−k{f}∥∥
L1(R)

≤ 2

Γ(k + 1)

∥∥ykf
∥∥

L1(0,∞)
.

Remark 4.4. We recall that we denote L1
k := L1((0,∞); yk dy) as in equa-

tion (1.11).

Proof. For any φ ∈ C∞
0 (R) we will prove that

(4.2)
∣∣〈D−k{f}, φ〉∣∣ ≤ 2

Γ(k + 1)

∥∥ykf
∥∥

L1(0,∞)
‖φ‖∞ ,

which is equivalent to our inequality. We have:

(4.3)
〈
D−k{f}, φ〉 = 〈{f}, D−kφ〉 =

∫ ∞

0

f(z) (D−kφ(z) −D−kφ(0)) dz,

and the part inside the parentheses is

D−kφ(z) −D−kφ(0) =(4.4)

=
1

Γ(k)

∫ ∞

z

φ(x)(x− z)k−1 dx− 1

Γ(k)

∫ ∞

0

φ(x)xk−1 dx

=
1

Γ(k)

∫ ∞

z

φ(x)
(
(x− z)k−1 − xk−1

)
dx− 1

Γ(k)

∫ z

0

φ(x)xk−1 dx.

We put back this these two terms in (4.3), and bound them separately. The
first term is 0 when k = 1, and for 0 < k < 1 we have∫ ∞

0

|f(z)|
∫ ∞

z

|φ(x)| ∣∣(x− z)k−1 − xk−1
∣∣ dx dz ≤(4.5)

≤ ‖φ‖∞
∫ ∞

0

|f(z)|
∫ ∞

z

∣∣(x− z)k−1 − xk−1
∣∣ dx dz

=
1

k
‖φ‖∞

∫ ∞

0

zk |f(z)| dz,

thanks to Lemma 4.2. As for the second term in (4.4), putting it into (4.3)
we have ∫ ∞

0

|f(z)|
∫ z

0

|φ(x)|xk−1 dx dz ≤ ‖φ‖∞
∫ ∞

0

|f(z)|
∫ z

0

xk−1 dx dz(4.6)

=
1

k
‖φ‖∞

∫ ∞

0

zk |f(z)| dz.



Self-similar profiles of Smoluchowski’s coagulation equation 815

Then, equations (4.3)–(4.6) prove that

∣∣〈D−k{f}, φ〉∣∣ ≤ 2

kΓ(k)
‖φ‖∞

∫ ∞

0

zk |f(z)| dz,

which proves inequality (4.2), taking into account that kΓ(k) = Γ(k+1). �
In the light of the above lemma, our next result can be understood

as saying: if two functions are locally regular but have a nonintegrable
singularity at 0, their convolution is slightly less regular. How much less
regular it is depends on the nature of the singularity. In particular, the local
regularity of the convolution depends only on local properties of the initial
functions, which is a general property of the convolution operation. In the
next lemma, the reader can keep in mind that μ will be negative when we
use it, so a function f for which Dμf is integrable may well be not integrable
near 0, as Lemma 4.3 makes clear.

Lemma 4.5. Let T , S be two distributions on R with support on [0,∞)
(this is, T, S ∈ D′

L), and assume that

1. For some ν ∈ R, DνT and DνS are locally integrable on (0,∞).

2. For some μ ≤ ν, DμT , DμS are locally integrable on R.

Then, the distribution Dμ+ν(T ∗ S) is locally integrable on (0,∞).

Proof. We break T and S into a part near 0, an intermediate part, and a
part near ∞. For this, choose 0 < ε < 1/4. We can find smooth nonnegative
cutoff functions Φ0, Φ1, Φ2 on (0,∞) such that

Φ0 ≡ 1 on (0, ε), Φ0 ≡ 0 on (2ε,∞)

Φ1 ≡ 1 on
(
2ε,

1

ε

)
, Φ1 ≡ 0 on (0, ε) ∪

(2

ε
,∞
)

Φ2 ≡ 1 on
(2

ε
,∞
)
, Φ2 ≡ 0 on

(
0,

1

ε

)
and such that

Φ0 + Φ1 + Φ2 ≡ 1 on (0,+∞).

In other words, Φ0,Φ1,Φ2 form a partition of unity on (0,∞) subordinated
to the open cover (0, 2ε) ∪ (ε, 2/ε) ∪ (1/ε,∞). Then,

S = SΦ0 + SΦ1 + SΦ2 =: S0 + S1 + S2,

T = TΦ0 + TΦ1 + TΦ2 =: T0 + T1 + T2,

where we have denoted Si := SΦi, Ti := TΦi for i = 0, 1, 2. We can break
the convolution S ∗ T by using this decomposition. Note that for i = 0, 1, 2,
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S2 ∗ Ti is zero on (0, 1/ε), and the same happens with S, T interchanged;
as we are only interested in studying the regularity of S ∗ T on a bounded
interval, we can disregard these terms and write

S ∗ T = S0 ∗ T0 + S0 ∗ T1 + S1 ∗ T0 + S1 ∗ T1 on (0, 1/ε).

Similarly, the term S0 ∗ T0 is zero on (4ε,∞), so we have

(4.7) S ∗ T = S0 ∗ T1 + S1 ∗ T0 + S1 ∗ T1 on (4ε, 1/ε).

Then, we can write Dμ+ν of each of these terms by using Theorem 8.8:

Dμ+ν(S0 ∗ T1) = (DμS0) ∗ (DνT1)(4.8)

Dμ+ν(S1 ∗ T0) = (DνS1) ∗ (DμT0)(4.9)

Dμ+ν(S1 ∗ T1) = (DμS1) ∗ (DνT1).(4.10)

By the hypotheses of the lemma, we can see that all of the terms that take
part in the convolutions on the right hand side are integrable functions, as
the product by Φ0 or Φ1 does not change their local regularity properties
(Theorem 8.10). Let us do the reasoning for DμS1: as DνS is integrable
on (4ε, 1/ε) by hypothesis, we have that Dν(SΦ1) = DνS1 is integrable on
that interval by Theorem 8.10; then, thanks to Lemma 8.11, DμS1 is also,
as μ ≤ ν. The rest of the terms can be treated analogously, and are seen to
be integrable without the help of Lemma 8.11.

Then, all the terms on the right hand side of (4.8)–(4.10) are convolutions
of integrable functions, and hence are integrable, and (4.7) then proves that
Dμ+ν(S ∗ T ) is integrable on (4ε, 1/ε). �

Proposition 4.6. Take a coagulation coefficient a which is of the form (1.3)
with α ≥ 0, and C the coagulation operator associated to a (given by Defini-
tion 3.1). Assume that g : (0,∞) → R is such that

1. ykg is locally integrable on [0,∞) for some 1 ≥ k ≥ β,

2. and Dνg is locally integrable on (0,∞) for some ν ≥ 0.

