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h1, bmo, blo and Littlewood-Paley
g-functions with non-doubling measures

Guoen Hu, Dachun Yang and Dongyong Yang

Abstract

Let µ be a nonnegative Radon measure on Rd which satisfies the
growth condition that there exist constants C0 > 0 and n ∈ (0, d] such
that for all x ∈ Rd and r > 0, µ(B(x, r)) ≤ C0r

n, where B(x, r) is
the open ball centered at x and having radius r. In this paper, we in-
troduce a local atomic Hardy space h1,∞

atb (µ), a local BMO-type space
rbmo (µ) and a local BLO-type space rblo (µ) in the spirit of Goldberg
and establish some useful characterizations for these spaces. Espe-
cially, we prove that the space rbmo (µ) satisfies a John-Nirenberg
inequality and its predual is h1,∞

atb (µ). We also establish some use-
ful properties of RBLO (µ) and improve the known characterization
theorems of RBLO (µ) in terms of the natural maximal function by
removing the assumption on the regularity condition. Moreover, the
relations of these local spaces with known corresponding function
spaces are also presented. As applications, we prove that the in-
homogeneous Littlewood-Paley g-function g(f) of Tolsa is bounded
from h1,∞

atb (µ) to L1(µ), and that [g(f)]2 is bounded from rbmo (µ) to
rblo (µ).

1. Introduction

Recall that a non-doubling measure µ on Rd means that µ is a nonnegative
Radon measure which only satisfies the following growth condition, namely,
there exist constants C0 > 0 and n ∈ (0, d] such that for all x ∈ Rd and r > 0,

(1.1) µ (B(x, r)) ≤ C0r
n,
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where B(x, r) is the open ball centered at x and having radius r. Such a
measure µ is not necessary to be doubling, which is a key assumption in
the classical theory of harmonic analysis. In recent years, it was shown
that many results on the Calderón-Zygmund theory remain valid for non-
doubling measures; see, for example, [11, 12, 13, 14, 16, 17, 18, 10, 7, 26].
One of the main motivations for extending the classical theory to the non-
doubling context was the solution of several questions related to analytic
capacity, like Vitushkin’s conjecture or Painlevé’s problem; see [19, 20, 22]
or survey papers [21, 23, 24, 25] for more details.

In particular, Tolsa [17] developed a Littlewood-Paley theory with non-
doubling measures for functions in Lp(µ) when p ∈ (1,∞) and used this
Littlewood-Paley decomposition to establish some T (1) theorems. One of
the main purposes of this paper is to investigate behaviors of the inhomo-
geneous Littlewood-Paley g-functions of Tolsa in [17] at the extremal cases,
namely, in the cases when p = 1 or p = ∞. To this end, in this paper, we
first introduce a local atomic Hardy space h1,∞

atb (µ), a local BMO-type space
rbmo (µ) and a local BLO-type space rblo (µ) in the spirit of Goldberg [4]
and establish some useful characterizations for these spaces. Especially, we
prove that the space rbmo (µ) satisfies a John-Nirenberg inequality and its
predual is h1,∞

atb (µ). We also improve Theorem 2 and Theorem 3 of [7] on
the characterization of RBLO (µ) in terms of the natural maximal function
by removing the assumption on the regularity condition there. Moreover,
relations of these local spaces with the Hardy space H1(µ) and the BMO-
type space RBMO(µ) of Tolsa in [16] and the BLO-type space RBLO (µ)
of Jiang in [7] are also presented. As applications, we prove that the in-
homogeneous Littlewood-Paley g-function g(f) of Tolsa is bounded from
h1,∞

atb (µ) to L1(µ), and that [g(f)]2 is bounded from rbmo (µ) to rblo (µ).
We mention that when Rd is not an initial cube (see [17, Definition 3.4] or
Definition 2.2 below) which implies µ(Rd) = ∞, we proved in [27] that the
homogeneous Littlewood-Paley g-function ġ(f) of Tolsa is bounded from the
Hardy space H1(µ) to L1(µ), and that if f ∈ RBMO (µ), then [ġ(f)]2 is ei-
ther infinite everywhere or finite almost everywhere, and in the latter case,
[ġ(f)]2 is bounded from RBMO (µ) to RBLO (µ). This result generalizes
the corresponding result of Leckband [9] in replacing L∞(Rd) by BMO (Rd),
even when µ is the d-dimensional Lebesgue measure and ġ(f) is the classical
Littlewood-Paley g-function. Also, to the best of our knowledge, even when
µ is the d-dimensional Lebesgue measure, both the space rblo (µ) and the
boundedness of the inhomogeneous Littlewood-Paley g-function g(f) from
h1,∞

atb (µ) to L1(µ) and from rbmo (µ) to rblo (µ) are new. An interesting
open problem is if ġ(f) and g(f) can characterize the Hardy space H1(µ)
and h1,∞

atb (µ), respectively.
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We remark that some other variants of local atomic Hardy space and
local BMO-type space in the sense of Goldberg were also introduced in [26].
However, it seems that they are not natural for the boundedness of the
inhomogeneous Littlewood-Paley g-function. A new idea used in this paper
is to classify cubes of Rd by using the coefficients δ(·, ·) of Tolsa [17] (see [17,
Definition 3.2] or Definition 2.1 below); while in [26], cubes are classified by
their side lengths as in the case of Euclidean spaces in [4]. To be precise,
in this paper, using the coefficients δ(·, ·), we introduce a class D of cubes,
which have “large” side lengths in the sense that if µ is the d-dimensional
Lebesgue measure, then Q ∈ D if and only if the side length of Q is no less
than C, where C is a positive constant independent of Q. We then use D
to define our local Hardy space, local BMO-type space and local BLO-type
space.

It is well-known that the coefficients δ(·, ·) of Tolsa describe well the
geometric properties of cubes of Rd; see Lemma 3.1 in [17] (or Lemma 2.1
below). These properties play key roles in the whole theory of analysis asso-
ciated with non-doubling measures. Using these coefficients, Tolsa in [17, 18]
further found suitable variants of dyadic cubes, which are now called cubes
of generations. These cubes of generations are the basis of the construction
on approximations of the identity of Tolsa in [17]. Another novelty of this
paper is that we introduce a quantity, which further clarifies the geometric
relations between general cubes and “dyadic” cubes of Tolsa in [17, 18]; see
Lemma 2.2 below. These properties together with the known properties of
“dyadic” cubes (see, for example, Lemma 3.4 and Lemma 4.2 in [17]) are
key tools used in this paper.

The organization of this paper is as follows. In Section 2, we recall some
necessary definitions and notation, including the definitions of the spaces
H1, p

atb (µ), RBMO (µ), RBLO (µ), approximations of the identity and the in-
homogeneous Littlewood-Paley g-function. We also remark that the space
RBLO (µ) used in this paper is a slight variant of the corresponding one
in [7]. Section 3 is divided into two parts. In Section 3.1, we introduce
the spaces rbmo (µ) and h1, p

atb(µ) with p ∈ (1,∞], and obtain some basic
properties of these spaces, including the John-Nirenberg inequality, the du-
ality between rbmo (µ) and h1, p

atb(µ), and the relations between H1, p
atb (µ) and

h1, p
atb(µ) and between RBMO (µ) and rbmo (µ). In Section 3.2, we first es-

tablish some useful properties for RBLO (µ) and improve Theorem 2 and
Theorem 3 of [7] on the characterization of RBLO (µ) in terms of the natural
maximal function by removing the assumption on the regularity condition
there, and we then introduce the space rblo (µ) and establish the relation
between RBLO (µ) and rblo (µ). Moreover, similar to the result in [7], we
also obtain a characterization of rblo (µ) by a local maximal operator. In
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Section 4, applying the results in Section 3, we establish the boundedness
of the Littlewood-Paley g-function g(f) from h1, p

atb(µ) to L1(µ), and prove
that if f ∈ rbmo (µ), then [g(f)]2 belongs to rblo (µ) with norm no more
than C‖f‖2

rbmo (µ), where C is a positive constant independent of f . As a
corollary, we also obtain the boundedness of the Littlewood-Paley g-function
g(f) from rbmo (µ) to rblo (µ).

We finally make some convention. Throughout the paper, we always
denote by C a positive constant which is independent of main parameters,
but it may vary from line to line. Constant with subscript such as C1, does
not change in different occurrences. The notation Y � Z means that there
exists a positive constant C such that Y ≤ CZ, while Y � Z means that
there exists a positive constant C such that Y ≥ CZ. The symbol A ∼ B
means that A � B � A. For p ∈ (1,∞), denote by p′ the conjugate index
of p, namely, 1

p
+ 1

p′ = 1. Moreover, for any D ⊂ Rd, we denote by χ
D

the

characteristic function of D. We also set N := {1, 2, . . . } and Z+ := N∪{0}.

2. Preliminaries

Throughout this paper, by a cube Q ⊂ Rd, we mean a closed cube whose
sides are parallel to the axes and centered at some point of supp (µ), and we
denote its side length by l(Q) and its center by xQ. If µ(Rd) < ∞, we also
regard Rd as a cube. Let α, β be two positive constants, α ∈ (1,∞) and
β ∈ (αn,∞). We say that a cube Q is an (α, β)-doubling cube if it satisfies
µ(αQ) ≤ βµ(Q), where and in what follows, given λ > 0 and any cube Q,
λQ denotes the cube concentric with Q and having side length λl(Q). It was
pointed out by Tolsa (see [16, pp. 95-96] or [17, Remark 3.1]) that if β > αn,
then for any x ∈ supp (µ) and any R > 0, there exists some (α, β)-doubling
cube Q centered at x with l(Q) ≥ R, and that if β > αd, then for µ-almost
everywhere x ∈ Rd, there exists a sequence of (α, β)-doubling cubes {Qk}k∈N

centered at x with l(Qk) → 0 as k → ∞. Let ρ ∈ (1,∞). Throughout this

paper, we always take βρ := ρd+1. For any cube Q, let Q̃ρ be the smallest
(ρ, βρ)-doubling cube which has the form ρkQ with k ∈ N ∪ {0}. If ρ = 2,

we denote the cube Q̃ρ simply by Q̃. Moreover, by a doubling cube Q, we
always mean a (2, 2d+1)-doubling cube.

Given two cubes Q, R ⊂ Rd, let QR be the smallest cube concentric
with Q containing Q and R. The following coefficients were first introduced
by Tolsa in [16]; see also [17, 18].

Definition 2.1. Given two cubes Q, R ⊂ Rd, we define

δ(Q, R) := max

{∫
QR\Q

1

|x − xQ|n dµ(x),

∫
RQ\R

1

|x − xR|n dµ(x)

}
.
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We may treat points x ∈ Rd as if they were cubes (with side length
l(x) = 0). So, for any x, y ∈ Rd and cube Q ⊂ Rd, the symbols δ(x, Q) and
δ(x, y) make sense.

The following useful properties of δ(·, ·), which were proved by Tolsa
in [18, pp. 320-321] (see also [17, Lemma 3.1]), play important roles in the
whole paper.

Lemma 2.1. There exists a positive constant C, which only depends on C0,
n, d and ρ, such that the following properties hold:

(a) If l(Q) ∼ l(R) and dist (Q, R) ≤ Cl(Q), then δ(Q, R) ≤ C. Moreover,
δ(Q, ηQ) ≤ C02

nηn for any η ∈ (1,∞).

(b) Let ρ ∈ (1,∞) and Q ⊂ R be concentric cubes such that there exist
no (ρ, βρ)-doubling cubes of the form ρkQ, k ≥ 0, with Q ⊂ ρkQ ⊂ R.
Then δ(Q, R) ≤ C.

(c) If Q ⊂ R, then δ(Q, R) ≤ C[1 + log l(R)
l(Q)

].

(d) There exists an ε0 > 0 such that if P ⊂ Q ⊂ R, then

δ(P, R) = δ(P, Q) + δ(Q, R) ± ε0.

In particular, δ(P, Q) ≤ δ(P, R) + ε0 and δ(Q, R) ≤ δ(P, R) + ε0.
Moreover, if P and Q are concentric, then ε0 = 0.

(e) For any P , Q, R ⊂ Rd, δ(P, R) ≤ C + δ(P, Q) + δ(Q, R).

We now recall the notion of cubes of generations in [17, 18].

Definition 2.2. We say that x ∈ Rd is a stopping point (or stopping cube)
if δ(x, Q) < ∞ for some cube Q 
 x with 0 < l(Q) < ∞. We say that Rd is
an initial cube if δ(Q, Rd) < ∞ for some cube Q with 0 < l(Q) < ∞. The
cubes Q such that 0 < l(Q) < ∞ are called transit cubes.

