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Constant curvature foliations in
asymptotically hyperbolic spaces

Rafe Mazzeo and Frank Pacard

Abstract

Let (M,g) be an asymptotically hyperbolic manifold with a smooth
conformal compactification. We establish a general correspondence
between semilinear elliptic equations of scalar curvature type on ∂M
and Weingarten foliations in some neighbourhood of infinity in M .
We focus mostly on foliations where each leaf has constant mean
curvature, though our results apply equally well to foliations where
the leaves have constant σk-curvature. In particular, we prove the
existence of a unique foliation near infinity in any quasi-Fuchsian
3-manifold by surfaces with constant Gauss curvature. There is a
subtle interplay between the precise terms in the expansion for g
and various properties of the foliation. Unlike other recent works in
this area, by Rigger [21] and Neves-Tian [16, 17], we work in the
context of conformally compact spaces, which are more general than
perturbations of the AdS-Schwarzschild space, but we do assume a
nondegeneracy condition.

1. Introduction

A foliation is called geometric if each leaf inherits some particular geometric
structure from the ambient metric. We are interested here in foliations where
the leaves are of codimension one and satisfy some Weingarten condition,
i.e. the principal curvatures κ1, . . . , κn satisfy f(κ1, . . . , κn) = c where f
is symmetric in its entries, and the constant c can vary from leaf to leaf.
The most commonly studied of these are foliations by minimal hypersur-
faces,

∑
κj = 0, or where the leaves have constant mean curvature (CMC),
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∑
κj = c, and this latter class will be our main focus. However, more gen-

eral cases are also of interest, e.g. when f = σk, the kth symmetric function
of the principle curvatures (in particular, when k = n, so f is the Gauss-
Kronecker curvature), and consideration of these requires little extra effort
to incorporate into our main results.

The main questions we consider here concern the existence and unique-
ness of such foliations in some neighborhood of infinity in general asymptoti-
cally hyperbolic manifolds. For simplicity, we concentrate on CMC foliations
in most of this paper, and relegate discussion of the minor changes needed to
handle more general functions f in a final section. There are several motiva-
tions for studying geometric foliations. On the most basic level, one might
hope to prove that such foliations exist and are fairly stable or rigid, and
hence are interesting objects more or less uniquely associated to a Rieman-
nian manifold. Foliations in an ambient Lorentzian space with (spacelike)
CMC leaves are used frequently in relativity, as one part of a ‘good coor-
dinate gauge’ [1, 7]. In the Riemannian setting, an influential paper by
Huisken and Yau [10] proved the existence of a foliation near infinity in an
asymptotically Euclidean manifold using a geometric heat flow. In certain
situations this foliation is unique, and they use it to define a ‘center of mass’
for an isolated gravitational system. Essentially the same result was also at-
tained by Ye [26] using elliptic singular perturbation methods. The sharpest
uniqueness statement for foliations of this type was obtained by Qing and
Tian [20]. There are analogous results in the asymptotically hyperbolic set-
ting. Existence of CMC foliations on high order perturbations of the AdS
Schwarzschild space was proved by Rigger [21], again using mean curvature
flow, and quite recently Neves and Tian [16, 17] have established uniqueness
and extended the existence theory in this setting. In a somewhat different
direction, some time ago, Labourie [12] used pseudoholomorphic curves in
the cotangent bundle to construct constant Gauss curvature foliations near
infinity in convex cocompact hyperbolic three-manifolds. Our results are
closely related to the results of Rigger, Neves-Tian and Labourie.

All of these are foliations in a neighbourhood of infinity, but one may
also consider foliations in a compact set of the manifold which collapse in
the limit to some lower dimensional set. Ye [25] proved, under certain con-
ditions, existence and uniqueness of CMC spheres collapsing to a point. It
turns out that this limiting point is necessarily a critical point of the scalar
curvature function. A recent extension of this [19] treats the ‘very degen-
erate’ case where, for example, the ambient manifold has constant scalar
curvature. The papers [15, 14] construct ‘partial’ CMC foliations which col-
lapse to higher dimensional minimal submanifolds. Again, this minimality
is probably necessary. The survey [18] gives a good overview of all of this.
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As already noted, our goal here is to revisit this problem in the asymp-
totically hyperbolic case. We shall work in a broader geometric setting than
either Rigger or Neves-Tian, namely that of conformally compact manifolds
(M, g). Thus M is a compact (n+ 1)-dimensional manifold with boundary,
with n ≥ 2, and g = ρ−2 g is a complete metric on its interior; here g is a
metric which extends up to ∂M and ρ is a smooth defining function for ∂M .
In this paper, unless otherwise stated, we require that ḡ has a C3,α extension
up to ∂M . Assuming |d log ρ|2g → 1 as ρ → 0, then g is asymptotically hy-
perbolic in the sense that the sectional curvatures all tend to −1 at infinity.
Naturally associated to g is its conformal infinity,

(1.1) c(g) :=
[
g|T∂M

]
,

which is a conformal class on ∂M . There is a simple correspondence, due to
Graham and Lee [9], between metrics on ∂M which represent this conformal
class, ‘special’ boundary defining functions, and hypersurfaces near infinity
in M , which are essential and outer convex, which are the level sets of these
defining functions. More specifically, given h0 ∈ c(g), there is a boundary
defining function x so that

(1.2) g =
dx2 + h(x)

x2
, where h(x) = h0 + h1 x+ h2 x

2 + · · · .

The level sets {x = const.} have mean curvature which is almost con-
stant, and in our main existence results we show how to perturb these level
sets so that they are exactly CMC (or have constant σk curvatures, etc.).
The key to our method, however, is to relate this problem about the ex-
trinsic geometry of these level sets to conformal geometry problems in the
class c(g).

In dimension n ≥ 3, the first, and most important case, is when h1 = 0
and h2 is equal to the negative of the Schouten tensor of h0, i.e.

h2 = −Ph0 := − 1

n− 2

(
Ric(h0) − Rh0

2(n− 1)
h0

)
.

As explained in §2, this corresponds to the initial part of the expansion of
a Poincaré-Einstein metric. It will emerge why these conditions are well-
defined.

Theorem 1.1. Let (Mn+1, g) be conformally compact, and suppose that for
some smooth boundary defining function x, the conformal compactification
g = x2g is C3,α up to ∂M . Suppose also that h1 = 0 and h2 = −Ph0.

(i) If the conformal class c(g) has negative Yamabe invariant, then there
exists a unique CMC foliation near infinity.
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(ii) If, on the other hand, c(g) has positive Yamabe invariant, then to each
constant scalar curvature metric h0 ∈ c(g) which is nondegenerate
for the linearized Yamabe equation, we can associate a CMC foliation.
Different constant scalar curvature metrics correspond to geometrically
distinct foliations.

Recall that a conformal class c(g) is said to have negative or positive
Yamabe invariant if, for any representative h0 ∈ c(g), the least eigenvalue λ1

of the conformal Laplacian

−
(

Δh0 −
n− 2

4(n− 1)
Rh0

)
is negative or positive, respectively. Here Rh0 is the scalar curvature of
the metric h0 on ∂M . When c(g) has negative Yamabe invariant, there
is a unique constant scalar curvature metric in this conformal class (up to
scale), while if this Yamabe invariant is positive, there may very well be a
large number of constant scalar curvature representatives, and hence a large
number of geometrically distinct CMC foliations near infinity.

Theorem 1.1 follows from a more general result. In terms of the expan-
sion (1.2), we define the two functions
(1.3)

κ1 :=
1

2
tr h0h1 ∈ C2,α(∂M) and κ2 := trh0h2 − 1

2
‖h1‖2

h0
∈ C1,α(∂M).

We show later that these are independent of the choice of representative
h0 ∈ c(g). Assuming the role of the conformal Laplacian is the operator

(1.4) Lh0 := −
(

Δh0 +
n− 2

2
κ2

)
,

which we call the generalized conformal Laplacian. Note that if h1 = 0 and
h2 = −Ph0 , then Lh0 is the conformal Laplacian.