Then, Dα−k+νC(g, g) is locally integrable on (0,∞).

Remark 4.7. The hypothesis that α ≥ 0 is given for convenience, as we
only need the result in that case; however, the lemma is true and proved
in the same way also for negative α with the additional requirement that
1 + α ≥ k ≥ β, so that {yαg} makes sense according to Definition 1.9.
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Remark 4.8. The result works also when a is a linear combination of terms
of the form (1.3) with the same λ. In this case, if αi, βi are the exponents
in the i-th term in the linear combination, the proposition is true taking
β := maxi{βi} and α := mini{αi}.
Proof . It is enough to prove it for a coagulation coefficient of the form (1.3)
with α ≥ 0, as then we can apply the result to each term of the linear
combination. For such a coefficient, the representation Theorem 3.3 shows
we can write C(g, g) as

C(g, g) = {yαg} ∗ {yβg}.
As y �→ ykg(y) is locally integrable on [0,∞), we know that

• yk−αyαg is locally integrable on [0,∞), and

• yk−βyβg is locally integrable on [0,∞),

and hence from Lemma 4.3

• Dα−k{yαg} is locally integrable on R, and

• Dβ−k{yβg} is locally integrable on R, so Dα−k{yβg} is also (as β ≥ α;
see Lemma 8.11).

In addition, both Dν{yαg} and Dν{yβg} are locally integrable on (0,∞),
as {yαg}, {yβg} are equal to the functions yαg, yβg, respectively, on that
set, and then Theorem 8.10 applies there. Hence, we obtain our result as an
application of Lemma 4.5 with S := {yαg}, T := {yβg} and μ := α− k �

Now we can finally prove Theorem 1.1:

Proof of Theorem 1.1. Take any λ < k < 1, with λ the homogeneity
degree of a. Then, ykg is locally integrable on [0,∞) as recalled in Propo-
sition 4.1 (actually, we know it is integrable). We will show the following:
if, for some ν ≥ 0, Dνg is locally integrable on (0,∞), then Dν+1+α−kg is
also locally integrable on (0,∞). As ν + 1 + α − k > ν, this implies that g
is infinitely differentiable by a bootstrap argument starting with ν = 0 (g is
locally integrable by definition).

To show this, write the equation for a self-similar profile as

(4.11) 2g + yD1g + (1 − λ)C(g, g) = 0 as distributions on (0,∞).

Assume that Dνg is locally integrable on (0,∞). Then, by Proposition 4.6,
Dν+α−kC(g, g) is locally integrable on (0,∞), and hence eq. (4.11) shows
that Dν+α−k(yD1g) is locally integrable on (0,∞). By Theorem 8.10, the
same is true of Dν+α−kD1g = Dν+α−k+1g, which proves our claim. Hence, g
is infinitely differentiable. �
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5. Rewriting the self-similar equation

One of the techniques that we use in order to study the behavior of scaling
profiles near y = 0 and the uniqueness of self-similar solutions is a way
of rewriting equation (2.3) in which we “solve” the differential part of the
equation as far as possible. We introduce this method next:

Lemma 5.1. (Solution of an o.d.e.). Let g be an absolutely continuous func-
tion, and let h, μ be locally integrable functions, all of them defined on (0,∞).
If the following equation holds

(5.1) μ(y)g(y) + y g′(y) = h(y) for almost all y > 0,

then g is given by

g(y) = K(y) e−Λ(y) for all y > 0,

where Λ and K are absolutely continuous functions which satisfy that

Λ′(y) =
μ(y)

y
for almost all y > 0,(5.2)

K ′(y) =
1

y
eΛ(y)h(y) for almost all y > 0.(5.3)

Proof. We remark that one may find the expression of g by the method of
variation of constants. To prove the result, a direct check shows that if we
take functions Λ, K satisfying (5.2), (5.3) and define

g̃(y) := K(y) e−Λ(y),

then equation (5.1) holds with g̃ instead of g. We may add a constant to K
so that g(1) = g̃(1), for instance. Now, if we regard (5.1) as an ordinary
differential equation for g, then both g and g̃ are solutions of it in the sense
of Carathéodory, and then general uniqueness theorems (see, e.g., [8]) prove
that g = g̃. �
Lemma 5.2. (Primitive of C). Assume that the coagulation coefficient a is
of the form (1.3) with α = 0, and take a function g ∈ L1

1 ∩ L1
λ (this is, with

finite mass and finite moment of order λ). Then the primitive of C(g, g)
can be written as

(5.4) D−1C(g, g) = G ∗ (yλg) −Mλ[g]G,

where G is the function given by

(5.5) G(y) :=

∫ ∞

y

g(z) dz for y > 0, G(y) := 0 for y ≤ 0.

We remark that this equality is an equality of distributions on R.
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Remark 5.3. This is not a new result: one may arrive at the same ex-
pression by taking a characteristic function of the interval (y,∞) as the
function φ in (2.2). The main point of the lemma is that it is rigorously
proved as an equality of distributions.

Proof. The representation of C(g, g) in Theorem 3.3 gives

(5.6) C(g, g) = {g} ∗ {yλg} = {g} ∗ (yλg) −Mλ[g]{g},

as g has finite λ-moment. Hence, taking the primitive D−1 (see eq. (8.11))
we have

D−1C(g, g) = (D−1{g}) ∗ (yλg) −Mλ[g]D−1{g} = G ∗ (yλg) −Mλ[g]G,

where we have used the derivation rule for a convolution (cf. theorem 8.8)
and the fact that, as distributions on R,

D−1{g} = G. �

Lemma 5.4. Assume that the coagulation coefficient a is of the form (1.3)
with α = 0. If g is a self-similar solution of Smoluchowski’s equation, it
holds that

(5.7) G(y) = y1−τK(y),

for some absolutely continuous function K, where G is given by (5.5), and
where

τ := 2 − (1 − λ)Mλ[g](5.8)

K ′(y) = − yτ−2h(y) for almost all y > 0,(5.9)

h := (1 − λ)
(
G ∗ (yλg)

)
,(5.10)

We note that for the convolution in (5.10) it is assumed that g(y) is 0
for y < 0.

Remark 5.5. Note that the quantity τ here is in agreement with that
in [17, 7].