Remark 2.1. In [17, p. 67], it was pointed out that if δ(x, Q) < ∞ for
some transit cube Q containing x, then δ(x, Q′) < ∞ for any other transit
cube Q′ containing x. Also, if δ(Q, Rd) < ∞ for some transit cube Q, then
δ(Q′, Rd) < ∞ for any transit cube Q′.

Let A be some big positive constant. In particular, as in [17, 18], we
assume that A is much bigger than the constants ε0, ε1 and γ0, which appear,
respectively, in Lemma 3.1, Lemma 3.2 and Lemma 3.3 of [17]. Moreover,
the constants A, ε0, ε1 and γ0 depend only on C0, n, d and ρ. In what
follows, for ε > 0 and a, b ∈ R, the notation a = b ± ε does not mean any
precise equality but the estimate |a − b| ≤ ε.
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Definition 2.3. Assume that Rd is not an initial cube. Let ρ ∈ (1,∞)
and βρ := ρd+1. We fix some (ρ, βρ)-doubling cube R0 ⊂ Rd. This will
be our ‘reference’ cube. For each j ∈ N, let R−j be some (ρ, βρ)-doubling
cube concentric with R0, containing R0, and such that δ(R0, R−j) = jA± ε1

(which exists because of [17, Lemma 3.3]). If Q is a transit cube, we say that
Q is a cube of generation k ∈ Z if it is a (ρ, βρ)-doubling cube, and for some
cube R−j containing Q we have δ(Q, R−j) = (j + k)A ± ε1. If Q ≡ {x} is a
stopping cube, we say that Q is a cube of generation k ∈ Z if for some cube
R−j containing x we have δ(Q, R−j) ≤ (j + k)A + ε1.

We remark that the definition of cubes of generations is proved in [17,
p. 68] to be independent of the chosen reference cubes {R−j}j∈Z+ in the sense
modulo some small errors.

Definition 2.4. Assume that Rd is an initial cube. Let ρ ∈ (1,∞) and
βρ := ρd+1. Then we choose Rd as our ‘reference’ cube: If Q is a transit
cube, we say that Q is a cube of generation k ≥ 1, if Q is (ρ, βρ)-doubling
and δ(Q, Rd) = kA ± ε1. If Q ≡ {x} is a stopping cube, we say that Q is a
cube of generation k ≥ 1 if δ(x, Rd) ≤ kA + ε1. Moreover, for all k ≤ 0, we
say that Rd is a cube of generation k.

In what follows, we also regard that Rd is a cube centered at all the
points x ∈ supp (µ). Using [17, Lemma 3.2], it is easy to verify that for any
x ∈ supp (µ) and k ∈ Z, there exists a (ρ, βρ)-doubling cube of generation k
centered at x; see [17, p. 68]. Throughout this paper, for any x ∈ supp (µ)
and k ∈ Z, we denote by Qx, k a fixed (ρ, βρ)-doubling cube centered at x of
generation k. By [27, Proposition 2.1] and Definition 2.4, it follows that for
any x ∈ supp (µ), l(Qx, k) → ∞ as k → −∞.

Remark 2.2. We should point out that when Rd is an initial cube, cubes of
generations in [17] were not assumed to be doubling. However, by using [17,
Lemma 3.2], it is easy to check that doubling cubes of generations exist even
in this case. Moreover, it is not so difficult to verify that (2, 2d+1)-doubling
cubes in [17] can be replaced by (ρ, βρ)-doubling cubes, where ρ ∈ (1,∞) and
βρ = ρd+1.

In [17], Tolsa constructed an approximation of the identity S :={Sk}∞k=−∞
related to (2, 2d+1)-doubling cubes {Qx, k}x∈Rd, k∈Z, which are integral opera-
tors given by kernels Sk(x, y) on Rd ×Rd satisfying the following properties:

(A-1) Sk(x, y) = Sk(y, x) for all x, y ∈ Rd;

(A-2) For any k ∈ Z and any x ∈ supp (µ), if Qx, k is a transit cube, then∫
Rd

Sk(x, y) dµ(y) = 1;
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(A-3) If Qx, k is a transit cube, then supp (Sk(x, ·)) ⊂ Qx, k−1;

(A-4) If Qx, k and Qy, k are transit cubes, then there exists a positive con-
stant C such that

(2.1) 0 ≤ Sk(x, y) ≤ C

[l(Qx, k) + l(Qy, k) + |x − y|]n ;

(A-5) If Qx, k, Qx′, k and Qy, k are transit cubes, and x, x′ ∈ Qx0, k for some
x0 ∈ supp (µ), then there exists a positive constant C such that

(2.2) |Sk(x, y)−Sk(x
′, y)| ≤ C

|x − x′|
l(Qx0, k)

1

[l(Qx, k) + l(Qy, k) + |x − y|]n .

Moreover, Tolsa also pointed out that (A-1) through (A-5) also hold if any of
Qx, k, Qx′, k and Qy, k is a stopping cube, and that (A-1), (A-3) through (A-5)
also hold if any of Qx, k, Qx′, k and Qy, k coincides with Rd, except that (A-2)
is replaced by (A-2)’: if Qx, k = Rd for some x ∈ supp (µ), then Sk := 0.
In what follows, without loss of generality, for any x ∈ supp (µ), we always
assume that Qx, k is not a stopping cube, since the proofs for stopping cubes
are similar. Moreover, in what follows, when we mention the approximation
of the identity S, we always mean that they are associated with (2, 2d+1)-
doubling cubes.

For k ∈ Z, let Dk := Sk−Sk−1. We also use Dk to denote the correspond-
ing integral operator with kernel Dk. The inhomogeneous Littlewood-Paley
g-function g(f) is defined by

g(f)(x) :=

[
|S1(f)(x)|2 +

∞∑
k=2

|Dk(f)(x)|2
]1/2

.

We next recall the notions of the spaces H1(µ) and RBMO (µ) in [16]
and the space RBLO (µ) in [7].

Definition 2.5. Given f ∈ L1
loc (µ), we set

MΦ(f)(x) := sup
ϕ∼x

∣∣∣∣∫
Rd

fϕ dµ

∣∣∣∣ ,
where the notation ϕ ∼ x means that ϕ ∈ L1(µ) ∩ C1(Rd) and satisfies

(i) ‖ϕ‖L1(µ) ≤ 1,

(ii) 0 ≤ ϕ(y) ≤ 1
|y−x|n for all y ∈ Rd, and
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(iii) |∇ϕ(y)| ≤ 1
|y−x|n+1 for all y ∈ Rd, where ∇ = ( ∂

∂x1
, . . . , ∂

∂xd
).

Definition 2.6. The Hardy space H1(µ) is the set of all functions f ∈ L1(µ)
satisfying that

∫
Rd f dµ = 0 and MΦ(f) ∈ L1(µ). Moreover, we define the

norm of f ∈ H1(µ) by

‖f‖H1(µ) := ‖f‖L1(µ) + ‖MΦ(f)‖L1(µ).

On the Hardy space, Tolsa established the following atomic characteri-
zation (see [16, 18]).

Definition 2.7. Let η ∈ (1,∞) and p ∈ (1,∞]. A function b ∈ L1
loc (µ) is

called a p-atomic block if

(i) there exists some cube R such that supp (b) ⊂ R,

(ii)
∫

Rd b(x) dµ(x) = 0,

(iii) for j = 1, 2, there exist functions aj supported on cubes Qj ⊂ R and
numbers λj ∈ R such that b = λ1a1 + λ2a2, and

(2.3) ‖aj‖Lp(µ) ≤ [µ(ηQj)]
1/p−1[1 + δ(Qj , R)]−1.

Then we define |b|H1, p
atb (µ) := |λ1| + |λ2|.

A function f ∈ L1(µ) is said to belong to the space H1, p
atb (µ) if there exist

p-atomic blocks {bi}i∈N such that f =
∑∞

i=1 bi with
∑∞

i=1 |bi|H1, p
atb (µ) < ∞.

The H1, p
atb (µ) norm of f is defined by

‖f‖H1, p
atb (µ) := inf

{ ∞∑
i=1

|bi|H1, p
atb (µ)

}
,

where the infimum is taken over all the possible decompositions of f in p-
atomic blocks as above.

Remark 2.3. It was proved in [16, 18] that the definition of H1, p
atb (µ) in [16]

is independent of the chosen constant η ∈ (1,∞), and for any p ∈ (1,∞),
all the atomic Hardy spaces H1, p

atb (µ) coincide with H1,∞
atb (µ) with equivalent

norms. Moreover, Tolsa proved that H1,∞
atb (µ) coincides with H1(µ) with

equivalent norms (see [18, Theorem 1.2]). Thus, in the rest of this paper, we
identify the atomic Hardy space H1, p

atb (µ) with H1(µ), and when we use the
atomic characterization of H1(µ), we always assume η = 2 and p = ∞ in
Definition 2.7.
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Definition 2.8. Let η, ρ ∈ (1,∞) and βρ := ρd+1. A function f ∈ L1
loc (µ)

is said to be in the space RBMO (µ) if there exists some constant C̃ ≥ 0
such that for any cube Q centered at some point of supp (µ),

1

µ(ηQ)

∫
Q

∣∣∣f(y) − m
�Qρ(f)

∣∣∣ dµ(y) ≤ C̃,

and for any two (ρ, βρ)-doubling cubes Q ⊂ R,

|mQ(f) − mR(f)| ≤ C̃[1 + δ(Q, R)],

where mQ(f) denotes the mean of f over cube Q, namely,

mQ(f) :=
1

µ(Q)

∫
Q

f(y) dµ(y).

Moreover, we define the RBMO (µ) norm of f to be the minimal constant C̃
as above and denote it by ‖f‖RBMO(µ).

Remark 2.4. It was proved by Tolsa in [16] that the definition of RBMO (µ)
is independent of the choices of η and ρ. As a result, unless explicitly pointed
out, in what follows, when we mention RBMO (µ) we always take ρ = η = 2
in Definition 2.8.

The following space RBLO (µ) is a slight variant of the corresponding
space introduced by Jiang in [7]. In fact, we will show that they both
coincide with equivalent norms (see Proposition 3.10 below). It is obvious
that L∞(µ) ⊂ RBLO(µ).

Definition 2.9. Let η, ρ ∈ (1,∞) and βρ := ρd+1. A function f ∈ L1
loc (µ)

is said to belong to the space RBLO (µ) if there exists some constant C̃ ≥ 0
such that for any cube Q centered at some point of supp (µ),

(2.4)
1

µ(ηQ)

∫
Q

[
f(x) − essinf

�Qρ

f
]
dµ(x) ≤ C̃,

and for any two (ρ, βρ)-doubling cubes Q ⊂ R,

(2.5) essinf
Q

f − essinf
R

f ≤ C̃[1 + δ(Q, R)].

The minimal constant C̃ as above is defined to be the norm of f in the space
RBLO(µ) and denoted by ‖f‖RBLO(µ).
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Remark 2.5. (i) In [7], the space RBLO (µ) was defined in the following
way, namely, a function f ∈ L1

loc (µ) is said to belong to the space RBLO (µ)

if there exists a nonnegative constant C̃ such that for any (4
√

d, (4
√

d)n+1)-
doubling cube Q,

1

µ(Q)

∫
Q

[
f(x) − essinf

Q
f
]
dµ(x) ≤ C̃,

and for any (4
√

d, (4
√

d)n+1)-doubling cubes Q ⊂ R,

mQ(f) − mR(f) ≤ C̃[1 + δ(Q, R)].

The minimal constant C̃ as above is defined to be the norm of f in the space
RBLO(µ).

(ii) Due to the observation of Tolsa on the existence of small (ρ, ρd+1)-
doubling cubes, where ρ > 1, it seems that it is convenient in applications
to replace (4

√
d, (4

√
d)n+1)-doubling cubes by (ρ, ρd+1)-doubling cubes in the

definition of RBLO (µ) in (i). Moreover, Definition 2.9 is convenient in
proving that the definition of the space RBLO (µ) is independent of the choice
of the constants η, ρ ∈ (1,∞); see Proposition 3.8 and Proposition 3.9 below.

To introduce our local spaces, a new idea is to introduce a special set of
cubes via the coefficients of Tolsa in [16, 17], which is a key point. To be
precise, in the case that Rd is not an initial cube, letting {R−j}j∈Z+ be the
cubes as in Definition 2.3, we then define the set

D :=
{
Q ⊂ Rd : there exists a cube P ⊂ Q and j ∈ Z+ such that

P ⊂ R−j with δ(P, R−j) ≤ (j + 1)A + ε1

}
.