Definition 1.1. When n ≥ 3, we say that the conformally compact metric g
has positive or negative generalized boundary Yamabe invariant if

inf
{∫

∂M

φ0 Lh0φ0 dVh0 : ‖φ0‖
L

2n
n−2 =1

}
is positive or negative, respectively (or equivalently, if the least eigenvalue
of Lh0 is positive or negative). When n = 2, we say that the conformally
compact metric g has positive or negative generalized boundary Yamabe in-
variant if

−
∫

∂M

κ2 dvolh0 ,

is positive or negative, respectively.
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The somewhat confusing sign conventions here are analogous to the ones
in the Yamabe problem. We will see that the signs of these boundary in-
variants are independent of the representative h0 ∈ c(g).

Now consider the Yamabe-type equation

(1.5) e−2φ0

(
κ2 + Δh0φ0 +

n− 2

2
|∇h0φ0|2h0

)
− κ̃2 = 0.

where κ̃2 is constant. Theorem 1.1 follows from

Theorem 1.2. Let (Mn+1, g) be conformally compact, n ≥ 2 and suppose
that κ1 ≡ 0.

(i) If g has negative generalized boundary Yamabe invariant, then there
exists a unique CMC foliation near infinity.

(ii) If g has positive generalized boundary Yamabe invariant, then to each
solution φ0 ∈ C2,α(∂M) of (1.5) for which the linearization of (1.5) at
φ0 is invertible, we can associate a CMC foliation. Different solutions
correspond to geometrically distinct foliations.

When g has negative generalized boundary Yamabe invariant, we shall
prove that there exists a solution of (1.5) with κ̃2 a positive constant, and
this solution is unique once this constant is fixed. When g has positive
generalized boundary Yamabe invariant, it may not be possible to find a
solution of (1.5), and uniqueness might not hold.

The condition κ1 ≡ 0 does not depend on the choice of the representative
h0 ∈ c(g). Note that if in addition κ̃2 = 0, then invertibility of the lineariza-
tion of (1.5) at φ0 necessarily fails and our method does not apply in this
case, even though CMC foliations may well exist in such circumstances (as,
e.g. in [21] , [16] and [17]).

When κ1 �= 0 the situation is somewhat more complicated.

Theorem 1.3. Let (Mn+1, g) be conformally compact, n ≥ 2.

(i) Assume that κ1 > 0 everywhere and also that there exists a conformal
compactification ḡ which is C3 up to ∂M , then there exists a unique
CMC foliation near infinity.

(ii) If κ1 < 0 everywhere and some conformal compactification ḡ has a C∞

extension up to ∂M , then there exists a CMC foliation with gaps, with
leaves tending to infinity.

As before, the condition that κ1 does not change sign is independent of
the choice of the representative h0 ∈ c(g). If κ1 changes sign or vanishes
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somewhere, our methods do not apply and the existence of CMC foliations
is doubtful. The precise meaning of foliations with gaps will be clear in the
course of the proof of this theorem.

The existence of these foliations is established by a perturbation argu-
ment which is particularly straightforward when κ1 = 0. The other cases
are more singular. The uniqueness statements follow from a certain mono-
tonicity of the mean curvature function defined on the foliations.

Under various conditions, we also prove the existence of foliations with
leaves having constant σk curvatures. Rather than state these results com-
pletely here, we note only one special case:

Theorem 1.4. Let M be an n-dimensional convex cocompact hyperbolic
manifold. Then each end of M which has Yamabe negative conformal infinity
admits a unique foliation by compact hypersurfaces with constant Gauss-
Kronecker curvature.

Note that we already know that the ends of these manifolds admit unique
CMC foliations by Theorem 1.2. The 3-dimensional case of this was already
proved by Labourie [12] (in fact, he assumed only that the hyperbolic 3-
manifold is geometrically finite).

Quite recently we learned of some recent work by Espinar, Galvez and
Mira [4] which is related to all of this. They too study the correspondence
between scalar curvature type equations on the boundary and Weingarten
hypersurfaces in the interior, but they work only in H

n+1 and use many
special properties of that space; furthermore, their Weingarten conditions
are different from the more familiar CMC condition we study here.

More recently still, B. Wang [24] has applied the results of the present
paper; he proves that a quasi-Fuchsian hyperbolic 3-manifold admits a global
CMC foliation if it admits a minimal surface with all principal curvatures
less than 1 in absolute value. His starting point is the foliations of the
ends constructed here, but he extends this to a global foliation using an
area-preserving mean curvature flow.

This paper is organized as follows. The next section describes the geome-
try of conformally compact metrics. The notion of monotone CMC foliations
is introduced and related to uniqueness of the foliation in §3. The main cal-
culations of the second fundamental form and mean curvature of the level
sets of special boundary defining functions, and the effect on these quantities
of conformal changes on the boundary, is carried out in §4. This leads to
the proofs of the various existence theorems in §5. The final §6 discusses the
alterations needed to prove analogous results for foliations with constant σk

curvature leaves.
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2. Asymptotically hyperbolic metrics

In this section we review the relevant aspects of the geometry of conformally
compact metrics.

Conformally compact metrics

Let M be the interior of a smooth compact manifold with boundary. A met-
ric g on M is called conformally compact if g = ρ−2g, where g is a metric on
the closed manifold with boundary which is smooth and nondegenerate up
to the boundary, and ρ is a smooth defining function for ∂M , i.e. ρ = 0 only
on ∂M and dρ �= 0 there. We say that g has a C3,α conformal compactifi-
cation if for some (and hence any) smooth boundary defining function ρ, g
has a C3,α extension up to ∂M . (This is not the most general nor the most
invariant way of stating this condition.) A brief calculation shows that the
curvature tensor of g has the form

Rijk� = −|dρ|2g (gikgj� − gi�gjk) + O(ρ),

so we say that (M, g) is asymptotically hyperbolic (AH) if |dρ|g = 1 when
ρ = 0. This is an intrinsic condition, i.e. is independent of the choice of the
factors ρ and g, since it can also be written as |d log ρ|g → 1 when ρ→ 0;
the interpretation is that − log ρ behaves asymptotically like a distance func-
tion for g.

The conformal infinity of a conformally compact metric (M, g) is the
conformal class c(g) on ∂M defined in (1.1). This is the beginning of a
correspondence between the interior Riemannian geometry of g and con-
formal geometry on the boundary which is a key motivation for studying
conformally compact metrics, see [6] for more on this.

Normal form and special bdf’s

Any conformally compact metric can be put into the normal form (1.2) in
a neighborhood of infinity. More specifically, let (M, g) be AH and suppose
that h0 is any C3,α metric on ∂M which represents the conformal class c(g).
Graham and Lee [9] proved that there exists a unique defining function x
for ∂M in some neighborhood U of the boundary which satisfies the two
conditions:

(2.1) |d log x|2g ≡ 1, in U , and x2g
∣∣
T∂M

= h0.

To see this, choose an arbitrary smooth boundary defining function ρ and set
g = ρ2g. Then h0 = e2φ0 g|T∂M for some function φ0 on ∂M , and the new
boundary defining function x = eφρ satisfies (2.1) if and only if φ satisfies
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the nondegenerate Hamilton-Jacobi equation

(2.2) |dρ+ ρ dφ|2g ≡ 1 ⇐⇒ 2 〈∂ρ,∇gφ〉g + ρ |∇gφ|ḡ =
1 − |∇gρ|2g

ρ
.

This is a noncharacteristic first order differential equation which has a unique
solution with given boundary data φ(0, ·) = φ0. The corresponding func-
tion x is called a special boundary defining function, or special bdf.

It is useful to think of the solution φ(x, y) of the Hamilton-Jacobi equa-
tion (2.2) as the result of applying an ‘extension operator’ E to the boundary
data φ0, so we write φ = E(φ0).