Proof. It is known that in the case α = 0 the moment of order λ of a
solution g is finite [4, 7]. Hence, using (5.4) we can rewrite equation (1.4)
by taking its primitive:

(5.11) G− yg + (1 − λ)
(
G ∗ (yλg) −Mλ[g]G

)
= 0,



820 J.A. Cañizo and S. Mischler

which holds for all y > 0. Equivalently,

(5.12) (1 − (1 − λ)Mλ[g])G− yg + (1 − λ)
(
G ∗ (yλg)

)
= 0.

Rewrite this as

(5.13) (τ − 1)G− yg + h = 0,

where τ and h are given by (5.8) and (5.10). Now, if we solve for G in equa-
tion (5.13) by using Lemma 5.1 with the independent term h, we obtain (5.7)
and (5.9) in our result. �

Lemma 5.6. Assume that the coagulation coefficient a is of the form (1.3)
with α < 0, and take a self-similar solution g of Smoluchowski’s equation.
Then it holds that

(5.14) g(y) = K(y) e−Λ(y)

for some absolutely continuous function K such that

(5.15) K ′(y) =
1

y
eΛ(y) h(y) for almost all y > 0,

with

h := −(1 − λ)(yαg) ∗ (yβg),(5.16)

Λ(y) := 2 log y − (1 − λ)

(
Mβ

α
yα +

Mα

β
yβ

)
(5.17)

when β > 0, and

(5.18) Λ(y) := (2 − (1 − λ)Mα) log y − (1 − λ)
Mβ

α
yα

when β = 0.

Proof. Let g be a self-similar profile for Smoluchowski’s coagulation equa-
tion with such a kernel a. It is known [4] that it is infinitely differentiable
and has finite moments of all orders, and hence satisfies equation (1.4) in a
strong way:

2g + y∂yg + (1 − λ)C(g, g) = 0,

or, separating the gain and loss parts of C(g, g),

(5.19) 2g+y∂yg+(1−λ)(yαg)∗(yβg)−(1−λ)Mβ y
αg−(1−λ)Mα y

βg = 0,

where Mα and Mβ are the moments of order α and β, respectively, of g.
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Now, if we apply Lemma 5.1 to equation (5.19) with the independent
term h given by (5.16) and μ := 2− (1−λ)(Mβ y

α +Mα y
β), we obtain that

(5.20) g(y) = K(y) e−Λ(y),

for some absolutely continuous functions K, Λ such that

Λ′(y) =
1

y

(
2 − (1 − λ)(Mβ y

α +Mα y
β)
)

a.e. y > 0,(5.21)

K ′(y) =
1

y
eΛ(y) h(y) a.e. y > 0.(5.22)

We may actually choose Λ as a particular primitive, as then the integration
constant for K can be adjusted so that (5.20) is still true. Then, we can
take Λ as in (5.17) (or (5.18) when β = 0), and the result is proved. �

6. Asymptotic behavior at y = 0 for kernels with α < 0

In this section we prove Theorem 1.2. Assume that the coagulation coef-
ficient a is of the form (1.3) with α < 0. Let g be a self-similar profile
for Smoluchowski’s coagulation equation with such a kernel a. Then from
Lemma 5.6 we know it holds that

(6.1) g(y) = K(y) e−Λ(y),

for some absolutely continuous functions K such that (5.15)–(5.16) hold,
and with Λ given by (5.17) (or (5.18) when β = 0).

We will prove that K is bounded on (0, R) for any R > 0. Obviously, K
is bounded on any interval (δ, R) with 0 < δ < R, as is clear from (6.1), so
the point is in proving that K is bounded on (0, δ) for some δ > 0.

Then, take ε, δ > 0 and define

Nε := sup
y∈(0,δ)

g(y) Φε(y),

where

(6.2) Φε(y) :=

{
eΛ(ε) if 0 < y < ε

eΛ(y) if ε ≤ y.

The dependence of Nε on ε is explicitly noted because we want to take the
limit ε → 0; of course, Nε depends also on δ, but we do not write the
dependence explicitly, as our intention is to fix δ at some value, which has
not been chosen yet. We can give a bound for g in terms of Nε:

(6.3) g(y) ≤ NεΦε(y)
−1 for y ∈ (0, δ).



822 J.A. Cañizo and S. Mischler

On the other hand, from (5.15),

(6.4) K(y) = K(δ) − (1 − λ)

∫ δ

y

1

z
eΛ(z) h(z) dz for y > 0.

Let us find a bound for h using (6.3) and our knowledge that g is a bounded
function [4]:

(6.5) g(y) ≤ K1 for y > 0.

We have

(6.6) h = −(1 − λ)(yαg) ∗ (yβg).

To bound this for y ∈ (0, δ), take δ small enough so that e−Λ(y) is increasing
on (0, δ) (and so is Φε(y)

−1), and then

(6.7) (yαg) ∗ (yβg) ≤ NεK1 Φε(y)
−1 (yα) ∗ (yβ) = NεK2 Φε(y)

−1yλ+1,

for y ∈ (0, δ). Then, from (6.6),

(6.8) |h(y)| ≤ NεK3 Φε(y)
−1yλ+1,

and continuing from (6.4), taking into account that eΛ(z)Φε(z)
−1 is decreasing

on (0, δ),

|K(y)| ≤ K(δ) + (1 − λ)NεK3

∫ δ

y

zλeΛ(z)Φε(z)
−1 dz(6.9)

≤ K(δ) +NεK4 e
Λ(y) Φε(y)

−1

∫ δ

y

zλ dz

≤ K(δ) +NεK5 e
Λ(y) Φε(y)

−1 δλ+1 for y ∈ (0, δ).

Hence, multiplying by e−Λ(y)Φε(y) (which is always less than 1), taking into
account that gΦε = K e−ΛΦε, and taking the supremum over (0, y),

(6.10) Nε ≤ K(δ) +NεK5 δ
λ+1,

As λ+1 > 0, taking δ small enough gives a bound forNε which is independent
of ε, and hence proves that K is bounded on (0, δ). This in turn implies that
it has a strictly positive limit at y = 0, as it is a nonincreasing function,
which can be seen from equations (5.15)–(5.16).
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7. Partial uniqueness of scaling profiles

Let us prove Theorems 1.6 and 1.7 on the partial uniqueness of scaling
profiles. We will prove the following proposition, which already contains
Theorem 1.7, and which will be seen to easily imply Theorem 1.6 (see Sec-
tion 7.2):

Proposition 7.1. Assume that the coagulation coefficient a is of the
form (1.3) with α ≤ 0. Assume that g1 and g2 are two self-similar pro-
files for Smoluchowski’s equation, and also that

1. in the case α = 0, Mλ[g1] = Mλ[g2], and

lim
y→0

yτ−1G1(y) = lim
y→0

yτ−1G2(y),

where τ is given by (5.8), and G1, G2 are the primitives of g1, g2 based
at +∞, defined as in (5.5).