If Rd is an initial cube, we define the set

D :=
{
Q ⊂ Rd : there exists a cube P ⊂ Q such that δ(P, Rd) ≤ A + ε1

}
.

It is easy to see that if Q ∈ D, then any R containing Q is also in D and the
definition of the set D is independent of the chosen reference cubes {R−j}j∈Z+

in the sense modulo some small error (the error is no more than 2ε1 + ε0);
see also [17, p. 68]. Moreover, the following observation implies that in the
case that µ is the d-dimensional Lebesgue measure on Rd, then for any cube
Q ⊂ Rd, Q ∈ D if and only if l(Q) � 1. Based on this observation, we can
think that our local spaces are the local spaces in the spirit of Goldberg [4].

Proposition 2.1. Let µ be the d-dimensional Lebesgue measure on Rd.
Then for any cube Q ⊂ Rd, Q ∈ D if and only if l(Q) ≥ a0, where a0

is a positive constant independent of Q.
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Proof. In this case, we choose {R−j}j∈Z+ as the cubes centered at the
origin with side length 2j. We first see the sufficiency. For any cube Q with
l(Q) ≥ a0, it is easy to see that there exists a nonnegative constant C̃, which
depends only on d, and j ∈ Z+ such that Q ⊂ R−j and

δ(Q, R−j) ≤
∫

B(xQ,
√

dl(R−j))\B(xQ ,
a0
2

)

1

|x − xQ|d dx ≤ (j + 1)A,

where A ≥ C̃ log(2
√

dmax(1/a0, 1)). Thus Q ∈ D.
Conversely, if Q ∈ D, then there exists a cube Q′ ⊂ Q and j ∈ Z+ such

that Q′ ⊂ R−j and δ(Q′, R−j) ≤ (j +1)A+ ε1. To finish the proof, it suffices
to verify that l(Q′) � 1. Moreover, we only need to consider the case that
l(Q′) < (

√
d)−1. Let ωd−1 be the (d − 1)-dimensional Lebesgue measure of

the unit sphere in Rd. By Definition 2.1, we have

δ(Q′, R−j) =

∫
Q′

R−j
\Q′

1

|x − xQ′ |ddx.

From this and the fact that

{x ∈ Rd :
√

dl(Q′)/2 ≤ |x − xQ′| ≤ l(R−j)/2} ⊂ (Q′
R−j

\ Q′),

it follows that

δ(Q′, R−j) ≥ ωd−1

∫ l(R−j)

2

√
dl(Q′)

2

1

r
dr = ωd−1 log

(
l(R−j)√
dl(Q′)

)
,

which implies that

(2.6) l(R−j) � 2δ(Q′, R−j)/ωd−1l(Q′) � 2(jA)/ωd−1l(Q′).

On the other hand, since l(R0) = 1,

δ(R0, R−j) =

∫
R−j\R0

1

|x|d dx

≤ ωd−1

∫ √
dl(R−j)

1
2

1

r
dr = ωd−1 log

(
2
√

dl(R−j)
)

,

which together with Definition 2.3 yields that

(2.7) l(R−j) � 2δ(R0, R−j)/ωd−1 � 2(jA)/ωd−1 .

Combining (2.6) and (2.7) implies that l(Q′) � 1, which completes the proof
of Proposition 2.1. �
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In what follows, for any cube R and x ∈ R ∩ supp (µ), let Hx
R be the

largest integer k such that R ⊂ Qx, k. The following properties on Hx
R are

useful in applications.

Lemma 2.2. The following properties hold:

(a) For any cube R and x ∈ R ∩ supp (µ), Qx, Hx
R+1 ⊂ 3R and 5R ⊂

Qx, Hx
R−1.

(b) For any cube R, x ∈ R ∩ supp (µ) and k ∈ Z with k ≥ Hx
R + 2,

Qx, k ⊂ 7
5
R.

(c) For any cube R ⊂ Rd and x, y ∈ R ∩ supp (µ), |Hx
R − Hy

R| ≤ 1.

(d) For any cube R and x ∈ R∩ supp (µ), Hx
R ≥ 0 when R /∈ D. Moreover,

if R ∈ D, then Hx
R ≤ 1 when Rd is not an initial cube, and 0 ≤ Hx

R ≤ 1
when Rd is an initial cube.

(e) When k ≥ 2, for any x ∈ supp (µ), Qx, k /∈ D.

(f) For any cube R /∈ D and x ∈ R∩ supp (µ), if any cube R′ ⊂ Qx, Hx
R+2,

then R′ /∈ D.

(g) For any cube R and x ∈ R∩ supp (µ), there exists a positive constant C
such that δ(R, Qx,Hx

R
) ≤ C and δ(Qx,Hx

R+1, R) ≤ C.

Proof. We first verify (a). For any x ∈ R ∩ supp (µ), by the definition
of Hx

R together with the decreasing property of Qx, k in k, we know that
R ⊂ Qx, Hx

R
and R �⊂ Qx, Hx

R+1, which imply that l(R) ≤ l(Qx, Hx
R
) and

l(Qx, Hx
R+1) ≤ 2l(R). These facts together with the fact that l(Qx, Hx

R
) ≤

1
10

l(Qx, Hx
R−1) (see [17, p. 69]) imply (a).

To see (b), for any x ∈ R ∩ supp (µ), by the fact that l(Qx, Hx
R+2) ≤

1
10

l(Qx, Hx
R+1) (see [17, p. 69]) together with the fact that l(Qx, Hx

R+1) ≤ 2l(R),
we have l(Qx, Hx

R+2) ≤ 1
5
l(R). Thus, Qx, Hx

R+2 ⊂ 7
5
R, which together with the

decreasing property of Qx, k in k again verifies (b).

For any R ⊂ Rd and x, y ∈ R ∩ supp (µ), it is clear that y ∈ Qx, Hx
R
∩

Qy, Hx
R
. Then Lemma 4.2 in [17] together with the definition of Hx

R implies
that R ⊂ Qx, Hx

R
⊂ Qy, Hx

R−1. This shows that Hy
R ≥ Hx

R − 1. Symmetrically,
we have Hy

R ≤ Hx
R + 1, which verifies (c).

We now verify (d). Assume that R /∈ D. By similarity, we only consider
the case that Rd is not an initial cube. Recall that

σ := 100ε0 + 100ε1 + (12)n+1C0

(see [17, p. 69]).
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Then by Lemma 2.1 (a), we see that for any cube Q, δ(Q, 3Q) ≤ 6nC0 <
σ � A (see also [17, p. 69]). Now assume that 3R ⊂ R−j for some j ∈ Z+.
If R /∈ D, by the conclusion of (a) and Lemma 2.1 (d), we have that

(j + 1)A + ε1 < δ(R, R−j) = δ(R, 3R) + δ(3R, R−j)

< σ + δ(Qx, Hx
R+1, R−j) + ε0

= σ + (Hx
R + 1 + j)A ± 4ε1 + ε0.

This estimate together with the fact that ε0 ≤ ε1 � σ � A implies that
Hx

R ≥ 0.

If Rd is not an initial cube and R ∈ D, by the definitions of D and
cubes of generations, there exists a cube Q′ ⊂ R and j1, j2 ∈ Z+ such
that Q′ ⊂ R−j1 with δ(Q′, R−j1) ≤ (j1 + 1)A + ε1 and Qx, Hx

R
⊂ R−j2 with

δ(Qx, Hx
R
, R−j2) = (j2 + Hx

R)A ± ε1. Let j := max(j1, j2). By Lemma 2.1, we
have δ(Qx, Hx

R
, R−j) = (j + Hx

R)A ± 4ε1. Lemma 2.1 (d) together with the
definition of Q ∈ D and the fact that ε0 ≤ ε1 (see [17, p. 67]) implies that
δ(Qx, Hx

R
, R−j) ≤ (j + 1)A + 4ε1. On the other hand, if Hx

R ≥ 2, then by the
fact that ε1 � A,

δ(Qx, Hx
R
, R−j) = (j + Hx

R)A ± 4ε1 > (j + 1)A + 4ε1.

This is a contradiction, which verifies that Hx
R ≤ 1 when R ∈ D.

Similarly, if Rd is an initial cube, then for any cube R ∈ D and x ∈
R ∩ supp (µ), we also have that Hx

R ≤ 1. On the other hand, recall that if
Rd is an initial cube, then for any cube R, x ∈ supp (µ) and k ∈ Z with
k ≤ 0, Qx, k = Rd. Therefore, obviously, Hx

R ≥ 0, which verify (d).

To see (e), by similarity, we only consider the case that Rd is an initial
cube. Assume that Qx, k ∈ D. By the definition, there exists a cube Q ⊂
Qx, k such that δ(Q, Rd) ≤ A + ε1. By Lemma 2.1 (d), we then have

A + ε1 ≥ δ(Q, Rd) = δ(Q, Qx, k) + δ(Qx, k, Rd) ± ε0 ≥ kA − ε1 − ε0,

which is impossible when k ≥ 2, since A � ε1 ≥ ε0. Thus, Qx, k /∈ D, which
completes the proof of (e).

To prove (f), we only consider the case that Rd is not an initial cube,
since the argument for the case that Rd is an initial cube is similar. If any
cube R′ ∈ D, by the definition of D, there exists a cube R′′ ⊂ R′ and j1 ∈ Z+

such that R′′ ⊂ R−j1 and δ(R′′, R−j1) ≤ (j1 + 1)A + ε1. By Definition 2.3,
there exists an j2 ∈ Z+ such that Qx, Hx

R+2 ⊂ R−j2 and

δ(Qx, Hx
R+2, R−j2) ≤ (j2 + 1)A + ε1.



608 G. Hu, D. Yang and D. Yang

Let j := max{j1, j2}. By the assumption that R′ ⊂ Qx, Hx
R+2, we also have

that R′′ ⊂ Qx, Hx
R+2, which combining with Lemma 2.1 (d) implies that

(j + 1)A + 3ε1 + 2ε0 ≥ δ(R′′, R−j) + ε0 ≥ δ(Qx, Hx
R+2, R−j)

= (Hx
R + 2 + j)A ± 2ε1 ± ε0,

where we used the fact that

δ(R−j , R−ji
) = (j − ji)A ± 2ε1.

This together with the choice of the constant A shows that Hx
R < 0, which

contradicts to (d). Thus, R′ /∈ D, which completes the proof of (f).
Finally, by the properties (a) and (b) above and Lemma 2.1, we have

δ(2R, Qx, Hx
R−1) ≤ ε0 + δ(Qx, Hx

R+2, Qx, Hx
R−1) � 1,

and hence,

δ(R, Qx, Hx
R
) ≤ ε0 + δ(R, Qx, Hx

R−1) � 1 + δ(R, 2R) + δ(2R, Qx, Hx
R−1) � 1.

Also, the above property (a) and Lemma 2.1 imply that

δ(Qx,Hx
R+1, R) � 1 + δ(Qx,Hx

R+1, 3R) + δ(3R, R)

� 1 + δ(Qx,Hx
R+1, Qx,Hx

R−1) � 1,

which verifies (g) and hence, completes the proof of Lemma 2.2. �

3. The spaces rbmo (µ), rblo (µ) and h1, p
atb(µ) with p ∈ (1,∞]

In Section 3.1, we introduce a local atomic Hardy space h1, p
atb(µ) and a local

BMO-type space rbmo (µ). After presenting some basic properties of these
spaces, we then prove that the space rbmo (µ) satisfies a John-Nirenberg
inequality and its predual is h1,∞

atb (µ). Moreover, we also establish the rela-
tion between H1,∞

atb (µ) and h1,∞
atb (µ) and between RBMO (µ) and rbmo (µ).

In Section 3.2, we introduce a local BLO-type space rblo (µ) and establish
some characterizations of both RBLO (µ) and rblo (µ). In particular, the
relation between RBLO (µ) and rblo (µ) is presented.