Lemma 2.1.For any sufficiently small ball around the origin, V⊂C2,α(∂M),
there exists a collar neighbourhood U of ∂M in M such that the solution
operator

E : V −→ C2,α(U)

is continuous.

Proof. We shall simply trace through the standard proof of existence for
this class of equations to make sure that the regularity is as stated.

First, rewrite the equation as

F (ρ, y, dφ) := ∂ρφ− 1

2
ρ |∇gφ|2g + A(ρ, y) = 0,

where A(ρ, y) is the inhomogeneous term on the right in (2.2). Thus F (ρ, y,
p, q) is C2,α in (ρ, y) and a quadratic polynomial with coefficients vanish-
ing at ρ = 0 in (p, q) (which represent the components (∂ρφ, ∂yφ) of dφ).
We first find the graph of dφ, parametrized by some auxiliary parameters
(s, η1, . . . , ηn). Solve the Hamiltonian system with independent variable s
and initial conditions

dρ

ds
= Fp,

dy

ds
= Fq,

dp

ds
= −Fρ,

dq

ds
= −Fy

with initial data

ρ(0, η) = 0, y(0, η) = η, p(0, η) = F (0, η, 0, 0) = A(0, η), q(0, η) = ∂yφ0(η).

The components of ∇F are all C1,α or better, and the initial conditions
are also C1,α, so by standard ODE theory, there is a unique local solution
(ρ(s, η), y(s, η), p(s, η), q(s, η)) which is C1,α. To invert the map (s, η) �→
(ρ, y), simply note that since the Jacobian of this transformation at ρ = 0
is the identity, we can apply the inverse function theorem. This gives a
local C1,α inverse, and hence p and q are C1,α functions of (ρ, y). Now solve
φρ = p(ρ, y) by integrating from ρ = 0; then φy = q(ρ, y) automatically holds
by the usual Hamiltonian formalism. Therefore, ∇φ(ρ, y) ∈ C1,α, so φ ∈ C2,α

as claimed. This proof is local in ρ, but may be carried out globally on ∂M ,
which gives the precise statement of the theorem. �
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For later reference, now suppose that x and x̂ are two special bound-
ary defining functions which induce boundary metrics h0 and ĥ0 = e2φ0h0,
respectively and let g = x2 g. Then x̂ = eφ x where φ(x, y) satisfies

(2.3) −2 ∂xφ = x |∇gφ|2g.

From this it follow that if φ0 ∈ C2,α(∂M), then

(2.4) φ(x, y) = φ0(y) − 1

4
|∇h0φ0|2h0

x2 + O(x2+α).

Now, given h0 ∈ c(g) and associated special bdf x, define g as above, and
write N = ∇gx. Then, using the exponential map with respect to g,

[0, x0) × ∂M � (x, y) �−→ Φh0(x, y) := expy(xN),

defines a diffeomorphism between [0, x0)x × ∂M and U , and also identifies
each level set {x = const.} with ∂M . By Gauss’ Lemma,

(2.5) Φ∗
h0

(g) =
dx2 + h(x)

x2
,

where h(x) is a family of metrics on ∂M which depends on x ∈ [0, x0). This
exhibits the bijective correspondence between elements h0 ∈ c(g) and special
boundary defining functions.

In this paper, we assume that g has a C3,α extension up to ∂M , which
implies that h(x) admits a second order Taylor expansion in powers of x,

(2.6) h(x) = h0 + h1 x+ h2 x
2 + O(x3),

where the coefficients hj are symmetric two-tensors on ∂M ; these can be
calculated using the formula

(2.7) hj =
1

j!
L(j)

N
g |x=0.

Here L is the Lie derivative, and we use that LN dx
2 = 0 so LN g = LN h.

In particular hj is C3−j , for j = 0, 1, 2.

Special bdf’s and hypersurfaces

If x is a special bdf and x′ ∈ (0, x0), then r = − log(x/x′) is the signed
distance function for the hypersurface Σ = {r = 0} = {x = x′} near ∂M .
Conversely, if Σ is any hypersurface in M for which the exponential map
from the outward pointing normal bundle N+Σ to the exterior of Σ in M
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is a diffeomorphism, and if r = distg(·,Σ) (by which we mean the signed
distance function which is positive outside Σ), then x = e−r is a special bdf.
As above, it induces a metric h0 ∈ c(g), as the boundary trace of x2g via
x2g = g = dx2 + h(x) where h(0) = h0.

These simple observations provide a key for what is to follow, namely
that because of this bijective correspondence between elements in c(g) and
outwardly convex hypersurfaces, one may study the geometry of these hy-
persurfaces by methods of conformal geometry. A well-known but never
published paper [5] by Epstein discusses this correspondence in great detail
in three-dimensional hyperbolic space.

Poincaré-Einstein metrics

A particularly interesting class of AH manifolds are the Poincaré-Einstein
(PE) spaces, where the metric g is Einstein with Ric(g)+ng = 0. This Ein-
stein condition forces numerous relationships between the coefficient tensors
hj in the Graham-Lee normal form of g. In particular, for j < n/2, h2j+1 = 0,
while each h2j is given by a conformally natural partial differential operator
of order 2j applied to h0. For example, h2 = −Ph0, where

Ph0 =
1

n− 2

(
Ric(h0) − Rh0

2(n− 1)
h0

)
,

is the Schouten tensor of h0.
We do not need the full force of the PE condition in this paper, but shall

often work with metrics g which are weakly Poincaré-Einstein, in the sense
that

h(x) = h0 + h2 x
2 + O(x3), with h2 = −Ph0 ;

this encompasses many interesting cases.

3. CMC foliations

We now present some general facts about hypersurface foliations near infinity
in conformally compact manifolds where each of the leaves has CMC, and
also review some familiar examples.

Foliations and defining functions

Let (M, g) be an AH manifold, U a neighborhood of infinity, and F = {Στ},
0 < τ < τ0, a foliation of U by CMC hypersurfaces. We suppose that Στ →
∂M as τ ↘ 0, and that for each τ the exponential map is a diffeomorphism
from the outward pointing normal bundle of Στ to the unbounded component
of M \ Στ .
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Definition 3.1. We say that F is monotone increasing or decreasing if
the mean curvature H(Στ ) = Hτ is a monotonically strictly increasing or
decreasing function of τ , respectively. In either of these cases, we say that F
is a monotone foliation.

There is no natural choice for the parameter τ which indexes the leaves.
The foliations constructed here are perturbations of the level sets {x = ε}
where x is a particular special bdf, so ε is a reasonable choice of parameter.
For other foliations near infinity in an AH space, there may not exist any
choice of parametrization of the leaves which extends smoothly to M and is
a defining function for ∂M . This is related to whether the leaves converge
to ∂M more rapidly in some regions than others.

Uniqueness

As already noted, one motivation for finding CMC foliations in the first place
is that they might be canonical objects. We now describe one situation in
which this is the case.

Proposition 3.1. Suppose that F is a monotone decreasing CMC foliation
in one end of a conformally compact manifold (M, g). Then F is unique
amongst all CMC foliations with compact leaves tending to ∂M in that end.

Proof. The uniqueness follows by a simple application of the maximum
principle. Let F be the given monotone decreasing foliation, and let F ′ be
any other CMC foliation and Σ′ any leaf of F ′. Consider the set of leaves
Στ ‘outside’ Σ′. There is a maximal value τ1 for which this is true, and
clearly Στ1 meets Σ′ tangentially. Similarly, consider the set of leaves Στ

which are inside Σ′, and let τ2 denote the smallest value of τ for which this
is true. Again, Στ2 meets Σ′ tangentially. Let H1, H2 and H denote the
mean curvatures of Στ1 , Στ2 and Σ′, respectively. On the one hand, by the
comparison principle for mean curvature, since Στ2 lies on the mean convex
side of Σ and is tangent to it, we have H2 ≥ H . Similarly, since Σ lies on
the mean convex side of Στ1 and is tangent to it, we have H ≥ H1. Since F
is monotone decreasing, H1 ≥ H2, with equality if and only if Στ1 = Στ2 .
Therefore, we conclude that H1 = H2 and Στ1 = Στ2 = Σ′, as required. �

Basic examples

We present now three basic examples of CMC foliations near infinity.