2. in the case α < 0, Mα[g1] = Mα[g2], Mβ [g1] = Mβ[g2], and

lim
y→0

g1(y)eΛ(y) = lim
y→0

g2(y)eΛ(y),

where Λ is given by (5.17).

Then, g1 = g2.

We prove this proposition in two parts: in the next section we prove that
the result holds near y = 0, and in Section 7.2 we prove that the result is
global.

7.1. Local result

We will start by proving Proposition 7.1 locally near y = 0; this is, we
will show that under the same hypotheses there exists δ > 0 such that
g1(y) = g2(y) for 0 < y < δ.

7.1.1. Proof for α = 0

Step 1: Rewriting the equation for a difference of profiles. Assume
that the coagulation coefficient a is given by (1.3) with α = 0 (so β = λ).
If g is a self-similar profile, then (5.7)–(5.10) from lemma 5.4 hold, so

(7.1) K(y) = K0 −
∫ y

0

zτ−2h(z) dz,

with K0 given by

(7.2) K0 := lim
y→0

K(y) = lim
y→0

yτ−1G(y),
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which is known to exist and be strictly positive [7]. Note that here we
have integrated equation (5.9) between 0 and y, which can be done once we
know K has a limit at y = 0.

Gathering the above, we have

(7.3) yτ−1G(y) = K0 − (1 − λ)

∫ y

0

zτ−2
(
G ∗ (yλg)

)
(z) dz,

which is a remarkable equation in the sense that it is local near 0, and
the term to the right is more regular near 0 than that to the left, as will
be precised later. We also remark that in (7.3) the parameters τ and K0

depend on g.
Now, let us obtain the corresponding equation for the difference of two

self-similar profiles. Let g1, g2 be two solutions of self-similar profiles, and
assume that they satisfy the conditions in Proposition 7.1. Then, both g1

and g2 satisfy (7.3) with the same τ and K0, and we can take the difference
to get

yτ−1ΔG(y) = − 1 − λ

2

∫ y

0

zτ−2
(
(ΔG) ∗ (yλg1)

)
(z) dz(7.4)

− 1 − λ

2

∫ y

0

zτ−2
(
G2 ∗ (yλΔg)

)
(z) dz,

where

Δg := g1 − g2, ΔG := G1 −G2.

Now, to obtain local uniqueness near 0, take ε > 0 and write

(7.5) N ≡ N(ε) := sup
y∈(0,ε)

yτ−1 |ΔG(y)| .

Observe that this quantity is known to be bounded thanks to [7]. Let us
prove from equation (7.4) that, if we take ε small enough, then N must be 0.

Step 2: Estimate for the first term. Constants independent of ε will
be denoted by K1, K2. . .We will use the following bound, which holds [7]
for all solutions g of (1.4) (and in particular for g1 and g2):

(7.6) g(y) ≤ K1y
−τ for y > 0

for some constant K1 > 0, which implies that

(7.7) G(y) ≤ K2 y
1−τ for y > 0,
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for some other constant K2. Then, from (7.6),

∣∣(ΔG) ∗ (yλg1)(z)
∣∣ ≤ ∫ z

0

|ΔG(x)| (x− z)λ |g1(x− z)| dx(7.8)

≤ K1N

∫ z

0

x1−τ (x− z)λ−τ dx ≤ K3Ny
2+λ−2τ .

Hence, the first term on the right hand side of (7.4) can be estimated by

(7.9)

∣∣∣∣
∫ y

0

zτ−2
(
(ΔG) ∗ (yλg1)

)
(z) dz

∣∣∣∣ ≤ N K3

∫ y

0

zλ−τ dz = N K4 y
1+λ−τ .

Step 3: Estimate for the second term. For the second term in (7.4)
we need to make ΔG appear instead of Δg. We use integration by parts to
write:

(7.10)

∫ y

0

zτ−2
(
G2 ∗ (yλΔg)

)
(z) dz =

= yτ−2

∫ y

0

(
G2 ∗ (yλΔg)

)
(z) dz

+ (2 − τ)

∫ y

0

zτ−3

∫ z

0

(
G2 ∗ (yλΔg)

)
(x) dx dz.

Here, the boundary term at y = 0 in the integration by parts vanishes, which
is a consequence of the bound below in eq. (7.15), which we will show next
for the term

∫ y

0
G2 ∗ (yλΔg) appearing above. Write:

∫ y

0

(
G2 ∗ (yλΔg)

)
(z) dz = D−1

(
G2 ∗ (yλΔg)

)
(z) dz(7.11)

= (G2 ∗D−1(yλΔg))(y).

Also,

(7.12) D−1(yλΔg)(y) = −yλΔG(y) + λ

∫ y

0

zλ−1ΔG(z) dz,

so

∣∣D−1(yλΔg)(y)
∣∣ ≤ ∣∣yλΔG(y)

∣∣+ λ

∫ y

0

zλ−1 |ΔG(z)| dz(7.13)

≤ Ny1−τ+λ +Nλ

∫ y

0

zλ−τ dz ≤ K5N y1+λ−τ .
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Hence, from (7.11),

(7.14)

∣∣∣∣
∫ y

0

(
G2 ∗ (yλΔg)

)
(z) dz

∣∣∣∣ ≤ ∣∣(G2 ∗D−1(yλΔg))(y)
∣∣

≤ N K2K5

∫ y

0

z1−τ (y − z)1+λ−τ dz ≤ N K6 y
3+λ−2τ .

And finally, gathering (7.10) and (7.14),∣∣∣ ∫ y

0

zτ−2
(
G2 ∗ (yλΔg)

)
(z) dz

∣∣∣ ≤(7.15)

≤ N K6 y
τ−2y3+λ−2τ +N K6 |2 − τ |

∫ y

0

zτ−3z3+λ−2τ dz

≤ NK7 y
1+λ−τ .

Step 4: Final estimate Now, from equation (7.4), taking the supremum
on (0, ε) and using (7.9) and (7.15) one has

(7.16) N(ε) ≤ N(ε)K8 ε
1+λ−τ .

Note that 1 + λ − τ > 0 [7], which is crucial for this argument, and is a
particular property of the coagulation kernel we are using. Hence, for ε > 0
small enough, we have that

N ≡ N(ε) = 0,

and hence that
g1(y) = g2(y) for 0 < y < ε,

which proves the equality in Proposition 7.1 locally near y = 0 in the
case α = 0.