3.1. The spaces rbmo (µ) and h1, p
atb(µ) for p ∈ (1,∞]

We begin with the definition of rbmo (µ).
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Definition 3.1. Let η ∈ (1,∞), ρ ∈ [η,∞) and βρ := ρd+1. A function f ∈
L1

loc (µ) is said to be in the space rbmoη, ρ (µ), if there exists a nonnegative

constant C̃ such that for any cube Q /∈ D,

1

µ(ηQ)

∫
Q

∣∣∣f(y) − m
�Qρ(f)

∣∣∣ dµ(y) ≤ C̃,

that for any two (ρ, βρ)-doubling cubes Q ⊂ R with Q /∈ D,

|mQ(f) − mR(f)| ≤ C̃[1 + δ(Q, R)],

and that for any cube Q ∈ D,

(3.1)
1

µ(ηQ)

∫
Q

|f(y)| dµ(y) ≤ C̃.

Moreover, we define the rbmoη, ρ (µ) norm of f by the minimal constant C̃
as above and denote it by ‖f‖rbmoη, ρ (µ).

It follows from Definition 2.8 that for any fixed η ∈ (1,∞) and any
ρ ∈ [η,∞), rbmoη, ρ (µ) ⊂ RBMO(µ). Moreover, from the propositions be-
low, we will see that the space rbmoη, ρ (µ) enjoys properties similar to the
space RBMO (µ), including that the definition of the space rbmoη, ρ (µ) is
independent of η ∈ (1,∞) and ρ ∈ [η,∞). First of all, we have the basic
properties, whose proofs are left to the reader.

Proposition 3.1. Let η ∈ (1,∞) and ρ ∈ [η,∞). The following proper-
ties hold:

(i) rbmoη, ρ (µ) is a Banach space.

(ii) L∞(µ) ⊂ rbmoη, ρ (µ) ⊂ RBMO (µ). Moreover, for all f ∈ L∞(µ),
‖f‖rbmoη, ρ (µ) ≤ 2‖f‖L∞(µ), and there exists a positive constant C such
that for all f ∈ rbmoη, ρ (µ),

‖f‖RBMO(µ) ≤ C‖f‖rbmoη, ρ (µ).

(iii) If f ∈ rbmoη, ρ (µ), then |f | ∈ rbmoη, ρ (µ) and there exists a positive
constant C such that for all f ∈ rbmoη, ρ (µ),

‖|f |‖rbmoη, ρ (µ) ≤ C‖f‖rbmoη, ρ (µ).

(iv) If f, g ∈ rbmoη, ρ (µ), then min(f, g), max(f, g) ∈ rbmoη, ρ (µ), and
there exists a positive constant C such that for all f, g ∈ rbmoη, ρ (µ),

‖min(f, g)‖rbmoη, ρ (µ) ≤ C(‖f‖rbmoη, ρ (µ) + ‖g‖rbmoη, ρ (µ))

and

‖max(f, g)‖rbmoη, ρ (µ) ≤ C(‖f‖rbmoη, ρ (µ) + ‖g‖rbmoη, ρ (µ)).
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We now introduce another equivalent norm for the space rbmoη, ρ (µ). Let
η ∈ (1,∞). Suppose that for a given f ∈ L1

loc (µ), there exist a nonnegative

constant C̃ and a collection of numbers {fQ}Q such that

(3.2) sup
Q/∈D

1

µ(ηQ)

∫
Q

|f(y)− fQ| dµ(y) ≤ C̃,

that for any two cubes Q ⊂ R with Q /∈ D,

(3.3) |fQ − fR| ≤ C̃[1 + δ(Q, R)],

and that for any cube Q ∈ D,

(3.4) |fQ| ≤ C̃.

We then define the norm ‖f‖∗, η := inf{C̃}, where the infimum is taken

over all the constants C̃ as above and all the numbers {fQ}Q satisfying (3.2)
through (3.4).

With a minor modification of the proof for Lemma 2.6 in [16], we have
the following conclusion.

Proposition 3.2. The norms ‖ · ‖∗, η for η ∈ (1,∞) are equivalent.

Proof. Let η1 > η2 > 1 be fixed. Obviously, ‖f‖∗, η1 ≤ ‖f‖∗, η2 . To prove
the converse, we need to show that for a fixed collection of numbers {fQ}Q

satisfying (3.2) through (3.4) with η and C̃ respectively replaced by η1 and
‖f‖∗, η1 , we have that for any Q /∈ D,

1

µ(η2Q)

∫
Q

|f(y)− fQ| dµ(y) � ‖f‖∗, η1 .

Fix ρ ∈ [η1,∞) and βρ = ρd+1. For any cube Q /∈ D and any x ∈
supp (µ) ∩ Q, we choose Q′

x, 2 as follows. If l(Qx, Hx
Q+2) ≤ η2−1

10η1
l(Q), we then

let Q′
x, 2 = Qx, Hx

Q+2. Otherwise, let k0 be the maximal negative integer such

that ρk0l(Qx, Hx
Q+2) ≤ η2−1

10η1
l(Q) and we then let Q′

x, 2 be the biggest (ρ, βρ)-

doubling cube centered at x with side length ρkl(Qx, Hx
Q+2) with k ≤ k0. By

Lemma 2.1, we have δ(Q′
x, 2, Qx, Hx

Q+2) � 1. From Lemma 2.2 (d), (e) and

(f), it follows that Q′
x, 2 /∈ D. By the Besicovitch covering theorem, there

exists a subsequence of cubes {Q′
xi, 2

}i which still covers Q ∩ supp (µ) and
has a bounded overlap. For any i, by Lemma 2.2 (g) and Q /∈ D, we have

|fQ′
xi, 2

− fQ| ≤ |fQ′
xi, 2

− fQ
xi, H

xi
Q

| + |fQ − fQ
xi, H

xi
Q

|
� [1 + δ(Q′

xi, 2
, Qxi, H

xi
Q

) + δ(Q, Qxi, H
xi
Q

)]‖f‖∗, η1 � ‖f‖∗, η1 .
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From this estimate together with the facts that for each i, Q′
xi, 2

/∈ D and
Qxi, 2 is (ρ, βρ)-doubling and that ρ ≥ η1, we see that∫

Q′
xi, 2

|f(x) − fQ| dµ(x) ≤
∫

Q′
xi, 2

|f(x) − fQ′
xi, 2

| dµ(x) + µ(Q′
xi, 2

)|fQ′
xi, 2

− fQ|

� µ(Q′
xi, 2

)‖f‖∗, η1 .

Therefore, from the facts that {Q′
xi, 2

}i are almost disjoint and that Q′
xi, 2

⊂
η2Q for all i, it follows that∫

Q

|f(x) − fQ| dµ(x) ≤
∑

i

∫
Q′

xi, 2

|f(x) − fQ| dµ(x) � µ(η2Q)‖f‖∗, η1 ,

which completes the proof of Proposition 3.2. �
Based on Proposition 3.2, from now on, we write ‖ · ‖∗ instead of ‖ · ‖∗, η.

Proposition 3.3. Let η ∈ (1,∞), ρ ∈ [η,∞) and βρ := ρd+1. Then the
norms ‖ · ‖∗ and ‖ · ‖rbmoη, ρ (µ) are equivalent.

Proof. Suppose that f ∈ L1
loc (µ). We first show that

(3.5) ‖f‖∗ � ‖f‖rbmoη, ρ (µ).

For any cube Q, let fQ := m
�Qρ(f) if Q̃ρ /∈ D, and otherwise, let fQ := 0.

For any Q /∈ D, if Q̃ρ /∈ D, by Definition 3.1, we have

1

µ(ηQ)

∫
Q

|f(y) − fQ| dµ(y) ≤ ‖f‖rbmoη, ρ (µ).

If Q̃ρ ∈ D, then fQ = 0. The (ρ, βρ)-doubling property of Q̃ρ together with
Definition 3.1 and the assumption that ρ ≥ η further yields that

1

µ(ηQ)

∫
Q

|f(y)− fQ| dµ(y)

≤ 1

µ(ηQ)

∫
Q

∣∣∣f(y) − m
�Qρ(f)

∣∣∣ dµ(y) +
µ(Q)

µ(ηQ)

∣∣∣m
�Qρ(f)

∣∣∣
� ‖f‖rbmoη, ρ (µ).

Notice that Q ⊂ Q̃ρ. If Q ∈ D, then Q̃ρ ∈ D and fQ = 0. Obviously,
|fQ| � ‖f‖rbmoη, ρ (µ). Therefore (3.5) is reduced to showing that for any two
cubes Q ⊂ R with Q /∈ D,

(3.6) |fQ − fR| � [1 + δ(Q, R)]‖f‖rbmoη, ρ (µ).
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To show (3.6), we first claim that for any f ∈ rbmoη, ρ (µ) and any cubes
Q ⊂ R,

(3.7)
∣∣∣m
�Qρ(f) − m

�Rρ(f)
∣∣∣ � [1 + δ(Q, R)]‖f‖rbmoη, ρ (µ).

If Q ∈ D, then Q̃ρ ∈ D and R̃ρ ∈ D. In this case, (3.7) follows directly from
Definition 3.1. If Q /∈ D, to verify (3.7), we consider two cases.

Case (i) l(R̃ρ) ≥ l(Q̃ρ). In this case, Q̃ρ ⊂ 2R̃ρ. Let R0 := 2̃R̃ρ. It

follows from Lemma 2.1 that δ(R̃ρ, R0) � 1 and δ(Q̃ρ, R0) � 1 + δ(Q, R).

Therefore if neither Q̃ρ nor R̃ρ are in D, then∣∣∣m
�Qρ(f) − m

�Rρ(f)
∣∣∣ ≤ ∣∣∣m

�Qρ(f) − mR0(f)
∣∣∣ +

∣∣mR0(f) − m
�Rρ(f)

∣∣
� [1 + δ(Q, R)]‖f‖rbmoη, ρ (µ).

If both Q̃ρ and R̃ρ are in D, then by ρ ≥ η and the (ρ, βρ)-doubling property

of Q̃ρ and R̃ρ,∣∣∣m
�Qρ(f) − m

�Rρ(f)
∣∣∣ ≤ ∣∣∣m

�Qρ(f)
∣∣∣ +

∣∣m
�Rρ(f)

∣∣ � ‖f‖rbmoη, ρ (µ).

Thus we only need to consider the case that only one of Q̃ρ and R̃ρ is in D.
By similarity, we may assume that Q̃ρ ∈ D while R̃ρ /∈ D. Since Q̃ρ ⊂ R0,
we then have R0 ∈ D and∣∣∣m

�Qρ(f) − m
�Rρ(f)

∣∣∣ ≤ ∣∣∣m
�Qρ(f)

∣∣∣ + |mR0(f)| + ∣∣mR0(f) − m
�Rρ(f)

∣∣
� ‖f‖rbmoη, ρ (µ).

Case (ii) l(R̃ρ) < l(Q̃ρ). In this case, R̃ρ ⊂ 2ρQ̃ρ. Notice that l(R̃ρ) ≥
l(Q). Thus, there exists a unique m ∈ N such that l(ρm−1Q) ≤ l(R̃ρ) <

l(ρmQ). Therefore, ρmQ ⊂ 2̃ρQ̃ρ. Set Q0 := 2̃ρQ̃ρ. Then another applica-

tion of Lemma 2.1 implies that δ(Q̃ρ, Q0) � 1 and

δ(R̃ρ, Q0) � 1 + δ(R̃ρ, ρmQ) + δ(ρmQ, Q0) � 1.

Therefore, an argument similar to Case (i) also establishes (3.7) in this case.
Thus, (3.7) always holds.

We now establish (3.6) by using (3.7) and considering the following three
cases.

Case (1) Q̃ρ, R̃ρ ∈ D or Q̃ρ, R̃ρ /∈ D. In this case, (3.6) follows directly
from (3.7).
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Case (2) Q̃ρ /∈ D and R̃ρ ∈ D. In this case, the estimate (3.7) together

with ρ ≥ η and the (ρ, βρ)-doubling property of R̃ρ yields that

|fQ − fR| ≤
∣∣∣m
�Qρ(f) − m

�Rρ(f)
∣∣∣ +

∣∣m
�Rρ(f)

∣∣ � [1 + δ(Q, R)]‖f‖rbmoη, ρ (µ).

Case (3) Q̃ρ ∈ D and R̃ρ /∈ D. In this case, an argument similar to
Case (2) also leads to that

|fQ − fR| ≤
∣∣∣m
�Qρ(f) − m

�Rρ(f)
∣∣∣ +

∣∣∣m
�Qρ(f)

∣∣∣ � [1 + δ(Q, R)]‖f‖rbmoη, ρ (µ).

Thus, (3.6) holds, and hence (3.5) is also true.