1. Geodesic balls Let (M, g) be the hyperbolic space H
n+1. Fix the

origin o, and let SR denote the geodesic ball of radius R > 0 centered at o.
We can recover the conformally compact form of the metric from the geodesic
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polar coordinate expression g = dr2+sinh2 r dθ2 by setting x = 2e−r, so that

g =
dx2 + (1 − x2

4
)2 dθ2

x2
.

Note that this is the special bdf corresponding to the standard round met-
ric dθ2 in the conformal infinity of g.

We set Σε = SR where R = − log(ε/2). Each such leaf is totally umbilic,
with second fundamental form

II(Σε) = ε−2

(
1 − ε4

16

)
dθ2,

and all principal curvatures equal to (4 + ε2)/(4 − ε2). Hence this is a
Weingarten foliation no matter what the function f . The mean curvature

H(Σε) = n

(
4 + ε2

4 − ε2

)
,

is monotone increasing in ε, with

lim
ε↘0

H(Σε) = n, lim
ε↗2

H(Σε) = ∞.

The latter limit corresponds to geodesic spheres of radius tending to zero.
There is a family of such foliations obtained by shifting the center of the
balls, so uniqueness clearly fails.

2. Equidistant hypersurfaces The second example concerns the fam-
ily of hypersurfaces in the warped product M = R × Y , with metric g =
dt2 + cosh2 t h, which are equidistant from the ‘core’ {t = 0}. Here (Y, h)
is any compact n-manifold. When (Y, h) is Einstein, with Ricci curvature
−(n− 1)h, then (M, g) is also Einstein with Ricci curvature −ng. In par-
ticular, if dimY = 2 and (Y, h) is hyperbolic, then M is called a Fuchsian
hyperbolic 3-manifold. However, (M, g) is always conformally compact, as
can be seen by setting x = 2e−t once again to get

g =
dx2 + (1 + x2

4
)2h

x2
.

Thus x is a special bdf corresponding to the metric h in the conformal infinity
of g at t = ∞. (The situation at the end t = −∞ is analogous.)

The surfaces Σε = {t = − log(ε/2)} foliate this end, and have second
fundamental form

II(Σε) = ε−2

(
1 − ε4

16

)
h,
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so these are again totally umbilic with principal curvatures (4−ε2)/(4+ε2).
We have

H(Σε) = n

(
4 − ε2

4 + ε2

)
,

which is monotone decreasing in ε, with

lim
ε↘0

H(Σε) = n, lim
ε↗2

H(Σε) = 0,

the latter limit corresponding to the central core at t = 0.

3. Horospheres The final example is of a horospherical foliation in a
conformally compact manifold (M, g) with end diffeomorphic to the product
R

+ × T n and with warped product metric g = dt2 + e2t h, where h is the
flat metric on the torus T n. Now set x = e−t, so g = (dx2 + h)/x2, and if
Σε = {t = − log ε}, then

II(Σε) = x−2h

has all principal curvatures equal to 1, and hence

H(Σε) = n

for all ε. In particular, this foliation is neither (strictly) monotone increasing
or decreasing.

4. Geometric calculations

We now present a series of calculations for the second fundamental forms
and mean curvatures of the level sets of a special bdf. The first step is to
compute these for a given special bdf x, and after that we examine the effect
of changing the conformal representative on the boundary.

Second fundamental form of level sets

Suppose that (M, g) is an AH metric and fix h0 ∈ c(g) and the corresponding
special bdf x. Set g = x2g and N = ∇gx; we also set N = x−1 ∇gx. We
now calculate the second fundamental form and mean curvature of the level
sets {x = const.}.

To begin this calculation, recall the standard formula for the second
fundamental form of the level sets {x = const.}

II = −1

2
LNg,

which holds because N is the gradient of the distance function from each
level set.
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We recall two standard facts:

(4.1) LW (fκ) = fLWκ+(Wf) κ, and L(fW ) κ = fLWκ+df ◦ ιWκ,

here β ◦ γ = β ⊗ γ + γ ⊗ β.

Since N = xN and g = x−2 ḡ, we compute

LNg = LxN(x−2g) = xLN(x−2g) + dx ◦ ιN (x−2g)

= x
(
x−2 LNg − 2x−3g

)
+ 2 x−2dx2

= x−2
(
xLNg − 2g + 2 dx2

)
= x−2 (xLN h− 2 h) ,

since LN dx
2 = 0. Write LNh = ∂xh for simplicity; then the second funda-

mental form of the level sets {x = const.} is given by

(4.2) II =
1

2
x−2(2 h− x∂x h).

The metric induced on {x = const.} is given by x−2 h and hence the
mean curvature of this hypersurface is given by

(4.3) H =
1

2
tr x−2h

(
x−2(2 h− x ∂xh)

)
= n− 1

2
tr h (x ∂xh) .

The expansion for h(x) then yields

(4.4) H = n− 1

2

(
tr h0h1

)
x−

(
tr h0h2 − 1

2
‖h1‖2

h0

)
x2 + O(x3).

The value of this function at any point is the mean curvature (with respect
to the metric induced by g) of the level set of the special bdf x through that
point. In terms of the notation in (1.3) we can write

H = n− κ1 x− κ2 x
2 + O(x3).

Effect of conformal changes

We next study the effect on various geometric quantities of changing the
representative h0 within the conformal class c(g).

Set ĥ0 = e2φ0h0. We now have the special bdf x̂ = eφ x associated to ĥ0

and the metric ĝ = x̂ 2g = e2φg, and can write

ĝ = dx̂ 2 + ĥ(x̂), ĥ(x̂) = ĥ0 + ĥ1 x̂+ ĥ2 x̂
2 + O(x̂3).
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Clearly
ĥ0 = ĝ|T∂M = e2φ0h0 ;

the higher terms in the expansion for h may be computed using

ĥj =
1

j!
L(j)

N̂
ĝ

∣∣∣∣
∂M

,

where

N̂ = x̂−1 ∇g x̂ = x e−φ ∇g(eφx) = x (N + x∇gφ) := xZ,

where Z = N + x∇gφ .

In particular, to calculate the second fundamental form of any level set
{x̂ = ε}, we first compute

LN̂ g = LxZ(x−2g)
= xLZ(x−2g) + dx ◦ ιZ(x−2g)

= x−1 LZg − 2x−2(Zx)g + x−2dx ◦ ιZg.
Using the decomposition of Z, this splits further as

LN̂g = x−2 (x ∂x h− 2 h) + L∇gφg + 2x−1dx ◦ dφ− 2 x−1 ∂xφ g.

Since
L∇gφg = 2 Hess g(φ),

the second fundamental form of each level set {x̂ = ε} is

II(φ0) =(4.5)

=

(
1

2
x−2 (2 h−x ∂xh)−x−1 dx ◦ dφ−Hess ḡ(φ)−1

2
|∇gφ|2g g

) ∣∣∣∣∣
x eφ=ε

.

The mean curvature of the level set {x̂ = ε} is the trace of II(φ0) with

respect to the induced metric x̂−2ĥ on this hypersurface. However, since
there is no dx̂ 2 component, we can simply take the trace with respect to g
directly; using (2.3), this gives

H(φ0) = (tr gII(φ0)) |x eφ=ε =
(
tr x−2gII(φ0)

)
|x eφ=ε

=

(
1

2
tr h (2 h− x ∂xh) − x2

(
Δgφ+

n− 1

2
|∇gφ|2g

) ) ∣∣
x eφ=ε

.