7.1.2. Proof for α < 0

Assume again that a is of the form (1.3), now with α < 0. Take two self-
similar solutions g1, g2 in the conditions of Proposition 7.1. Then Lemma 5.6
applies to both g1 and g2 with the same Λ, and following the same reasoning
as in the α = 0 case we have

(7.17) Δg(y) = ΔK(y)e−Λ(y),

with

(ΔK)′(y) =
1

y
eΛ(y) Δh(y) for almost all y > 0,(7.18)

Δh = − (1 − λ)(yαΔg) ∗ (yβg2) − (1 − λ)(yαg2) ∗ (yβΔg).(7.19)

Here we denote ΔA := A1 − A2 for any function A, and K1, h1, K2, h2 are
the functions K, h associated to g1, g2 as in Lemma 5.6.
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Then, from the equality of the limits in (1.9) we see that ΔK(y) → 0 as
y → 0, so integrating (7.18),

(7.20) ΔK(y) =

∫ y

0

1

z
eΛ(z)Δh(z) dz.

Let us find a bound for Δh using ΔK. Take ε > 0 and call

(7.21) N := sup
y∈(0,ε)

|ΔK(y)| .

Then, for the first term in (7.19),∣∣(yαΔg) ∗ (yβg2)
∣∣ ≤ N (yαe−Λ(y)) ∗ (yβg2)(7.22)

≤ NK0 e
−Λ(y) (yβ) ∗ (yα) ≤ NK1 e

−Λ(y) yλ+1,

where we have also used that g is bounded on (0, ε); of course, we have much
stronger information on its behavior at y = 0, which has been used through
the fact that ΔK is bounded and has a limit at y = 0.

For the second term in (7.19) a similar calculation shows that

(7.23)
∣∣(yαg2) ∗ (yβΔg)

∣∣ ≤ NK2 y
λ+1e−Λ(y).

Putting together (7.22) and (7.23) we obtain a bound for Δh:

(7.24) |Δh(y)| ≤ NK3 y
λ+1e−Λ(y),

and continuing from (7.20),

(7.25) |ΔK(y)| ≤ NK3

∫ y

0

zλ dz = NK4 y
λ+1.

Finally, taking the supremum on (0, ε),

(7.26) N ≤ NK4 ε
λ+1,

and then (as λ+ 1 > 0) choosing ε small enough proves that N = 0. Hence,

(7.27) g1(y) = g2(y) for y ∈ (0, ε).

7.2. Global result

We now extend the local result in the previous section in order to finish the
proof of Proposition 7.1. After this it will also be easy to prove Theorem 1.6.

End of Proof of Proposition 7.1. Take two self-similar profiles g1 and g2

satisfying the hypotheses of the theorem. The results in previous sections
show that G1 = G2 on some interval (0, y0], for some y0 > 0. Following a
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strategy usual in uniqueness theorems for ordinary differential equations, we
will show that whenever G1 = G2 on an interval (0, y0], there is a δ > 0 such
that G1 = G2 on (0, y0 + δ). Together with our local uniqueness result, a
well-known argument then shows that G1 = G2, and so g1 = g2, on (0,∞).

So, assume that G1 = G2 on (0, y0] for some y0 > 0. We take δ > 0 (to
be fixed later), and intend to prove that G1 = G2 on (0, y0 + δ).

Proof for α < 0. We follow the notation in Section 7.1.2 and call

N := sup
y∈(0,y0+δ)

|ΔK(y)| ,

in analogy with (7.21). From (7.20), and taking into account that Δh = 0
on (0, y0),

N = ‖ΔK(y)‖L∞(0,y0+δ) ≤
∫ y0+δ

y0

1

z
eΛ(z) |Δh(z)| dz.

Now, using the bound (7.24),

N ≤ NK3

∫ y0+δ

y0

zλ dz ≤ NK3 δ (y0 + 1)λ,

which implies that N = 0 provided we take δ small enough.

Proof for α = 0. We now follow the notation in Section 7.1.1, and call

N := sup
y∈(0,y0+δ)

yτ−1 |ΔG(y)| .

as in (7.5). We have eq. (7.4):

yτ−1ΔG(y) = − 1 − λ

2

∫ y

0

zτ−2
(
(ΔG) ∗ (yλg1)

)
(z) dz(7.28)

− 1 − λ

2

∫ y

0

zτ−2
(
G2 ∗ (yλΔg)

)
(z) dz,

and we can follow the reasoning leading to the estimate (7.9) of the first
term, and take into account G1 = G2 on (0, y0], to obtain

(7.29)

∣∣∣∣
∫ y

0

zτ−2
(
(ΔG) ∗ (yλg1)

)
(z) dz

∣∣∣∣ ≤ N K3

∫ y0+δ

y0

zλ−τ dz ≤ N δK4 y
λ−τ
0

for y ∈ (y0, y0 + δ).
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For the second term, we repeat the reasoning leading to (7.14) to obtain
instead, for y ∈ (y0, y0 + δ)∣∣∣∣
∫ y

0

(
G2 ∗ (yλΔg)

)
(z) dz

∣∣∣∣ ≤ ∣∣(G2 ∗D−1(yλΔg))(y)
∣∣

≤ N K2K5

∫ y

y0

z1+λ−τ (y − z)1−τ dz

≤ N K2K5 (y0 + 1)1+λ−τ

∫ y

y0

(y − z)1−τ dz ≤ N K9 δ
2−τ ,

for some number K9 independent of δ. With this we obtain the correspond-
ing to (7.15):

(7.30)

∣∣∣∣
∫ y

0

zτ−2
(
G2 ∗ (yλΔg)

)
(z) dz

∣∣∣∣ ≤ NK10 δ
2−τ ,

for y ∈ (y0, y0 + δ) and some number K10. Using (7.30) and (7.29) in (7.28),
and taking the supremum on (0, y0 + δ),

N ≤ 1 − λ

2

(
N δK4 y

λ−τ
0 +N δ2−τ K10

)
,

which shows N = 0 once we take δ small enough. �
Let us finally prove Theorem 1.6:

Proof of Theorem 1.6. Assume that a is of the form (1.3) with α = 0, and
take two solutions g1, g2 of equation (1.4) in the conditions of Theorem 1.6,
this is, ∫ ∞

0

y g1(y) dy =

∫ ∞

0

y g2(y) dy,∫ ∞

0

yλ g1(y) dy =

∫ ∞

0

yλ g2(y) dy.