Now let us establish the converse of (3.5). For f ∈ L1
loc (µ), assume that

there exists a sequence of numbers {fQ}Q satisfying (3.2), (3.3) and (3.4)

with C̃ replaced by ‖f‖∗. First we claim that for any cube Q ∈ D,

(3.8)
1

µ(ηQ)

∫
Q

|f(x)| dµ(x) � ‖f‖∗.

For any cube Q and any x ∈ supp (µ) ∩ Q, let Q′
x, 2 be the biggest

(ρ, βρ)-doubling cube centered at x with side length ρkl(Qx, 2), k ≤ 0, and
l(Q′

x, 2) ≤ η−1
10η

l(Q) (For the existence of Q′
x, 2, see the proof of Proposi-

tion 3.2). From Lemma 2.1, it is easy to see that δ(Q′
x, 2, Qx, 2) � 1. By

Lemma 2.2 (e), we then have Q′
x, 2 /∈ D. Applying the Besicovitch covering

theorem, we obtain a subsequence of cubes {Q′
xi, 2

}i covering Q ∩ supp (µ)
with a bounded overlap. From the bounded overlap and (ρ, βρ)-doubling
property of {Q′

xi, 2
}i, (3.2), (3.4) and the facts that Q′

xi, 2
⊂ ηQ, Q′

xi, 2
/∈ D

and ρ ≥ η, it follows that

1

µ(ηQ)

∫
Q

|f(x)| dµ(x) ≤
∑

i

1

µ(ηQ)

∫
Q′

xi, 2

|f(x) − fQ′
xi, 2

| dµ(x)

+
∑

i

µ(Q′
xi, 2

)

µ(ηQ)

[
|fQ′

xi, 2
− fQxi, 1 | + |fQxi, 1|

]
�

∑
i

µ(Q′
xi, 2

)

µ(ηQ)

[
1 + δ(Q′

xi, 2
, Qxi, 1)

] ‖f‖∗ � ‖f‖∗.

We now claim that for any cube Q /∈ D,

(3.9)
1

µ(ηQ)

∫
Q

∣∣∣f(x) − m
�Qρ(f)

∣∣∣ dµ(x) � ‖f‖∗.
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Notice that if Q /∈ D and Q is (ρ, βρ)-doubling, then using the fact ρ ≥ η,
we have

(3.10) |fQ − mQ(f)| =

∣∣∣∣ 1

µ(Q)

∫
Q

[f(x) − fQ] dµ(x)

∣∣∣∣ ≤ µ(ηQ)

µ(Q)
‖f‖∗ � ‖f‖∗.

Therefore, for any cube Q /∈ D, if Q̃ρ /∈ D, then applying (3.3) and (3.10)
implies that∣∣∣fQ − m

�Qρ(f)
∣∣∣ ≤ ∣∣∣fQ − f

�Qρ

∣∣∣ +
∣∣∣f
�Qρ − m

�Qρ(f)
∣∣∣ � ‖f‖∗;

if Q̃ρ ∈ D, then from (3.3), (3.4), (3.8) and ρ ≥ η, it follows that∣∣∣fQ − m
�Qρ(f)

∣∣∣ ≤ ∣∣∣fQ − f
�Qρ

∣∣∣ +
∣∣∣f
�Qρ

∣∣∣ +
∣∣∣m
�Qρ(f)

∣∣∣ � ‖f‖∗.

From these estimates and (3.2), we deduce that for any cube Q /∈ D,∫
Q

∣∣∣f(x) − m
�Qρ(f)

∣∣∣ dµ(x) ≤
∫

Q

|f(x) − fQ| dµ(x) +
∣∣∣fQ − m

�Qρ(f)
∣∣∣µ(Q)

� ‖f‖∗µ(ηQ),

which verifies (3.9).

Finally, for any two (ρ, βρ)-doubling cubes Q ⊂ R with Q /∈ D, if R /∈ D,
(3.10) together with (3.3) yields that

|mQ(f) − mR(f)| ≤ |mQ(f) − fQ| + |fQ − fR| + |fR − mR(f)|
� [1 + δ(Q, R)]‖f‖∗.

If R ∈ D, (3.10) together with (3.3), (3.4), (3.8) and the (ρ, βρ)-doubling
property of R leads to that

|mQ(f) − mR(f)| ≤ |mQ(f) − fQ| + |fQ − fR| + |fR| + |mR(f)|
� [1 + δ(Q, R)]‖f‖∗.

Thus
f ∈ rbmoη, ρ (µ) and ‖f‖rbmoη, ρ (µ) � ‖f‖∗,

which completes the proof of Proposition 3.3. �

Remark 3.1. Let η ∈ (1,∞) and ρ ∈ [η,∞). From Proposition 3.2 and
Proposition 3.3, it follows that the definition of the space rbmoη, ρ (µ) is
independent of the choices of η and ρ. From now on, we will simply write
rbmo (µ) instead of rbmoη, ρ (µ) for any η and ρ as above.
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Proposition 3.4. Let η ∈ (1,∞), ρ ∈ [η,∞) and βρ := ρd+1. For any
f ∈ L1

loc (µ), the following are equivalent:

(i) f ∈ rbmoη, ρ (µ).

(ii) There exists a nonnegative constant Cb such that for any cube Q /∈ D,∫
Q

|f(x) − mQ(f)| dµ(x) ≤ Cbµ(ηQ),

that for any cubes Q ⊂ R with Q /∈ D,

(3.11) |mQ(f) − mR(f)| ≤ Cb[1 + δ(Q, R)]

[
µ(ηQ)

µ(Q)
+

µ(ηR)

µ(R)

]
,

and that for any cube Q ∈ D,

(3.12)

∫
Q

|f(x)| dµ(x) ≤ Cbµ(ηQ).

(iii) There exists a nonnegative constant Cc such that for any (ρ, βρ)-doubling
cube Q /∈ D,

(3.13)

∫
Q

|f(x) − mQ(f)| dµ(x) ≤ Ccµ(Q),

that for any (ρ, βρ)-doubling cubes Q ⊂ R with Q /∈ D,

(3.14) |mQ(f) − mR(f)| ≤ Cc[1 + δ(Q, R)],

and that for any (ρ, βρ)-doubling cube Q ∈ D,

(3.15)

∫
Q

|f(x)| dµ(x) ≤ Ccµ(Q).

Moreover, the minimal constants Cb and Cc are equivalent to ‖f‖rbmoη, ρ (µ).

Proof. By Proposition 3.2 and Proposition 3.3, it suffices to establish
Proposition 3.4 with η = ρ = 2. We write rbmo (µ) instead of rbmoη, ρ (µ)
for simplicity. Assuming that f ∈ rbmo (µ), we now show that (ii) holds.
For any Q /∈ D,

(3.16)
∣∣∣mQ(f) − m

�Q(f)
∣∣∣ ≤ mQ

(∣∣∣f − m
�Q(f)

∣∣∣) ≤ µ(2Q)

µ(Q)
‖f‖rbmo (µ),
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which implies that∫
Q

|f(x) − mQ(f)| dµ(x)

≤
∫

Q

∣∣∣f(x) − m
�Q(f)

∣∣∣ dµ(x) +
∣∣∣mQ(f) − m

�Q(f)
∣∣∣µ(Q) ≤ 2‖f‖rbmo(µ)µ(2Q).

To show (3.11), we notice that if R ∈ D, then R̃ ∈ D, and

∣∣mR(f) − m
�R(f)

∣∣ � µ(2R)

µ(R)
‖f‖rbmo (µ),

which together with (3.16) and (3.7) yields that for any Q ⊂ R with Q /∈ D,

|mQ(f) − mR(f)|
≤

∣∣∣mQ(f) − m
�Q(f)

∣∣∣ +
∣∣∣m
�Q(f) − m

�R(f)
∣∣∣ +

∣∣m
�R(f) − mR(f)

∣∣
� [1 + δ(Q, R)]

[
µ(2Q)

µ(Q)
+

µ(2R)

µ(R)

]
‖f‖rbmo (µ).

This verifies (3.11), and hence (ii) holds.
Since (ii) obviously implies (iii), to finish the proof of Proposition 3.4,

we only need to prove that if f ∈ L1
loc (µ) satisfies the assumptions in (iii),

then f ∈ rbmo (µ).
For any Q /∈ D, let {Q′

xi, 2
}i be the sequence of cubes as in the proof of

Proposition 3.2 with η1 = η2 = 2, which covers Q∩ supp (µ) with a bounded
overlap. We then have that for each i, Q′

xi, 2
/∈ D and δ(Q′

xi, 2
, Qxi, H

xi
Q +2) � 1.

The last assertion together with Lemma 2.2 and Lemma 2.1 further yields

that δ(Q′
xi, 2

, 2̃Q̃) � 1. Obviously, by the choice of {Q′
xi, 2

}i, we have Q′
xi, 2⊂ 2Q. These facts together with (3.14), (3.7) and Lemma 2.1 imply that∣∣∣mQ′

xi, 2
(f) − m

�Q(f)
∣∣∣ ≤ ∣∣∣mQ′

xi, 2
(f) − m

�

2 �Q
(f)

∣∣∣ +
∣∣∣m
�Q(f) − m

�

2 �Q
(f)

∣∣∣ � Cc.

Then from (3.13), the facts that for each i, Q′
xi, 2

⊂ 2Q and that Q′
xi, 2

are
almost disjoint, it follows that∫

Q

∣∣∣f(x) − m
�Q(f)

∣∣∣ dµ(x)

≤
∑

i

∫
Q′

xi, 2

|f(x) − mQ′
xi, 2

(f)| dµ(x) +
∑

i

∣∣∣mQ′
xi, 2

(f) − m
�Q(f)

∣∣∣µ(Q′
xi, 2

)

� Ccµ(2Q).
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On the other hand, if Q ∈ D, let {Q′
xi, 2

}i be the sequence of cubes
as in the proof of Proposition 3.3 with η = 2, which covers Q ∩ supp (µ)
with a bounded overlap. We then have that for each i, Q′

xi, 2
/∈ D and

δ(Q′
xi, 2

, Qxi, 2) � 1. The last assertion further implies that for all i,

δ(Q′
xi, 2

, Qxi, 1) � 1,

which together with (3.14), Qxi, 1 ∈ D and (3.15) leads to that∣∣∣mQ′
xi, 2

(f)
∣∣∣ ≤ ∣∣∣mQ′

xi, 2
(f) − mQxi, 1(f)

∣∣∣ +
∣∣mQxi, 1(f)

∣∣ � Cc.

Using the almost disjoint property and the doubling property of {Q′
xi, 2

}i,
Q′

xi, 2
/∈ D, (3.13), (3.15) and Q′

xi, 2
⊂ 2Q, we obtain∫

Q

|f(x)| dµ(x)

≤
∑

i

{∫
Q′

xi, 2

∣∣∣f(x) − mQ′
xi, 2

(f)
∣∣∣ dµ(x) + µ(Q′

xi, 2
)
∣∣∣mQ′

xi, 2
(f)

∣∣∣}
� Ccµ(2Q),

which implies (3.1). Thus f ∈ rbmo (µ), and this finishes the proof of
Proposition 3.4. �

The following theorem is a local version of the John-Nirenberg inequality
for the space RBMO (µ) in [16]. We prove this by using some ideas from the
proof of Theorem 3.1 in [16]; see also [8].

Theorem 3.1. Let η ∈ (1,∞) and f ∈ rbmo (µ). If there exists a sequence

of numbers {fQ}Q such that (3.2), (3.3) and (3.4) hold with C̃ replaced by
C‖f‖rbmo (µ). Then there exist nonnegative constants C1 and C2 such that
for any cube Q ∈ D and λ > 0,

(3.17) µ ({x ∈ Q : |f(x)| > λ}) ≤ C1µ(ηQ) exp

( −C2λ

‖f‖rbmo (µ)

)
,

and for any Q /∈ D and λ > 0,

(3.18) µ ({x ∈ Q : |f(x) − fQ| > λ}) ≤ C1µ(ηQ) exp

( −C2λ

‖f‖rbmo (µ)

)
.

To prove Theorem 3.1, we need the following two technical lemmas.
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Lemma 3.1. Under the assumption of Theorem 3.1, if Q and R are cubes
such that l(Q) ∼ l(R) and dist(Q, R) ≤ Cl(Q), then

|fQ − fR| ≤ C‖f‖rbmo(µ),

where C is a positive constant independent of f , Q and R.

Proof. As in Definition 2.1, let RQ be the smallest cube concentric with R
containing Q and R, then l(RQ) � l(Q). By Lemma 2.1 (a), δ(Q, RQ) � 1
and δ(R, RQ) � 1. We then consider the following three cases.