This proves the
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Proposition 4.1. The mean curvature of the hypersurface {x̂ = ε} is
given by

(4.6) H(φ0, ε) := n−ε2
(
e−2φ

(1

2
x−1 tr h∂xh+Δgφ+

n− 1

2
|∇gφ|2g

))∣∣
x eφ=ε

.

These expressions for the second fundamental form and mean curvature
conceal the fact that φ is actually a nonlocal function of φ0, as is the oper-
ation of restricting to the level set x̂ = ε.

Expanding H(φ0, ε) in powers of ε shows how the coefficients in (4.4) are
affected by a change of representative h0 of the conformal class c(g). Indeed,
using (2.4), we find

Δgφ = Δh0φ0 − 1

2
|∇h0φ0|2h0

+ O (xα) ,

which shows that, in contrast to (4.4),

H(φ0, ε) = n− 1

2
e−φ0 tr h0h1 x̂

−e−2φ0

(
tr h0h2 − 1

2
‖h1‖2

h0
+ Δh0φ0 +

n−2

2
|∇h0φ0|2h0

)
x̂2 + O(x̂3).

(4.7)

This shows how the functions κ1 and κ2 in (1.3) transform under a con-
formal change of metric. Indeed, if κ1, κ2 and κ̃1, κ̃2 are the functions corre-
sponding to the conformal representatives h0 and h̃0 = e2φ0h0, respectively,
then (4.7) shows that

κ̃1 = e−φ0 κ1 ,(4.8)

κ̃2 = e−2φ0

(
κ2 + Δh0φ0 +

n− 2

2
|∇h0φ0|2h0

)
.(4.9)

In particular, the conditions tr h0h1 ≡ 0, tr h0h1 > 0 or tr h0h1 < 0 do not
depend on the choice of the conformal representative of c(g).

5. Existence of CMC foliations

We now establish three separate existence theorems, in order of increasing
analytic difficulty, corresponding to whether κ1 = tr h0h1 vanishes identi-
cally, or is everywhere positive or everywhere negative, respectively. After
that we prove that each of these families of CMC surfaces fit together in a
foliation.
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Case 1: tr h0h1 ≡ 0

According to (4.4)
H(0, ε) = n− κ2 ε

2 + O(ε3),

where κ2 ∈ C1,α(∂M). Let us assume for the time being that κ2 = const.
We seek, for each ε > 0, a function φ0 = φ0(ε) on ∂M so that

H(φ0(ε), ε) = n− κ2 ε
2,

By (4.6), this is equivalent to

(5.1) N (φ0, ε) − κ2 = 0,

where, by definition,

(5.2) N (φ0, ε) := e−2φ

(
1

2x
tr h∂xh + Δgφ+

n− 1

2
|∇gφ|2g

) ∣∣∣
x eφ=ε

.

Since κ1 = 0, it follows that

tr h∂xh = 2 κ2x+ O(x2),

so N is C1 in ε up to ε = 0 and N (0, 0) = κ2.

Theorem 5.1. If κ1 = 0, κ2 = const. and Δh0 − 2 κ2 is invertible, then
for each small ε > 0, there is a unique solution to (5.1) close to 0. The
hypersurfaces x eφ = ε constitute, as ε varies, a monotone CMC foliation
near ∂M . This foliation is unique amongst all possible foliations if κ2 > 0.

Proof. The proof is a direct consequence of the implicit function theo-
rem, but to see this we must compute the linearization of N at φ0 = 0.
Rewrite N as the composition of three operations: the restriction R(φ0, ε)
to the hypersurface {xeφ = ε}, the nonlinear partial differential operator

φ �−→ e−2φ

(
1

2
x−1tr h∂xh+ Δgφ+

n− 1

2
|∇gφ|2g

)
,

and the extension operator φ = E(φ0). By the chain rule,

D1N|(0,ε) = D1R|(0,ε) ◦
(
Δg − x−1 tr h(∂xh)

) ◦DE0(ψ0).

Here ψ(x, y) := DE0ψ0 is the solution of the linearization of the Hamilton-
Jacobi equation (2.3) with initial condition ψ0, so ∂xψ = 0 and ψ(0, y) = ψ0

and hence ψ(x, y) = ψ0(y). The differential of the restriction operator is
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not so easy to compute in general, but is simply the restriction to ∂M when
ε = 0. Altogether then,

(5.3) D1N(0,0)ψ0 = (Δh0 − 2κ2)ψ0,

which by assumption is invertible. Hence there exists a smooth function
ε → φ0(ε), with φ0(0) = 0 and N (φ0(ε), ε) − κ2 = 0 for 0 ≤ ε < ε0. The
proof that these hypersurfaces form a foliation is deferred until the end of
the section. The uniqueness statement follows because κ2 > 0 implies that
the foliation is monotone decreasing so that Proposition 3.1 applies. �

The transformation rule (4.9) provides a way to reduce the general case
where κ2 is a function to this special case where κ2 is constant. Indeed,
suppose we have found a function φ̄0 such that

(5.4) e−2φ̄0

(
Δh0φ̄0 +

n− 2

2
|∇h0φ̄0|2h0

+ κ2

)
− κ̄2 = 0,

where κ̄2 is constant; then the term corresponding to κ2 for the new metric
h̄0 = e2φ̄0 h0 is this constant κ̄2.

According to the result above, the existence of CMC foliations reduces
to the existence of non degenerate solutions of (5.4). We discuss this issue
of solvability briefly now. For the sake of simplicity, let us focus on the
case n ≥ 3. When κ2 is an arbitrary smooth function, there may or may
not be a solution to the equation (5.4). We claim, however, that there is a
solution, which is in fact unique, if the least eigenvalue λ1 of the generalized
conformal Laplacian

Lh0 := −
(

Δh0 +
n− 2

2
κ2

)
is negative. The proof is an adaptation of that for an analogous result for
the Yamabe equation. To make the analogy more clear, set φ̄0 = 2

n−2
log u0,

which transforms (5.4) into the more familiar-looking equation

(5.5) Lh0u+
n− 2

2
κ̄2 u

n+2
n−2

0 = 0.

To see that the sign of this least eigenvalue is independent of choice of
conformal representative, we proceed as follows. Let

h̄0 = u
4

n−2

0 h0

be two conformally related metrics. By direct computation we deduce the
general formula

u
n+2
n−2

0 Δh̄0
w = Δh0 (u0w) − (Δh0u0)w,



Constant curvature foliations in asymptotically hyperbolic spaces 321

so combining this with (4.9) gives

(5.6) Lh̄0
w = u

−n+2
n−2

0 Lh0(u0w) ,

and hence ∫
∂M

wLh̄0
w dVh̄0

=

∫
∂M

(uw) Lh0(u0w) dVh0 ;

this shows that the sign of λ1(Lh0) is the same as that of λ1(Lh̄0
).

Now, suppose that λ1(Lh0) < 0 and let ϕ1 be the corresponding eigen-
function. If u0 > 0 is a solution to (5.5), then multiplying this equation by
ϕ1 and integrating yields

λ1

∫
∂M

ϕ1 u0 dVh0 +
n− 2

2
κ̄2

∫
∂M

ϕ1 u
n+2
n−2

0 dVh0 = 0 .

Since both ϕ1 and u0 are positive, λ1 and κ̄2 must have opposite signs, and
so if there is a solution in this case, then necessarily κ̄2 > 0.

To produce a solution, fix κ̄2 > 0 and for each 1 < p < n+2
n−2

, minimize
the functional

Ep(u) =
1

2

∫
∂M

(
|∇h0u|2h0

− n− 2

2
κ2 u

2

)
dVh0 +

n− 2

2(p+ 1)
κ̄2

∫
∂M

|u|p+1 dVh0.

The existence of a positive smooth minimizer up is classical and up satisfies
the Euler-Lagrange equation

Δh0up +
n− 2

2
κ2 up − n− 2

2
κ̄2 u

p
p = 0.