Then, for any μ > 0, the function

g̃1(y) := μ1+λg1(μy) for y > 0

is another solution of equation (1.4), which is a simple consequence of the
homogeneity of the coagulation coefficient a (see, for example, [7]). We also
check easily that ∫ ∞

0

yλ g̃1(y) dy =

∫ ∞

0

yλ g1(y) dy(7.31) ∫ ∞

0

y g̃1(y) dy = μλ−1

∫ ∞

0

y g1(y) dy(7.32)

lim
y→0

yτ−1

∫ ∞

y

g̃1(z) dz = μ1+λ−τ lim
y→0

yτ−1

∫ ∞

y

g1(z) dz,(7.33)
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where τ := 2 − (1 − λ)Mλ[g1]. Hence, the moment of order λ of g̃1 is the
same no matter which μ we take, so we can choose μ > 0 in such a way that∫ ∞

0

yλ g̃1(y) dy =

∫ ∞

0

yλ g2(y) dy

lim
y→0

yτ−1

∫ ∞

y

g̃1(z) dz = lim
y→0

yτ−1

∫ ∞

y

g2(z) dz.

Hence, with this value of μ, by Proposition 7.1 we have that g̃1 = g2, and in
particular their masses are equal; as the masses of g1 and g2 are also equal,
from (7.32) we deduce that in fact μ must be equal to 1, so g1 = g̃1 = g2,
which shows the result. �

8. Appendix: fractional derivatives

The extension of the concept of integration and differentiation to include
derivatives and integrals of noninteger order is a well established theory [16,
15, 14]. Here we give a brief but self-contained introduction to it and state
without proof the main standard results. Some particular properties needed
in the rest of this paper and which are not commonly encountered will be
given with complete proofs below.

For our purposes, the simplest and most general definition of fractional
derivatives is given in the context of distributions, and can be found in the
book by Schwartz [16, VI.5]. The reader can check that our definitions are
the same as those given there, even if the presentation is somewhat different.
Other expositions are found in [15, 14], and we refer to those sources for the
proof of the main results on fractional differentiation given below.

In the following we will use the space C∞
R consisting of all infinitely dif-

ferentiable functions f : R → R which have support bounded below; this
is, those f which have support contained in [a,+∞) for some a ∈ R. The
notation C∞

R is intended to suggest that the important part of a function f
is to the right, if one represents the real line as usual.1 Analogously, we de-
fine C∞

L as the set of all infinitely differentiable functions f : R → R whose
support is bounded above.

We will first define fractional derivatives for smooth functions, and then
extend the concept to distributions with a common duality method.

1We prefer to write C∞
R instead of D+, used in Schwartz’s book, as in the literature

related to Smoluchowski’s equation the subscript ‘+’ is frequently used to denote that
functions in the involved space are nonnegative, which could cause confusion here, where
we want to stress a property of their support.



Self-similar profiles of Smoluchowski’s coagulation equation 831

8.1. Fractional derivatives of smooth functions

Definition 8.1. (Left fractional derivatives). For f ∈ C∞
R and real k > 0,

we define the left integral or order k of f as

(8.1) D−kf(y) :=
1

Γ(k)

∫ y

−∞
f(z)(y − z)k−1 dz for y ∈ R,

where Γ is the Gamma function. For k = 0 we just write Dkf = f . For real
k ≥ 0 we write k as k = n − s, with n > 0 an integer and 0 ≤ s < 1, and
define the left derivative of order k of f to be

(8.2) Dkf :=
dn

dyn
(D−sf).

The above is a usual definition of fractional integrals and derivatives [15],
sometimes called the Riemann-Lebesgue definition. Names given to the
above also differ slightly from place to place: we may refer to Dkf as the left
derivative of order k of f , or just the k-th derivative of f , for any real k (even
for k < 0), thus emphasizing that all Dk are part of a family of operators
with common properties.

There is a completely analogous concept of right derivative where inte-
grals are taken from +∞:

Definition 8.2 (Right fractional derivatives). For f ∈ C∞
L and real k > 0,

we define the right integral or order k of f as

(8.3) D−kf(y) :=
1

Γ(k)

∫ ∞

y

f(z)(z − y)k−1 dz for y ∈ R,

where Γ is the Gamma function. For k = 0 we just write Dkf = f . For real
k ≥ 0 we write k as k = n − s, with n > 0 an integer and 0 ≤ s < 1, and
define the left derivative of order k of f to be

(8.4) Dkf := (−1)n d
n

dyn
(D−sf).

Some easy consequences are the following:

1. For k ∈ R and f ∈ C∞
R , Dkf is again on C∞

R , and the analogous result
holds for Dk and C∞

L .

2. For integer k ≥ 0, Dk is just the usual k-th derivative of f , while D−k is
the k-fold iteration of the primitive based at −∞; in particular, D−1f
is the only primitive of f which is 0 at −∞. Analogously, Dk is the
usual k-th derivative of f , times (−1)k (see next for a natural reason
for this definition), while D−k is the k-fold iteration of the primitive
based at +∞.
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3. Right derivatives are the concept symmetric to that of left derivatives
under the reflection of R: if we define the reflection of a function
f : R → R to be the function Rf : R → R given by Rf(y) := f(−y),
then

(8.5) Dk(f) := R(Dk(Rf)) for k ∈ R, f ∈ C∞
L .

Alternatively, one can take this as a definition of right derivatives
from the perhaps more natural concept of left derivatives. Note that
the alternating sign in equation (8.4) is unavoidable if we want to
conserve this symmetry property.

Remarkably, the following composition result holds:

Theorem 8.3. For real k, j,

Dj(Dkf) = Dj+kf for any f ∈ C∞
R ,(8.6)

Dj(Dkf) = Dj+kf for any f ∈ C∞
L .(8.7)

A proof follows from elementary analysis arguments. For this result
to hold it is essential that our Definitions 8.1 and 8.2 above have picked
specific primitives (those which are 0 at −∞ or +∞, respectively) out of all
the possible primitives of a function f . Said in another way, the spaces C∞

R ,
C∞

L in which we are working only contain one of all the possible primitives
of a given function f , and thus the above composition rule can hold.

Also, it is easy to see that Dk is the dual of Dk in the following sense:

Lemma 8.4. For f ∈ C∞
R and g ∈ C∞

L it holds that

(8.8)

∫ +∞

−∞
Dkf(y) g(y) dy =

∫ +∞

−∞
f(y)Dkg(y) dy.

This suggests the definition for distributions given below.