Case (1) Q /∈ D and R /∈ D. In this case, an application of (3.3) yields
that

|fQ − fR| ≤ |fQ − fRQ
| + |fRQ

− fR| � ‖f‖rbmo (µ).

Case (2) Q /∈ D and R ∈ D, or Q ∈ D and R /∈ D. By similarity, we
only consider the first case. Then (3.3) together with RQ ∈ D and (3.4)
implies that

|fQ−fR| ≤ |fQ−fRQ
|+ |fRQ

|+ |fR| � [1+δ(Q, RQ)]‖f‖rbmo (µ) � ‖f‖rbmo (µ).

Case (3) Both Q and R are in D. Then (3.4) immediately implies that

|fQ − fR| ≤ |fQ| + |fR| � ‖f‖rbmo (µ),

which completes the proof of Lemma 3.1. �
We also need the following lemma which is an analog of [16, Lemma 3.3].

We omit the details for simplicity.

Lemma 3.2. Let f ∈ rbmo (µ) and f be a real-valued function. Given

q > 0, let fq(x) := f(x) if |f(x)| ≤ q, and let fq(x) := q f(x)
|f(x)| if |f(x)| > q.

Then fq ∈ rbmo (µ) with

‖fq‖rbmo (µ) ≤ C‖f‖rbmo (µ),

where C is a positive constant independent of q and f .

Remark 3.2. Let f ∈ rbmo (µ) and {fQ}Q satisfy the conditions of Theo-
rem 3.1. Assume that f and fQ are real-valued, otherwise we consider their
real and imaginary parts, respectively. For any given q > 0, let fQ,+ :=
max(fQ, 0), fQ,− := −min(fQ, 0), and fq, Q := min(fQ,+, q) − min(fQ,−, q).
For any given η ∈ (1,∞), it is easy to see that

sup
Q/∈D

1

µ(ηQ)

∫
Q

|fq(x) − fq, Q| dµ(x) � ‖f‖rbmo (µ),



h1
, bmo, blo and Littlewood-Paley g-functions 619

that for any cubes Q ⊂ R with Q /∈ D,

|fq, Q − fq, R| � [1 + δ(Q, R)]‖f‖rbmo (µ),

and that for any Q ∈ D, |fq, Q| � ‖f‖rbmo (µ).

Proof of Theorem 3.1. By Proposition 3.2 and Proposition 3.3, it suffices
to establish (3.17) and (3.18) for η = 2. Assume that f and fQ are real-
valued, otherwise we consider their real and imaginary parts, respectively.
Let f ∈ L∞(µ) first and Q be some fixed cube in D. Without loss of
generality, we may assume that ‖f‖rbmo (µ) = 1. Let Q′ := 3

2
Q and B

be a positive constant which will be determined later. By the Lebesgue
differentiation theorem, for µ-a. e. x ∈ Q ∩ supp (µ) such that |f(x)| > B,
there exists a doubling cube Qx centered at x such that

(3.19) mQx(|f |) > B.

Moreover, we assume that Qx is the biggest doubling cube satisfying (3.19)
with side length 2kl(Qx, 2) for some k ≤ 0 and l(Qx) ≤ 1

20
l(Q). By the

Besicovitch covering theorem, there exists an almost disjoint subfamily {Qi}i

of the cubes {Qx}x such that

(3.20) {x ∈ Q : |f(x)| > B} ⊂
⋃
i

Qi.

By Lemma 2.2 (e), we know that Qi /∈ D. From Proposition 3.2 and Propo-
sition 3.3, it follows that for any R ∈ D,

1

µ(4
3
R)

∫
R

|f(x)| dµ(x) � 1.

Thus, if we choose B big enough, by (3.19) and the facts that Qi are almost
disjoint and that Qi ⊂ Q′,

(3.21)
∑

i

µ(Qi) ≤
∑

i

1

B

∫
Qi

|f(x)| dµ(x) ≤ C

B

∫
Q′
|f(x)| dµ(x) ≤ µ(2Q)

2d+3
.

We now prove that for each i,

(3.22) |fQi
| � 1.

Having the fact that Qi /∈ D in mind, we consider 2̃Qi in the following three
cases.

Case (1) l(2̃Qi) > 10l(Q). Then Q ⊂ 2̃Qi and so 2̃Qi ∈ D. By (3.3),
(3.4) and Lemma 2.1, |fQi

| ≤ |fQi
− f

�2Qi
| + |f

�2Qi
| � 1.
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Case (2) 1
20

l(Q) ≤ l(2̃Qi) ≤ 10l(Q). In this case, if 2̃Qi ∈ D, as in

Case (1), we have |fQi
| � 1. If 2̃Qi /∈ D, by (3.3), (3.4), the fact that

2̃Qi ⊂ 30Q and Lemma 2.1, we obtain

|fQi
| ≤

∣∣∣fQi
− f

�2Qi

∣∣∣ +
∣∣∣f
�2Qi

− f30Q

∣∣∣ + |f30Q| � 1.

Case (3) l(2̃Qi) < 1
20

l(Q). By the choice of Qi, m
�2Qi

(|f |) ≤ B, which

implies |m
�2Qi

(f)| ≤ B. If 2̃Qi /∈ D, then it follows from (3.2), (3.3) and
Lemma 2.1 that

|fQi
| ≤

∣∣∣fQi
− f

�2Qi

∣∣∣ +
∣∣∣f
�2Qi

− m
�2Qi

(f)
∣∣∣ +

∣∣∣m
�2Qi

(f)
∣∣∣ � 1.

If 2̃Qi ∈ D, by (3.3) and (3.4), we then have |fQi
| ≤ |fQi

−f
�2Qi

|+ |f
�2Qi

| � 1.
Combining these cases above, we see that (3.22) holds.

For t > 0, we define

X(t) := sup
Q/∈D

1

µ(2Q)

∫
Q

exp (|f(x) − fQ|t) dµ(x)

+ sup
Q∈D

1

µ(2Q)

∫
Q

exp (|f(x)|t) dµ(x).

It then follows from (3.20) through (3.22) and the doubling property of Qi

that for Q ∈ D,

1

µ(2Q)

∫
Q

exp (|f(x)|t) dµ(x)

≤ 1

µ(2Q)

∫
Q\∪iQi

exp (Bt) dµ(x)

+
1

µ(2Q)

∑
i

∫
Qi

exp (|f(x) − fQi
|t) dµ(x) exp(Ct)

≤ exp (Bt) +
1

4
X(t) exp(Ct).

Since f ∈ L∞(µ), X(t) < ∞, which implies that

X(t)

[
1 − 1

4
exp(Ct)

]
≤ exp(Bt).

We then take t0 small enough and see that X(t0) � 1. Therefore, for f ∈
L∞(µ) and Q ∈ D,

µ ({x ∈ Q : |f(x)| > λ/t0}) ≤
∫

Q

exp (|f(x)|t0) exp(−λ) dµ(x)

� µ(2Q) exp(−λ).
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In the case that Q /∈ D, by a slight modification of the proof for Theo-
rem 3.1 in [16], we also have that

µ ({x ∈ Q : |f(x) − fQ| > λ/t0}) ≤
∫

Q

exp (|f(x) − fQ|t0 − λ) dµ(x)

� µ(2Q) exp(−λ).

When f is not bounded, consider the function fq of Lemma 3.2. From
Lemma 3.2 and the subsequent remark, we obtain that if Q ∈ D,

µ ({x ∈ Q : |fq(x)| > λ}) � µ(2Q) exp (−C2λ) ,

and if Q /∈ D,

µ ({x ∈ Q : |fq(x) − fq, Q| > λ}) � µ(2Q) exp (−C2λ) .

A limiting argument then completes the proof of Theorem 3.1. �
From Theorem 3.1, we can easily deduce that the following spaces,

rbmop
η, ρ (µ), coincide for all p ∈ [1,∞).

For any η ∈ (1,∞), ρ ∈ [η,∞), βρ := ρd+1 and p ∈ [1,∞), a function
f ∈ L1

loc (µ) is said to belong to the space rbmop
η, ρ (µ) if there exists a

nonnegative constant C̃ such that for all Q /∈ D,{
1

µ(ηQ)

∫
Q

∣∣∣f(x) − m
�Qρ(f)

∣∣∣p dµ(x)

}1/p

≤ C̃,

that for any two (ρ, βρ)-doubling cubes Q ⊂ R with Q /∈ D,

|mQ(f) − mR(f)| ≤ C̃[1 + δ(Q, R)],

and that for any Q ∈ D,{
1

µ(ηQ)

∫
Q

|f(x)|p dµ(x)

}1/p

≤ C̃.

Moreover, we define the minimal constant C̃ as above to be the rbmop
η, ρ (µ)

norm of f and denote it by ‖f‖rbmop
η, ρ (µ).

Arguing as for p = 1, one can show that another equivalent definition
for rbmop

η, ρ (µ) can be given in terms of the numbers {fQ}Q as in (3.2)
through (3.4) without depending on the constants η ∈ (1,∞) and ρ ∈ [η,∞).

Using Theorem 3.1, by following an argument as in [16, Corollary 3.5],
we have the following conclusion, whose details are left to the reader.
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Corollary 3.1. For any p ∈ [1,∞), η ∈ (1,∞) and ρ ∈ [η,∞), the spaces
rbmop

η, ρ (µ) coincide with equivalent norms.

We have another characterization for rbmo (µ) which is useful in appli-
cations. To be precise, let f ∈ L1

loc (µ). If f is real-valued and for any
cube Q, let αQ(f) be the real number such that infα∈R mQ(|f − α|) is at-
tained if µ(Q) �= 0 and αQ(f) := 0 if µ(Q) = 0, then αQ(f) satisfies that
µ({x ∈ Q : f(x) > αQ(f)}) ≤ µ(Q)/2, and

µ({x ∈ Q : f(x) < αQ(f)}) ≤ µ(Q)/2.

If f is complex-valued, we take

αQ(f) := Re [αQ(f)] + iIm [αQ(f)],

where i2 = −1. Furthermore, for any p ∈ [1,∞), η ∈ (1,∞), ρ ∈ [η,∞),
βρ := ρd+1 and f ∈ L1

loc (µ), we denote by ‖f‖◦ the minimal nonnegative

constant C̃ such that for any Q /∈ D,

1

µ(ηQ)

∫
Q

|f(x) − α
�Qρ(f)| dµ(x) ≤ C̃,

that for any two (ρ, βρ)-doubling cubes Q ⊂ R with Q /∈ D,

|αQ(f) − αR(f)| ≤ C̃[1 + δ(Q, R)],

and that for any Q ∈ D, |αQ(f)| ≤ C̃ µ(ηQ)
µ(Q)

.

Lemma 3.3. For any η ∈ (1,∞) and ρ ∈ [η,∞), ‖ · ‖◦ is equivalent to
‖ · ‖rbmo (µ).

Proof. By Proposition 3.3, it suffices to show ‖ · ‖◦ ∼ ‖ · ‖∗. First, we will

prove ‖ · ‖∗ � ‖ · ‖◦. For any Q ⊂ Rd, set fQ := α
�Qρ(f) if Q̃ρ /∈ D, and

otherwise, set fQ := 0. Arguing as in (3.5), to show that ‖ · ‖∗ � ‖ · ‖◦, it
suffices to verify that for any Q ⊂ R with Q /∈ D,

|fQ − fR| � [1 + δ(Q, R)]‖f‖◦.

But, as in the proof of (3.5), this can be deduced from the fact

|α
�Qρ(f) − α

�Rρ(f)| � [1 + δ(Q, R)]‖f‖◦,

which can be proved by repeating the proof of (3.7).
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Now we prove the converse. For any cube Q ∈ D, by the definition of
αQ(f), we have∣∣∣αQ(f)µ(Q) −

∫
Q

f(x) dµ(x)
∣∣∣ ≤ ∫

Q

|f(x) − αQ(f)| dµ(x) ≤
∫

Q

|f(x)| dµ(x),

which implies in turn that

(3.23) |αQ(f)|µ(Q) �
∫

Q

|f(x)| dµ(x).

Therefore, by Proposition 3.3,

(3.24) |αQ(f)| � µ(ηQ)

µ(Q)
‖f‖∗.