Next, we obtain an a priori estimate for the sup of up which is indepen-
dent of p. Let yp ∈ ∂M be the point where up achieves its maximum. Then
Δh0up(yp) ≤ 0, and hence

κ2(yp) up(yp) ≥ κ̄2 u
p
p(yp),

which implies the uniform bound

κ̄2 ‖up‖p−1
L∞ ≤ ‖κ2‖L∞.

Using this uniform bound, standard elliptic estimates and the Arzela-Ascoli
theorem, we can take the limit of a subsequence as p↗ n+2

n−2
, and this gives

a smooth positive solution of (5.5).
To prove uniqueness of this solution, assume that u0 and v0 are both

positive solutions of (5.5) (with the same value of κ̄2 > 0), and define

ψ :=
v0

u0

.
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Then using (5.6), we compute that

Δh̄0
ψ +

n− 2

2
κ̄2

(
ψ − ψ

n+2
n−2

)
= 0,

where h̄0 = u
4

n−2

0 h0. At the point where ψ attains its supremum, Δh̄0
ψ ≤ 0,

so as above, we conclude that ψ ≤ 1 everywhere. Similarly, considering
the point where ψ attains its infimum, we conclude that ψ ≥ 1 everywhere.
Hence ψ ≡ 1, which proves uniqueness.

Finally, the linearization of (5.5) at u0 is equal to

Δh0 +
n− 2

2
κ2 − n + 2

2
κ̄2 u

4
n−2

0 ,

and by (5.6) and (5.5),(
Δh0 +

n− 2

2
κ2 − n+ 2

2
κ̄2 u

4
n−2

0

)
(u0w) = u

n+2
n−2

0

(
Δh̄0

− 2 κ̄2

)
w.

Since κ̄2 > 0, Δh̃0
− 2κ̄2 is invertible and hence this linearization too must

be invertible.

A similar argument can be made when n = 2, under the assumption that∫
∂M

κ2 dVh0 > 0;

we leave the details to the reader.
For weakly Poincaré-Einstein metrics, h1 = 0 and h2 = −Ph0 , so that

κ2 = tr h0h2 = − 1

2(n− 1)
Rh0 .

Equation (5.5) then becomes

Δh0u0 − n− 2

4(n− 1)
Rh0 u0 − n− 2

2
κ̄2 u

n+2
n−2

0 = 0,

which is exactly the Yamabe equation. In this case, we known that there is
always at least one solution u0 > 0 with κ̄2 constant [13]. The sign of the
value of the least eigenvalue of the conformal Laplacian determines the sign
of κ̄2. In particular, if this least eigenvalue is negative, there is a monotone
decreasing CMC foliation determined by this construction, and this is unique
amongst all possible foliations. On the other hand, if the least eigenvalue
of the conformal Laplacian is positive, then to each nondegenerate solution
is associated a foliation; different nondegenerate constant scalar curvature
metrics correspond to distinct foliations.
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The case tr h0h1 > 0

The next case to consider is when tr h0h1 is everywhere positive. According
to (4.4),

H(0, ε) = n− ε κ1 + O(ε2),

where κ1 ∈ C2,α(∂M). By (4.7), exchanging h0 by a conformal multiple, we
may as well assume that κ1 ≡ 1.

We seek, for each ε > 0, a function φ0 = φ0(ε) on ∂M so that

H(φ0(ε), ε) = n− ε,

Using (4.6), this is equivalent to solving

(5.7) Ñ (φ0, ε) := e−φ

(
1

2
tr h∂xh + x

(
Δgφ+

n− 1

2
|∇gφ|2g

)) ∣∣∣
x eφ=ε

= 1.

The linearization of this equation at φ0 = 0 (and ε > 0) is

Lε := εΔh(ε) − 1

2
tr h∂xh(ε).

Note that 1
2
tr h∂xh(ε) = 1 + O(ε).

Define the function spaces Ck,α
ε to be rescaled Hölder spaces, where ev-

ery ∂y is accompanied by a factor
√
ε. For example,

‖u‖C0,α
ε

= sup |u| + sup
y �=y′

(
√
ε)α |u(y) − u(y′)|

d(y, y′)α
.

Clearly
Lε : C2,α

ε −→ C0,α
ε

is bounded independently of ε. We claim that the inverse is also bounded
uniformly in ε, provided ε is small enough. In other words, there is some
constant c > 0 independent of ε such that

(5.8) ‖u‖C2,α
ε

≤ c ‖Lε u||C0,α
ε
.

To prove this, we rephrase the problem. Define h̃(ε) = h(ε)/ε and L̃ε :=
Δh̃(ε) − 1

2
tr h∂xh(ε). Then the spaces C2,α

ε are simply the standard Hölder
spaces with respect to this rescaled metric, and (5.8) is equivalent to

‖u‖C2,α ≤ C ‖L̃ε u‖C0,α,

on (∂M, h̃(ε)), where C is independent of ε. This, in turn, follows from a sim-
ple scaling argument. If it were to fail, there would exist a sequence εj → 0
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and corresponding functions uj ∈ C2,α(M, h̃(ε)) for which ||uj||C2,α = 1, but
such that ‖L̃ε uj‖C0,α → 0. Choose normal coordinates centered at a point
pj ∈ M where the maximum of uj occurs. These exist on balls of radius
C/εj. The sequence of metrics h̃(εj) converges uniformly on compact sets
to the Euclidean metric. Passing to a subsequence, the uj also converge
uniformly on compact sets, and in the limit we obtain a function u defined
on all of R

n which satisfies (ΔRn − 1) u = 0, sup |u| = 1. This is clearly
impossible, hence we have proved the validity of (5.8).

Now write
L−1

ε

(
Ñ (φ0, ε) − 1

)
= φ0 − J(φ0, ε),

where J is a smooth map from C2,α
ε to itself, depending smoothly on ε, such

that J(0, ε) = O(ε) and Dφ0J |(0,ε) = 0. Note that J(φ0, ε) is affine in the
second partial derivatives of φ0, which is important.

The equation to solve, therefore, takes the form

(5.9) φ0 = J(φ0, ε).

Just as before, we can find a solution of this equation in a ball of radius Aε
in C2,α

ε , for A sufficiently large.
The solution φ0(ε) seems to become increasingly less regular as ε de-

creases. The fact that its regularity is controlled uniformly as ε↘ 0 follows
from the uniform boundedness of J(0, ε) in C∞ topology (and not in C∞

ε

topology). More precisely, if X be any vector field on ∂M , then applying V
to (5.9) yields a linear inhomogeneous elliptic equation for X φ0. There is
again a unique solution with norm in C2,α

ε bounded by A′ε, and by approx-
imating by difference quotients, this must be X φ0. Continuing in this way
proves that φ0(ε) ∈ Ck,α(∂M, h0) for all k ≥ 0 uniformly as ε→ 0.

The case tr h0h1 < 0

The final case, when tr h0h1 is everywhere negative, is harder than the pre-
vious cases due to a resonance phenomenon. It is now necessary to assume
that the conformal compactification of g is C∞. As before, after a prelimi-
nary conformal change, we can assume that κ2 = −2 and so the equation to
solve is

(5.10) Ñ (φ0, ε) = −1,

where Ñ is the same operator as before. The linearization at φ0 = 0 is again
εΔh(ε) − 1

2
tr h∂xh(ε). Since 1

2
tr h∂xh(ε) = −1 + O(ε), this operator is not

invertible for infinitely many values of ε converging to 0, so the proof must
be handled differently.
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There are two steps in this analysis. First, for any fixed q ∈ N, we
construct a sequence of improved approximate solutions φ

(q)
0,ε via a simple

iteration; this sequence is chosen so that N (φ
(q)
0,ε, ε) + 1 = O(εq). Second,

given any p > 0, we produce a sequence of disjoint intervals Jj approaching 0,
the union of which has density 1 at 0, and such that if ε ∈ J = ∪Jj , then

‖(L̃(q)
ε )−1‖C0,α

ε →C2,α
ε

≤ cp ε
−p.

where L̃
(q)
ε is the linearization at φ

(q)
0,ε. Using these two results, the argument

proceeds as before and gives a solution of (5.10), at least when ε ∈ J = ∪Jj .