8.2. Fractional derivatives of distributions

Consider the set D′
L of distributions on R which have compact support

bounded below. One can show that D′
L is the dual of C∞

L when the latter
is equipped with a natural topology (which extends that of C∞

0 ) [16, VI.5].
So, D′

L should be thought of as (C∞
L )′, which is useful for remembering that

distributions in this space have support contained in (a,∞) for some a ∈ R.
For these distributions, one can define 〈T, ψ〉 for any ψ ∈ C∞

L as

(8.9) 〈T, ψ〉 := 〈T, ψ̃〉
for any ψ̃ ∈ C∞

0 (R) which coincides with ψ on the support of T . Of course,
this definition does not depend on the particular extension chosen. We
define D′

L analogously, and also the pairing 〈T, φ〉 for any T ∈ D′
L, φ ∈ C∞

R .
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Definition 8.5. (Fractional derivatives of distributions). Take k ∈ R. For
a distribution T ∈ D′

L we define the distribution DkT as

(8.10) 〈DkT, ψ〉 := 〈T,Dkψ〉 for ψ ∈ C∞
L (R).

Analogously, for a distribution T ∈ D′
R we define the distribution DkT as

(8.11) 〈DkT, ψ〉 := 〈T,Dkφ〉 for φ ∈ C∞
L (R).

Here, Dkφ and Dkψ are the right and left fractional derivatives, respectively,
defined in Section 8.1. Note that the duality products here are well defined
as indicated in (8.9). Also, this agrees with Definitions 8.1 and 8.2 when T
is a function in C∞

R (or C∞
L ), as can be seen from (8.8).

Then, the Dk are linear operators for which the composition rule (8.6)
still holds: for any j, k ∈ R,

Dj(DkT ) = Dj+kT for any T ∈ D′
R(8.12)

Dj(DkT ) = Dj+kT for any T ∈ D′
L.(8.13)

The convolution of two distributions in D′
R (or two distributions in D′

L)
is well defined [16, VI.5], as we show below:

Definition 8.6. (Convolution of a distribution and a smooth function).
Given T ∈ D′

R and φ ∈ C∞
L we define T ∗ φ as the distribution in D′

R

given by

(8.14) 〈T ∗ φ, ψ〉 := 〈T, (Rφ) ∗ ψ〉 for ψ ∈ C∞
R .

Note that (Rφ) ∗ ψ ∈ C∞
R . For T ∈ D′

L and ψ ∈ C∞
R the convolution T ∗ ψ

is defined analogously.

The convolution with a function in C∞
R (or C∞

L ) is regularizing, as it
happens in the more familiar case of convolution with a C∞ function with
bounded support: if T ∈ D′

L and ψ ∈ C∞
R , then one can prove that T ∗ ψ is

equal to a function in C∞
R , given by

(8.15) T ∗ ψ(y) = 〈T, τyψ〉 for y ∈ R,

where (τyψ)(x) := ψ(x − y) is the translation of ψ by y. Similarly the
convolution T ∗ φ for T ∈ D′

R and φ ∈ C∞
L is a function in C∞

L .

Definition 8.7. (Convolution of two distributions). Given T, S ∈ D′
R, we

define T ∗ S as the distribution in D′
R given by

(8.16) 〈T ∗ S, ψ〉 := 〈T, (RS) ∗ ψ〉 for ψ ∈ C∞
R .

(As remarked before (8.15), (RS) ∗ ψ ∈ C∞
R .) The convolution T ∗ S for

T, S ∈ D′
L is defined analogously.
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The following well-known result on the derivation of a convolution holds
in complete generality with these definitions:

Theorem 8.8. For any T, S ∈ D′
L and any k ∈ R,

Dk(T ∗ S) = (DkT ) ∗ S.
Although fractional derivation and integration operators of non-integer

order are not local, their regularity properties nevertheless depend only on
local properties of the function they act on, as can be easily proved by
observing that Dkf can be written as a convolution of f with a distribution
which is C∞ away from 0 [16, VI.5, p. 174]. A manifestation of this is the
following result:

Theorem 8.9. Let T be a distribution on R with compact support to the left
(this is, T ∈ D′

L), and such that T is C∞(U), for U ⊆ R a given open set.
Then, DkT ∈ C∞(U) for all k ∈ R.

It is well known that multiplying a distribution by a C∞ function pre-
serves its local regularity, and this is still true when one measures this reg-
ularity in terms of the integrability of a given fractional derivative. As this
result is not easily found in the literature and its proof is not obvious, we
give it in Section 8.3 below:

Theorem 8.10. Let T be a distribution on R with compact support to the
left (this is, T ∈ D′

L), and assume that DμT is locally integrable for some
μ > 0. Then, for any smooth function Φ on R, Dμ(ΦT ) is locally integrable.

Of course, the analogous result holds for a distribution with compact
support to the right and right derivatives Dμ.

Let us also prove a result which is used in this paper, which says that
the property that DkT is locally integrable is stronger the higher k is:

Lemma 8.11. Let T ∈ D′
L be a distribution on R with compact support to

the left, and assume that DkT is locally integrable on R for some k ∈ R.
Then, Dk−mT is locally integrable for all real m ≥ 0.

Proof. It is enough to prove it for k = 0, as then the general result is
obtained by applying this particular case to the distribution DkT , taking
into account the composition law (8.12).

Then, to prove it for k = 0, take T a locally integrable function on R

with support contained on (R,∞). Fix a compact interval [a, b] with b > R.
For a test function φ ∈ C∞

0 (R) with compact support contained on (a, b) and
any m > 0 we have

〈
D−mT, φ

〉
=

1

Γ(m)

∫ b

R

T (y)

∫ b

y

φ(z)(z − y)m−1 dz dy,
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and hence

∣∣〈D−mT, φ
〉∣∣ ≤ ‖φ‖∞

1

Γ(m)

∫ b

R

|T (y)|
∫ b

y

(z − y)m−1 dz dy

= ‖φ‖∞
1

Γ(m)

∫ b

R

|T (y)|
∫ b−y

0

zm−1 dz dy

≤ ‖φ‖∞
(b−R)m

mΓ(m)

∫ b

R

|T (y)| dy,

which proves that D−mT is locally integrable on (a, b). �

8.3. Regularity of a product by a smooth function

In this section we give the proof of Theorem 8.10 on the regularity of frac-
tional order of a product by a C∞ function. We recall its statement:

Theorem 8.12. Let T ∈ D′
L be a distribution on R with compact support

to the left, and assume that DμT is locally integrable for some μ > 0. Then,
for any smooth function Φ on R, Dμ(ΦT ) is locally integrable.

The proof is broken into several lemmas. The following one sometimes
serves as a weaker substitute for the rule of differentiation of a product:

Lemma 8.13. Take 0 < k < 1. If φ, ψ ∈ C∞(R) and have compact support
to the right, then the following equality holds:

Dk(φD−kψ)(y) =

= φ(y)ψ(y)− sin(πk)

π

∫ ∞

y

ψ(x)
1

x− y

∫ x

y

φ′(z)(x− z)k(z − y)−k dz dx.