On the other hand, for any (ρ, βρ)-doubling cube Q /∈ D, by the definition
of αQ(f) again,

(3.25)
∣∣∣αQ(f) − fQ

∣∣∣ ≤ 1

µ(Q)

∫
Q

[|f(x) − fQ| + |f(x) − αQ(f)|] dµ(x)

� ‖f‖∗.
This fact together with (3.3) implies that for any two (ρ, βρ)-doubling cubes
Q ⊂ R with Q /∈ D and R /∈ D,

|αQ(f)−αR(f)| ≤ |αQ(f)−fQ|+|fQ−fR|+|fR−αR(f)| � [1+δ(Q, R)]‖f‖∗.
Moreover, (3.25) together with (3.3), (3.4) and (3.24) yields that for any two
(ρ, βρ)-doubling cubes Q ⊂ R with Q /∈ D and R ∈ D,

|αQ(f)−αR(f)| ≤ |αQ(f)−fQ|+|fQ−fR|+|fR|+|αR(f)| � [1+δ(Q, R)]‖f‖∗.
Combining these estimates above, we see that for any two (ρ, βρ)-doubling
cubes Q ⊂ R with Q /∈ D,

|αQ(f) − αR(f)| � [1 + δ(Q, R)]‖f‖∗.
Finally, for any cube Q /∈ D,

1

µ(ηQ)

∫
Q

∣∣∣f(x) − α
�Qρ(f)

∣∣∣ dµ(x)

≤ 1

µ(ηQ)

∫
Q

|f(x) − fQ| dµ(x) +
µ(Q)

µ(ηQ)

[∣∣∣fQ − f
�Qρ

∣∣∣ +
∣∣∣f
�Qρ − α

�Qρ(f)
∣∣∣]

� ‖f‖∗,
where in the last inequality, we used (3.2) through (3.4) and (3.24) when

Q̃ρ ∈ D, and (3.2), (3.3) and (3.25) when Q̃ρ /∈ D. This completes the proof
of Lemma 3.3. �
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Remark 3.3. By Lemma 3.3, Proposition 3.2 and Proposition 3.3, in the
rest of this paper, unless otherwise stated, we will always assume that both
constants ρ and η in the definition of ‖ · ‖◦ as well as that of ‖ · ‖rbmo (µ) are
equal to 2.

We now introduce local Hardy spaces.

Definition 3.2. Let η ∈ (1,∞). A function b ∈ L1
loc (µ) is called an ∞-

block if only (i) and (iii) with p = ∞ of Definition 2.7 hold. Moreover, we
let |b|h1, ∞

atb (µ) :=
∑2

j=1 |λj|.
A function f ∈ L1(µ) is said to belong to the space h1,∞

atb (µ) if there exist
∞-atomic blocks or ∞-blocks {bi}i such that f =

∑
i bi and

∑
i |bi|h1, ∞

atb (µ) <

∞, where bi is an ∞-atomic block as in Definition 2.7 if supp (bi) ⊂ Ri and
Ri /∈ D, while bi is an ∞-block if supp (bi) ⊂ Ri and Ri ∈ D. Moreover, the
h1,∞

atb (µ) norm of f is defined by

‖f‖h1,∞
atb (µ) := inf

{∑
i

|bi|h1,∞
atb (µ)

}
,

where the infimum is taken over all decompositions of f in ∞-atomic blocks
or ∞-blocks as above.

Remark 3.4. Let ρ ∈ (1,∞) and βρ := ρd+1. Due to the fact that for any
cubes Q ⊂ R,

1 + δ(Q, R̃ρ) ∼ 1 + δ(Q, R),

if necessary, we may assume that the cube R in Definition 3.2 is (ρ, βρ)-
doubling.

It is easy to see that H1(µ) � h1,∞
atb (µ) � L1(µ). Moreover, we have the

following basic properties on the space h1,∞
atb (µ).

Proposition 3.5. The following three properties hold:

(i) h1,∞
atb (µ) ⊂ L1(µ) with ‖f‖L1(µ) ≤ ‖f‖h1,∞

atb (µ).

(ii) The space h1,∞
atb (µ) is a Banach space.

(iii) The definition of h1,∞
atb (µ) is independent of the choice of the constant

η ∈ (1, ∞).

Proof. The proofs of the first two properties are similar to the usual
proofs for the classical atomic Hardy spaces with µ being the d-dimensional
Lebesgue measure, thus we omit the details.

To prove Property (iii), let η1 > η2 > 1. It is obvious that for any
b ∈ h1,∞

atb, η1
(µ), we have b ∈ h1,∞

atb, η2
(µ) and ‖b‖h1, ∞

atb, η2
(µ) ≤ ‖b‖h1, ∞

atb, η1
(µ).
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To prove the converse, let b :=
∑2

j=1 λjaj ∈ h1,∞
atb, η2

(µ) be an ∞-atomic
block with supp (b) ⊂ R /∈ D or an ∞-block with supp (b) ⊂ R ∈ D as in
Definition 3.2. By Remark 3.4, we may assume that R is (ρ, βρ)-doubling
with ρ ≥ η1. Then for each j = 1, 2,

‖aj‖L∞(µ) ≤ {µ(η2Qj)[1 + δ(Qj , R)]}−1.

For any x ∈ Qj ∩ supp (µ), let Qx be the cube centered at x with side
length η2−1

10η1
l(Qj). It then follows that η1Qx ⊂ η2Qj . By the Besicovitch

covering theorem, there exists an almost disjoint subfamily {Qj, k}k of the
cubes {Qx}x covering Qj∩ supp (µ). Moreover, for each j = 1, 2, the number
of cubes {Qj, k}k of the Besicovitch covering is bounded by some constant
NB ∈ N depending only on η1, η2 and d; see [16, p. 99]. Since l(Qj, k) ∼ l(Qj)
for all k, by Lemma 2.1, we have δ(Qj, k, Qj) � 1. Moreover, it follows from
Lemma 2.1 again that δ(Qj, k, η2R) � 1 + δ(Qj, R). Therefore, by letting

aj, k := aj

χQj, k∑NB

k=1 χQj, k

and λj, k := λj , k = 1, · · · , NB, we see that

b =
2∑

j=1

λjaj =
2∑

j=1

NB∑
k=1

λj, kaj, k

and
‖aj, k‖L∞(µ) ≤ ‖aj‖L∞(µ) � {µ(η1Qj, k)[1 + δ(Qj, k, η2R)]}−1.

If b is an ∞-atomic block and R /∈ D, then for each j, k, let

cj, k := λj, kaj, k + γj, kχR,

where γj, k is the constant such that cj, k has zero mean. Then we see that

γj, k = − λj, k

µ(R)

∫
Qj, k

aj, k(x) dµ(x).

Since R is (ρ, βρ)-doubling, it is obvious that for each j, k, cj, k is an ∞-
atomic block with |cj, k|h1,∞

atb, η1
(µ) � |λj, k| and supp (cj, k) ⊂ η2R. Therefore,

b =
2∑

j=1

NB∑
k=1

cj, k

and

‖b‖h1,∞
atb, η1

(µ) ≤
2∑

j=1

NB∑
k=1

|cj, k|h1, ∞
atb, η1

(µ) �
2∑

j=1

|λj|,

which implies that ‖b‖h1,∞
atb, η1

(µ) � ‖b‖h1, ∞
atb, η2

(µ).
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If b is an ∞-block and R ∈ D, then for each j, k, let cj, k := λj, kaj, k. It
is obvious that for each j, k, cj, k is an ∞-block with |cj, k|h1, ∞

atb, η1
(µ � |λj, k|

and supp (cj, k) ⊂ η2R. Moreover, b =
∑2

j=1

∑NB

k=1 cj, k and

‖b‖h1, ∞
atb, η1

(µ) �
2∑

j=1

NB∑
k=1

|λj, k| �
2∑

j=1

|λj|,

which implies that ‖b‖h1, ∞
atb, η1

(µ) � ‖b‖h1,∞
atb, η2

(µ), and hence completes the proof

of Proposition 3.5. �
Remark 3.5. By Proposition 3.5, unless otherwise stated, we will always
assume that the constant η in Definition 3.2 is equal to 2.

Inspired by the duality between H1(µ) and RBMO (µ), we will show that
the space h1,∞

atb (µ) is the predual space of the space rbmo (µ). To this end,
we will follow the scheme of [8, pp. 34-40] (see also [16]).

Lemma 3.4. rbmo (µ) ⊂ [h1,∞
atb (µ)]∗. That is, for any g ∈ rbmo (µ), the

linear functional

Lg(f) :=

∫
Rd

fg dµ

defined on bounded functions f with compact support extends to a continuous
linear functional Lg over h1,∞

atb (µ) with ‖Lg‖[h1,∞
atb (µ)]∗ ≤ C‖g‖rbmo(µ), where

C is a positive constant independent of g.

Proof. By Remark 3.3 and Remark 3.5, we take ρ = η = 2 in Definition 3.1
and Definition 3.2. Following some standard arguments (see, for example,
[5, pp. 294-296]), we only need to show that if b :=

∑2
j=1 λjaj is an ∞-

atomic block with supp (b) ⊂ R /∈ D as in Definition 2.7 or an ∞-block
with supp (b) ⊂ R ∈ D as in Definition 3.2, then for any g ∈ rbmo (µ),∣∣∣∣∫

Rd

b(x)g(x) dµ(x)

∣∣∣∣ � |b|h1, ∞
atb (µ)‖g‖rbmo (µ).

If b is an ∞-atomic block with supp (b) ⊂ R /∈ D, an argument similar
to that in [16, p. 115] yields that∣∣∣∣∫

Rd

b(x)g(x) dµ(x)

∣∣∣∣ �
2∑

i=1

|λi|‖g‖rbmo(µ).

If b is an ∞-block with supp (b) ⊂ R ∈ D, we have∣∣∣∣∫
Rd

b(x)g(x) dµ(x)

∣∣∣∣ ≤ 2∑
i=1

|λi|
∫

Qi

|ai(x)||g(x)| dµ(x).
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Now for i = 1, 2, if Qi ∈ D, it follows from (2.3) that∫
Qi

|ai(x)||g(x)| dµ(x) ≤ {µ(2Qi)[1 + δ(Qi, R)]}−1

∫
Qi

|g(x)| dµ(x)

≤ ‖g‖rbmo (µ).

If Qi /∈ D, then (2.3) together with Definition 3.1 and (3.7) yields that∫
Qi

|ai(x)||g(x)| dµ(x)

≤
∫

Qi

|ai(x)|
∣∣∣g(x) − m

�Qi
(g)

∣∣∣ dµ(x) +
∣∣∣m
�Qi

(g)
∣∣∣ ∫

Qi

|ai(x)| dµ(x)

≤ ‖ai‖L∞(µ)

[∫
Qi

∣∣∣g(x) − m
�Qi

(g)
∣∣∣ dµ(x)

+µ(Qi)
∣∣∣m
�Qi

(g) − m
�R(g)

∣∣∣ + µ(Qi)
∣∣m
�R(g)

∣∣ ] � ‖g‖rbmo(µ).

Therefore, we have∣∣∣∣∫
Rd

b(x)g(x) dµ(x)

∣∣∣∣ �
2∑

i=1

|λi|‖g‖rbmo (µ) = |b|h1, ∞
atb (µ)‖g‖rbmo (µ),

which completes the proof of Lemma 3.4. �

Lemma 3.5. If g ∈ rbmo (µ), then ‖Lg‖[h1,∞
atb (µ)]∗ ∼ ‖g‖rbmo(µ).

Proof. By Lemma 3.4, it suffices to show ‖Lg‖[h1,∞
atb (µ)]∗ � ‖g‖rbmo (µ). With-

out loss of generality, we may assume that g is real-valued. With the
aid of Lemma 3.3, we only need to prove that there exists some function
f ∈ h1,∞

atb (µ) such that

(3.26) |Lg(f)| � ‖g‖◦‖f‖h1,∞
atb (µ).

By Remark 3.3 and Remark 3.5, we take ρ = η = 2 in the definition of ‖ · ‖◦
and Definition 3.2. Let ε ∈ (0, 1/8]. There exist two possibilities.

Case (1) There exists some doubling cube Q ⊂ Rd with Q /∈ D such that

(3.27)

∫
Q

|g(x) − αQ(g)| dµ(x) ≥ ε‖g||◦µ(Q),

or there exists some doubling cube Q ⊂ Rd with Q ∈ D such that

(3.28) |αQ(g)| ≥ ε‖g||◦.
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If (3.27) holds, then for such a cube Q /∈ D satisfying (3.27), by an argu-
ment similar to that in [16, p. 116], we find an f ∈ h1,∞

atb (µ) such that (3.26)
holds.