Improved approximate solution. We seek a sequence of functions φ
(q)
ε

satisfying the equation to any specified order in ε. To this aim, rewrite (5.10)
as

φ0 = e−φ

(
1

2
tr h∂xh− eφ + φ0 e

φ + x

(
Δgφ+

n− 1

2
|∇gφ|2g

)) ∣∣∣
x eφ=ε

.

Now define the sequence by the recursive relation

φ
(q+1)
0,ε = e−φ

(q)
ε

(
1

2
tr h∂xh− eφ

(q)
ε + eφ

(q)
ε φ

(q)
0,ε

+ x
(
Δgφ

(q)
ε +

n− 1

2
|∇gφ(q)

ε |2g
))∣∣∣

x eφ
(q)
ε =ε

where φ
(0)
0,ε ≡ 0 and φ

(q)
ε is the Hamilton-Jacobi extension of φ

(q)
0,ε.

The right hand side is a second order (nonlocal) nonlinear operator which
depends smoothly on ε; furthermore, all functions are smooth, so all calcu-
lations may be done formally. Using that the error term for φ

(0)
0,ε ≡ 0 is

Ñ (0, ε) + 1 = O(ε2)

we deduce successively that

‖φ(q)
0,ε‖C2,α ≤ cq ε, and Ñ (φ

(q)
0,ε, ε) + 1 = O(ε2+q)

for all q. Note that this iteration scheme is inappropriate to actually solve
the equation since at each step we lose two derivatives.

Using the new bdf corresponding to the metric h
(q)
0,ε := e2φ

(q)
0,ε h0, the

equation we now must solve is

(5.11) Ñ (q)
ε (φ0, ε) = −1,

where N (q)
ε corresponds to Ñ when h0 is replaced by h

(q)
0,ε. We have arranged

that
Ñ (q)

ε (0, ε) + 1 = O(εq+2).
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Estimate on the resolvent. To simplify notation, drop the indices q
and ε; thus, for example, we write h instead of h

(q)
ε , etc. The linearization

of Ñ at φ0 = 0 (for ε ≥ 0) is

Lε := εΔε + qε,

where

Δε := Δh(ε), and qε := −tr h∂xh(ε) = 1 + O(ε).

Define
R = {ε : 0 ∈ spec (−Lε)};

thus Lε fails to be invertible if and only if ε ∈ R. There are two closely
related issues: to show that R is countable and accumulates only at 0, and
to estimate the size of the sets

(5.12) J(N) = {ε /∈ R : ‖L−1
ε ‖L2→L2 ≤ ε−N}.

Both facts rely on the observation that as ε ↘ 0, Lε is well-approximated
by εΔh0 + 1, and the eigenvalues of this latter operator cross 0 with speed
1/ε. We make this more precise now.

Lemma 5.1. The set R consists of an infinite decreasing sequence {εj}
accumulating only at 0 and has counting function N(ε) = |{εj ≥ ε}| which
satisfies C1ε

−n/2 ≤ N(ε) ≤ C2ε
−n/2. Furthermore, for each fixed N > n−2

2
,

|J(N,A) ∩ (0, ε)| ≤ ε− C εN−n−2
2

for some constant C depending on N but not ε.

Proof. If λ(ε) is an eigenvalue in (−1/2, 1/2) and is simple with corre-
sponding eigenfunction ψ(ε) with L2 norm equal to 1, then

λ̇ = −
∫

∂M

ψ(Δε + ε Δ̇ε + q̇ε)ψ dVh(ε)

=
λ+ 1

ε
+

∫
∂M

(
qε − 1

ε
+ q̇ε

)
ψ2 dVh(ε) + ε

∫
∂M

ψ Δ̇εψ dVh(ε).

As ε↘ 0, both qε−1
ε

and q̇ε are uniformly bounded. Writing Δεψ = −λ+qε

ε
ψ,

then boundedness of λ and qε and elliptic estimates show that

ε ‖ψ‖H2 ≤ C ‖ψ‖L2 =⇒
∣∣∣∣ε

∫
∂M

ψ Δ̇εψ dVh(ε)

∣∣∣∣ ≤ C.

All of this implies that ∣∣∣λ̇− λ+ 1

ε

∣∣∣ ≤ C

with C independent of ε.
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Even when the eigenspace is not simple, we can interpret λ̇ as a set-
valued function, cf. [3, 11], which accomodates the possibility that λ splits
into a number of separate eigenvalues. The estimate for the elements of this
set of derivatives remains the same.

We have proved that if ε is small enough and λ(ε) ∈ (−1/2, 1/2) then
λ̇ ∼ λ+1

ε
, and in particular, λ̇ > 0. This shows that the set of eigenvalue

crossings, i.e. values ε where λ(ε) = 0, is discrete, but in fact that the
number of eigenvalues λj(ε) of −Lε which are less than 1/2 is bounded by
C ε−

n
2 ; this follows directly from the Weyl asymptotic law for the convergent

family of metrics h(ε).
The same estimates give good control on the sets J(N). Indeed, define

I to be the set of j such that the length of (εj+1, εj) is larger than 4 εN+1

and this interval intersects (ε, 2ε). The estimate above for λ̇ implies that if
j ∈ I and ε̃ ∈ (εj+1 + εN , εj − εN), then all eigenvalues of −Lε̃ are at least
at distance ε̃−N from 0, and hence ε̃ ∈ J(N) since ‖(−Lε̃)

−1‖L2 ≤ ε̃−N by
the spectral theorem.

The number of intervals (εj+1, εj) which intersect (ε, 2ε) is bounded by
C ε−

n
2 , so the complement in (ε, 2ε) of the union of intervals (εj+1 + εN , εj −

εN) with j ∈ I covers at most C εN+1−n
2 of the length of (ε, 2ε). This

completes the proof. �

To convert this from an L2 estimate to one between ε-scaled Hölder
spaces, revert to the scaled metric h̃(ε) and note that it has volume propor-
tional to ε−n. Local elliptic estimates, which are uniform for balls B of size
1 in (∂M, h̃(ε)), give that

‖u‖|C2,α ≤ C (‖f‖C0,α + ‖u‖L2) .

However,
||u||L2 ≤ Cε−N ‖f‖L2 ≤ Cε−N−n ‖f‖C0,α,

so this proves the

Lemma 5.2. If ε ∈ J(N,A), then the norm of (−Lε)
−1 as a map between

C0,α
ε and C2,α

ε is bounded by Cε−N−n for some constant C which is indepen-
dent of ε.

The rest of the proof now proceeds as follows. First fix N > n+2
2

and

q > N+n+1, and use the approximate solution h
(q)
0,ε. This will be perturbed

using a fixed point argument. The key fact is that the norm of the inverse
of the linearization of (5.11) is now bounded by C ε−N−n−1 for some fixed C
and for all ε ∈ J(N). The same proof works to find a solution φ0 of (5.11)
lying in a ball of radius Cεq+2−N−n.
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Foliations

We conclude this section by proving that the CMC hypersurfaces constructed
in each of these three cases are the leaves of a foliation.

Let Σ be any one of the CMC hypersurface constructed above. Any other
hypersurface Σ′ which is nearby to Σ in the C1 norm can be written as a
normal graph over it, i.e.

Σ′ = {p+ ψ(p)N(p) : p ∈ Σ}.
Slightly more generally, a smooth family {Ση} of nearby hypersurfaces cor-
respond to a family of functions ψη for which they are the normal graphs.
Let us write the mean curvature functions H(η) of these hypersurfaces as
some nonlinear elliptic operator M(ψη). Suppose now that we have some
information about how these (possibly nonconstant) mean curvatures vary
with η. Differentiating this equation with respect to η gives the formula

(5.13) LΣψ̇ = ∂ηH(η);

here
LΣ = εΔh(ε) + ||II||2 + Ric(N,N)

is the Jacobi operator for the mean curvature function, ψ̇ is the derivative
of ψη with respect to η at η = 0, and the right hand side is the derivative of
the mean curvature function with respect to η.