Proof. We have Dk(φD−kψ) = D1Dk−1(φD−kψ). Let us calculate this:

Dk−1(φD−kψ)(y) =(8.17)

=
1

Γ(k)Γ(1 − k)

∫ ∞

y

φ(z)

∫ ∞

z

ψ(x)(x− z)k−1(z − y)−k dx dz

= K1

∫ ∞

y

ψ(x)

∫ x

y

φ(z)(x− z)k−1(z − y)−k dz dx,

where we have set K1 := 1/(Γ(k)Γ(1−k)) for short. By a change of variables
u = (z − y)/(x− y), the inner integral can be written as∫ x

y

φ(z)(x− z)k−1(z − y)−k dz =

∫ 1

0

φ(u(x− y) + y)(1 − u)k−1u−k du,
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so we can calculate the derivative in y of (8.17) and obtain

Dk(φD−kψ)(y) = −K1
d

dy

∫ ∞

y

ψ(x)

∫ x

y

φ(z)(x− z)k−1(z − y)−k dz dx

= −K1
d

dy

∫ ∞

y

ψ(x)

∫ 1

0

φ(u(x− y) + y)(1 − u)k−1u−k du dx

=
B(k, 1 − k)

Γ(k)Γ(1 − k)
ψ(y)φ(y)

−K1

∫ ∞

y

ψ(x)

∫ 1

0

φ′(u(x− y) + y)(1 − u)ku−k du dx

=ψ(y)φ(y)−K1

∫ ∞

y

ψ(x)
1

x− y

∫ 1

0

φ′(z)(x − z)k(z − y)−k dz dx,

where B(k, 1−k) is the Beta function for the parameters (k, 1−k). We have
used the well-known relationship between the Beta and Gamma functions,
and have undone our previous change of variables. This is the expression in
the lemma; note that K1 is the constant that appears there. �

Lemma 8.14. Take k ≥ 0 and Φ ∈ C∞
b (R). Then, for all ψ ∈ C∞

0 (R) with
compact support contained on a fixed interval (−∞, b) it holds that

(8.18) |D−k(ΦDk−1ψ)(y)| ≤ (b− y) ‖ψ‖∞ ‖Φ‖∞ for all y < b.

Proof. For y ≥ b, D−k(ΦDk−1ψ)(y) is zero. For y < b we have∣∣D−k(ΦDk−1ψ)(y)
∣∣ ≤

≤ 1

Γ(k)Γ(1 − k)

∫ b

y

|Φ(z)| (z − y)k−1

∫ b

z

|ψ(x)| (x− z)−k dx dz

≤ 1

Γ(k)Γ(1 − k)
‖ψ‖∞ ‖Φ‖∞

∫ b

y

∫ x

y

(z − y)k−1(x− z)−k dz dx

≤ B(k, 1 − k)

Γ(k)Γ(1 − k)
(b− y) ‖ψ‖∞ ‖Φ‖∞ = (b− y) ‖ψ‖∞ ‖Φ‖∞ ,

taking into account the relationship between the Gamma and Beta functions.
�

Lemma 8.15. Take Φ ∈ C∞
b (R) and 0 ≤ k < 1. Fix a < b ∈ R. Then, for

all ψ ∈ C∞
0 (R) with compact support contained on a fixed interval (−∞, b)

it holds that
‖Dk(ΦD−kψ)‖L∞(a,b) ≤ K ‖ψ‖∞ ,

where K ≥ 0 is a constant that only depends on k, Φ and the interval (a, b).
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Proof. For k = 0 the statement is trivial. For 0 < k < 1, we use Lemma 8.13
to write, for y < b,

Dk(ΦD−kψ)(y) = Φ(y)ψ(y)

− sin(πk)

π

∫ b

y

ψ(x)
1

x− y

∫ x

y

Φ′(z)(x− z)k(z − y)−k dz dx,

where we have also taken into account that ψ(x) is 0 for x ≥ b. Here, the
first term has the straightforward bound ‖Φψ‖∞ ≤ ‖Φ‖∞ ‖ψ‖∞. As for the
second one,∣∣∣ ∫ b

y

ψ(x)
1

x− y

∫ x

y

Φ′(z)(x− z)k(z − y)−k dz dx
∣∣∣ ≤

≤ ‖ψ‖∞ ‖Φ′‖∞
∫ b

y

1

x− y

∫ x

y

(x− z)k(z − y)−k dz dx

= K (b− y) ‖ψ‖∞ ‖Φ′‖∞ ,

where the constant K is B(1 + k, 1− k). Using this for a < y < b proves the
statement. �

Lemma 8.16. Take Φ ∈ C∞
b (R) and k < 1. Fix a < b ∈ R. Then, for all

ψ ∈ C∞
0 (R) with compact support contained on a fixed interval (−∞, b) it

holds that
‖Dk(ΦD−kψ)‖L∞(a,b) ≤ K ‖ψ‖∞ ,

where K ≥ 0 is a constant that only depends on k, Φ and the interval (a, b).

Proof. Lemma 8.15 proves this when 0 ≤ k < 1, and we can prove the
general case inductively: if the result is valid for a given k < 1, then

Dk−1(ΦD1−kψ) = Dk−1(ΦD1(D−kψ))

= Dk−1D1(ΦD−kψ) −Dk−1((D1Φ)(D−kψ))

= Dk(ΦD−kψ) −Dk−1((D1Φ)(D−kψ)).

For the first term we can use our induction hypothesis, and the second one
can be bounded thanks to Lemma (8.18). This shows the lemma. �
Proof of Theorem 8.10. Take R ∈ R so that T has support contained in
(R,∞). Fix a compact interval (a, b) with b > R. For a function ψ ∈ C∞

0 (R)
with compact support on (a, b) we have

〈Dμ(ΦT ), ψ〉 = 〈ΦT,Dμψ〉 = 〈T,ΦDμψ〉
=
〈
D−μDμT,ΦDμψ

〉
= 〈DμT,D−μΦDμψ〉 .
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Taking into account that DμT has support contained in (R,∞) and that
D−μΦDμψ is smooth and has support contained in (−∞, b), we have

|〈Dμ(ΦT ), ψ〉| ≤ ‖DμT‖L1(R,b) ‖D−μΦDμψ‖L∞(R,b) ≤ K ‖DμT‖L1(R,b) ‖ψ‖∞ ,

thanks to Lemma 8.16. �
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23 (2006), no. 3, 331–362.

[5] Escobedo, M., Mischler, S. and Ricard, R.M.: On self-similarity
and stationary problem for fragmentation and coagulation models. Ann.
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