Let x be the special bdf associated to Σ normalized so that Σ = {x = ε},
say. We first apply (5.13) when Ση = {x = ε + η}; in this case, ψ̇ ≡ 1, so
we obtain that

LΣ1 = ||II||2 + Ric(N,N) = ∂εH(ε),

where H is the mean curvature function for the level sets {x = const.}.
However, this is given explicitly in (4.4), so we deduce that

(5.14) ||II||2 + Ric(N,N) = −κ1 − 2κ2 ε+ O(ε2).

Let us denote this potential for the Jacobi operator by qε.
The simplest case to understand is when qε < 0 everywhere, which

by (5.14) is equivalent to assuming that either κ1 > 0, or else κ1 ≡ 0 and
κ2 > 0. Now, at the risk of repeating notation, let {Ση} denote the family
of CMC hypersurfaces near to Σ, and ψη the corresponding normal graph
functions. Applying (5.13) again shows that

LΣψ̇ = ∂ηH(Ση);

when κ1 > 0, the right hand side is simply −1, while in the other situation,
it equals −2ε, but in either case is strictly negative. Because the potential
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term in LΣ is negative, the maximum principle implies that ψ̇ > 0, and this
is obviously equivalent to the fact that the hypersurfaces Ση are one-sided
perturbations, and hence this family forms a foliation.

The remaining cases are when κ1 < 0, or else κ1 ≡ 0 and κ2 < 0. The
maximum principle no longer applies, so we must proceed slightly differently.
The idea now is to show that if Σε is the CMC hypersurface which is obtained
as a perturbation of the level set {x = ε}, then the function ψε which
represents Σε as a normal graph over that level set is of size ε2, along with
all of its derivatives (with respect to the coordinates y on ∂M). Of course,
we did not construct Σε via this graph function, but rather as the level set
xeφε = ε, where φε is the solution of the appropriate nonlinear equation
we obtained. The translation between the two representations is not so
difficult, and in fact we see that the estimate ψε = O(ε2) (along with all its
derivatives) follows directly from the fact that φε = O(ε) (again along with
all derivatives), which in turn is a direct consequence of the ball in which the
contraction argument was applied in order to find the solution. From these
estimates, it is now straightforward that these CMC hypersurfaces form a
foliation in these other cases too.

6. Other curvature functions

In this brief final section we sketch some of the ideas needed to extend the
methods and results of this paper to construct other Weingarten foliations,
and in particular, foliations where the leaves have constant σk curvature.
For simplicity we focus only on these latter functionals.

The preliminary work is identical. As before, we replace the boundary
metric h0 by ĥ0 = e2φ0h0, let x̂ denote the corresponding special bdf, and
calculate the second fundamental form II(φ0) of the level sets {x̂ = const.} as
in (4.5). However, instead of taking the trace, now apply the σk functional,
i.e. take the kth symmetric function of the eigenvalues of II with respect
to the induced metric on each level set. This is the more complicated fully
nonlinear operator

Nk(φ0, ε) =

= e−2kφσg
k

(
(h− 1

2
x∂xh) − xdx ◦ dφ− x2

(
Hessgφ+

1

2
|∇gφ|2g

))∣∣∣∣
xeφ=ε

.

In order to calculate the asymptotics of this functional when φ = 0 and
ε ↘ 0, and its derivative with respect to φ0 at φ0 = 0, we use the following
formulæ: if B(s) is any one-parameter family of symmetric matrices, then

(6.1)
d

ds
σk(B(s)) = tr

(
Ḃ(s)Tk−1(B(s))

)
,
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where

Tk−1(B) =

k−1∑
j=0

(−1)jσk−1−j(B)Bj

is the Newton polynomial of order (k − 1) of B. Differentiating again gives

(6.2)
d2

ds2
σk(B(s)) =

= tr

(
B̈ Tk−1(B)+Ḃ

k−1∑
j=0

(−1)j
(
tr (Ḃ Tk−2−j(B)) + σk−1−j(B) j Bj−1 Ḃ

))
.

In the present setting, if A is a symmetric 2-tensor, σg
k(A) represents the σk

functional on the (1, 1) tensor B obtained by raising one index of A using
the metric g. The formulæ (6.1) and (6.2) are interpreted accordingly.

We apply this in two different ways. First, we calculate the expansion of

Sk(x) := σg
k(II(0)) = σg

k(x
2II(0)) = σ

h(x)
k (h0 +

1

2
h1x+ O(x3)) = σk(B(x))

where

B(x) j
i = δ j

i − 1

2
(h1)

j
i x−

(
(h2)

j
i − 1

2
(h1 ◦ h1)

j
i

)
x2 + O(x3).

After some work, we find that

Sk(x)=

(
n

k

)
−

(
n−1

k−1

)
κ1x+

(
−2

(
n−1

k−1

)
κ2 +

1

2

(
n−2

k−2

)
σh0

2 (h1)

)
x2+O(x3),

where κ1 and κ2 are precisely the same functions as we have been considering
before. Anyone attempting to verify this should take advantage of the two
combinatorial formulæ

T�(I) =

(
n− 1

�

)
I,

�∑
j=0

(−1)jj

(
n

�− j

)
= −

(
n− 2

�− 1

)
.

Similarly,

D1σ
g
k

(
x2II(0) − x dx ◦ dφ− x2(Hessgφ+

1

2
|∇gφ|2gg)

)∣∣∣∣
0

(ψ0) =

= tr h(x)
(
(−x dx ◦ dψ0) − x2Hessh(x)ψ0)Tk−1(x

2II(0))
)
.

Note that the first term in this last expression is always off-diagonal, hence
does not contribute.
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In the interest of space and with a mind to the law of diminishing returns,
we focus on the weakly Poincaré-Einstein case. Since h1 = 0, we have

σg
k(x

2II(0)) =

(
n

k

)
+

1

n− 1

(
n− 1

k − 1

)
Rh0x

2 + O(x3),

and we assume that Rh0 is a (nonzero) constant too. The equation we must
solve, then, is

Nk(φ0, ε) =

(
n

k

)
+

1

n− 1

(
n− 1

k − 1

)
Rh0ε

2

or equivalently,

(6.3)
1

ε2

(
Nk(φ0, ε) −

(
n

k

))
=

1

n− 1

(
n− 1

k − 1

)
Rh0 .

Using the formula above for the linearization of σk, we see that the principal
part as ε ↘ 0 of the linearization of the operator on the left in this final
expression at φ0 = 0 is (

n− 1

k − 1

) (
Δh0 +

Rh0

n− 1

)
.

As expected, this is invertible when Rh0 < 0. Assuming invertibility of
this operator, we are able to apply the implicit function theorem and find a
solution exactly as before.

We summarize this discussion in the

Theorem 6.1. Let (M, g) be conformally compact and weakly Poincaré-
Einstein. If the conformal infinity c(g) has negative Yamabe invariant, then
for each k = 1, . . . , n, there is a unique foliation near infinity in M by
hypersurfaces with constant σk curvature. If c(g) is positive, then for each
h0 in this conformal class with constant (positive) scalar curvature for which
the conformal Laplacian is nondegenerate, and for each k = 1, . . . , n, there
is an associated foliation.

As mentioned in the introduction, the special case of greatest interest is
the

Corollary 6.1. Let M be a quasi-Fuchsian 3-manifold. Then each end of M
admits a unique foliation by constant Gauss curvature surfaces.
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[7] Gerhardt, C.: On the CMC foliation of future ends of a spacetime. Pacific
J. Math. 226 (2006), 297–308.

[8] Graham, C.R.: Volume and area renormalizations for conformally com-
pact Einstein metrics. The Proceedings of the 19th Winter School “Geom-
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