If (3.28) holds, for such a cube Q ∈ D satisfying (3.28), we take f :=
sgn (g)χQ, where and in what follows, sgn (g) denotes the sign function of
the function g. It immediately follows that f is an ∞-block with supp (f) ⊂
Q and |f |h1,∞

atb (µ) � µ(Q). By this fact, (3.23) and (3.28), we see that

|Lg(f)| =

∣∣∣∣∫
Q

g(x)f(x) dµ(x)

∣∣∣∣ =

∫
Q

|g(x)| dµ(x) � ε‖g‖◦‖f‖h1,∞
atb (µ).

Thus, in Case (1), (3.26) holds.
Case (2) For any doubling Q ⊂ Rd with Q /∈ D, (3.27) fails, and for any

doubling cube Q ⊂ Rd with Q ∈ D, (3.28) fails. In this case, we further
consider the following two subcases.

Subcase (i) For any two doubling cubes Q ⊂ R with Q /∈ D,

|αQ(g) − αR(g)| ≤ 1

2
[1 + δ(Q, R)]‖g‖◦.

In this subcase, from the definition of ‖g‖◦, there exists some cube Q /∈ D
such that

(3.29)

∫
Q

∣∣∣g(x) − α
�Q(g)

∣∣∣ dµ(x) ≥ 1

2
‖g||◦µ(2Q).

If Q̃ /∈ D, then by the argument in [16, p. 117], we obtain that (3.26) holds.

If Q̃ ∈ D, we then let f := χQ∩{g>α
�Q
(g)}−χQ∩{g<α

�Q
(g)}. It is easy to see that

f is an ∞-block with supp (f) ⊂ Q̃ and ‖f‖h1,∞
atb (µ) � µ(2Q). Moreover,

since (3.28) fails for Q̃, using (3.29), we have

|Lg(f)| ≥
∣∣∣ ∫

Q

[
g(x) − α

�Q(g)
]
f(x) dµ(x)

∣∣∣− ∣∣∣α
�Q(g)

∣∣∣∣∣∣ ∫
Q

f(x) dµ(x)
∣∣∣

≥ 1

2
‖g‖◦µ(2Q) − ε‖g‖◦µ(Q) � ‖g‖◦‖f‖h1,∞

atb (µ).

Subcase (ii) There exists some doubling cubes Q ⊂ R with Q /∈ D,

|αQ(g) − αR(g)| >
1

2
[1 + δ(Q, R)]‖g‖◦.

In this subcase, we also only need to consider the case that R ∈ D, because
if R /∈ D, the argument in [16, p. 118] works here as well. Assume R ∈ D
and take f := χQ. Then f is an ∞-block with supp (f) ⊂ R and

‖f‖h1,∞
atb (µ) � [1 + δ(Q, R)]µ(Q).
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Since (3.27) fails for Q and (3.28) fails for R, it follows from the assumption
of this subcase and the fact that ε ≤ 1

8
that

|Lg(f)| =
∣∣∣ ∫

Q

[g(x) − αQ(g)]f(x) dµ(x) + αQ(g)µ(Q)
∣∣∣

≥ |αQ(g) − αR(g)|µ(Q) −
∫

Q

|g(x) − αQ(g)| dµ(x)− |αR(g)|µ(Q)

>
1

2
[1 + δ(Q, R)]‖g‖◦µ(Q) − 2ε‖g‖◦µ(Q)

≥ 1

4
[1 + δ(Q, R)]‖g‖◦µ(Q).

Therefore (3.26) also holds in this case, which completes the proof of
Lemma 3.5. �

We now introduce the spaces h1, p
atb(µ) for p ∈ (1,∞) and prove that

they coincide with h1,∞
atb (µ) and the dual of the space h1,∞

atb (µ) is rbmo (µ)
simultaneously.

Definition 3.3. Let η ∈ (1,∞) and p ∈ (1,∞). A function b ∈ L1
loc (µ) is

called a p-block if only (i) and (iii) with p ∈ (1,∞) of Definition 2.7 hold.
Moreover, we let |b|h1, p

atb (µ) :=
∑2

j=1 |λj|.
A function f ∈ L1(µ) is said to belong to the space h1, p

atb(µ) if there exist
p-atomic blocks or p-blocks {bi}i such that f =

∑
i bi and

∑
i |bi|h1, p

atb (µ) < ∞,

where bi is a p-atomic block as in Definition 2.7 if supp (bi) ⊂ Ri and
Ri /∈ D, while bi is a p-block if supp (bi) ⊂ Ri and Ri ∈ D. We define the
h1, p

atb(µ) norm of f by letting

‖f‖h1, p
atb(µ) := inf

{∑
i

|bi|h1, p
atb(µ)

}
,

where the infimum is taken over all possible decompositions of f in p-atomic
blocks or p-blocks as above.

Remark 3.6. Let ρ ∈ (1,∞) and βρ := ρd+1. Due to the fact that for any
cubes Q ⊂ R,

1 + δ(Q, R̃ρ) ∼ 1 + δ(Q, R).

We may assume that the cube R as in Definition 3.3 is (ρ, βρ)-doubling if
necessary.

It is easy to see that H1, p
atb (µ) � h1, p

atb(µ) � L1(µ). In fact, the spaces
h1, p

atb(µ) have the following properties similar to h1,∞
atb (µ). We omit the details;

see [16, Proposition 5.1].
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Proposition 3.6. Let p ∈ (1,∞). The following four properties hold:

(i) h1, p
atb(µ) ⊂ L1(µ) with ‖f‖L1(µ) ≤ ‖f‖h1, p

atb(µ).

(ii) The space h1, p
atb(µ) is a Banach space.

(iii) For any p1, p2 ∈ (1,∞] with p1 ≤ p2, we have the continuous inclusion
h1, p2

atb (µ) ⊂ h1, p1

atb (µ).

(iv) The definition of h1, p
atb(µ) is independent of the choice of the constant

η ∈ (1, ∞).

Remark 3.7. By Proposition 3.6 (iv), unless otherwise stated, we will al-
ways assume that the constant η in Definition 3.3 is equal to 2.

Lemma 3.6. For any p ∈ (1,∞), rbmo (µ) ⊂ [h1, p
atb(µ)]∗. That is, for any

g ∈ rbmo (µ), the linear functional

Lg(f) :=

∫
Rd

f(x)g(x) dµ(x)

defined over f ∈ L∞(µ) with compact support extends to a unique continuous
linear functional Lg over h1, p

atb(µ) with ‖Lg‖[h1, p
atb(µ)]∗ ≤ C‖g‖rbmo(µ), where C

is a positive constant independent of g.

Proof. By Remark 3.3 and Remark 3.7, we take ρ = η = 2 in Definition 3.1
and Definition 3.3. Similar to the proof of Lemma 3.4, it suffices to show
that if b :=

∑2
i=1 λiai is a p-atomic block with supp (b) ⊂ R /∈ D as in

Definition 2.7 or a p-block with supp (b) ⊂ R ∈ D as in Definition 3.3, then
for any g ∈ rbmo (µ),∣∣∣∣∫

Rd

b(x)g(x) dµ(x)

∣∣∣∣ � |b|h1, p
atb(µ)‖g‖rbmo(µ).

If b is a p-atomic block with supp (b) ⊂ R /∈ D, then an argument similar
to that in [16, p. 120] gives us the desired estimate.

Now suppose b is a p-block with supp (b) ⊂ R ∈ D. In this case, we also
have that ∣∣∣∣∫

Rd

b(x)g(x) dµ(x)

∣∣∣∣ ≤ 2∑
i=1

|λi|
∫

Qi

|ai(x)||g(x)| dµ(x).

For each i, if Qi ∈ D, then it follows from the Hölder inequality, (2.3) and
Corollary 3.1 that∫

Qi

|ai(x)||g(x)| dµ(x) ≤
[∫

Qi

|ai(x)|p dµ(x)

]1/p [∫
Qi

|g(x)|p′ dµ(x)

]1/p′

� ‖g‖rbmo (µ).
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If Qi /∈ D, then using the Hölder inequality, (3.7), (2.3), Definition 3.1 and
Corollary 3.1 again, we have∫

Qi

|ai(x)||g(x)| dµ(x)

≤
∫

Qi

|ai(x)|
∣∣∣g(x) − m

�Qi
(g)

∣∣∣ dµ(x) +
∣∣∣m
�Qi

(g)
∣∣∣ ∫

Qi

|ai(x)| dµ(x)

≤ ‖ai‖Lp(µ)

[∥∥∥(g − m
�Qi

(g))χQi

∥∥∥
Lp′(µ)

+
∣∣∣m
�Qi

(g) − m
�R(g)

∣∣∣ [µ(Qi)]
1/p′

+
∣∣m
�R(g)

∣∣ [µ(Qi)]
1/p′

]
� ‖g‖rbmo (µ).

Therefore,∣∣∣∣∫
Rd

b(x)g(x) dµ(x)

∣∣∣∣ �
2∑

i=1

|λi|‖g‖rbmo(µ) = |b|h1, p
atb(µ)‖g‖rbmo(µ).

This completes the proof of Lemma 3.6. �

Lemma 3.7. Let p∈(1,∞). Then [h1, p
atb(µ)]∗⊂Lp′

loc (µ), where 1/p + 1/p′=1.

Proof. This lemma is an easy consequence of the Riesz representation
theorem, and it can be proved by a slight modification of the argument in
[8, pp. 39-40]; see also Lemma 5.4 in [16]. We omit the details. �

Lemma 3.8. For any p ∈ (1,∞), [h1, p
atb(µ)]∗ = rbmo (µ).

Proof. By Lemma 3.6, to prove the lemma, it suffices to show that for any
p ∈ (1,∞), [h1, p

atb(µ)]∗ ⊂ rbmo (µ). Based on Lemma 3.7, we let g ∈ Lp′
loc (µ)

such that Lg ∈ [h1, p
atb(µ)]∗. We will prove that g ∈ rbmo (µ) by verifying that

for any Q /∈ D,

(3.30)
1

µ(2Q)

∫
Q

∣∣∣g(x) − α
�Q(g)

∣∣∣ dµ(x) � ‖Lg‖[h1, p
atb(µ)]∗ ,

that for any two doubling cubes Q ⊂ R with Q /∈ D,

(3.31) |αQ(g) − αR(g)| � [1 + δ(Q, R)]‖Lg‖[h1, p
atb(µ)]∗ ,

and that for any Q ∈ D,

(3.32) |αQ(g)| � µ(2Q)

µ(Q)
‖Lg‖[h1, p

atb (µ)]∗ .
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We first verify (3.32). Let Q ∈ D and f := sgn (g)χQ. Then f is a p-
block with supp (f) ⊂ Q and |f |h1, p

atb(µ) � µ(2Q). By the definition of αQ(g),

we see that

|αQ(g)µ(Q)| ≤
∫

Q

|g(x) − αQ(g)| dµ(x) +
∣∣∣ ∫

Q

g(x) dµ(x)
∣∣∣ �

∫
Q

|g(x)| dµ(x)

= |Lg(f)| � ‖Lg‖[h1, p
atb(µ)]∗µ(2Q),

which implies (3.32).
If Q is doubling and Q /∈ D, then (3.30) is true by following the argument

for (5.2) in [16], therefore we only need to show that (3.30) holds when Q is

not doubling and Q /∈ D. Moreover, we may assume Q̃ ∈ D, since the proof
of (5.2) in [16] also works here for Q̃ /∈ D. Let

f :=
|g − α

�Q(g)|p′
g − α

�Q(g)
χQ∩{g 
=α

�Q
(g)}.

Then f is a p-block with supp (f) ⊂ Q̃ and

(3.33) |f |h1, p
atb(µ) �

[∫
Q

∣∣∣g(x) − α
�Q(g)

∣∣∣p′ dµ(x)

]1/p

[µ(2Q)]1/p′.

On the other hand, by (3.32) together with the doubling property of Q̃ and
Proposition 3.6 (i), we have∫

Q

∣∣∣g(x) − α
�Q(g)

∣∣∣p′ dµ(x) =

∫
Q

[
g(x) − α

�Q(g)
]
f(x) dµ(x)

≤
∣∣∣ ∫

Q

g(x)f(x) dµ(x)
∣∣∣ +

∣∣∣α
�Q(g)

∣∣∣ ∫
Q

|f(x)| dµ(x)

� ‖Lg‖[h1, p
atb (µ)]∗‖f‖h1, p

atb(µ),

which together with (3.33) and the Hölder inequality implies (3.30) in this
case.

To prove (3.31), let Q ⊂ R with Q /∈ D be any two doubling cubes. If
R /∈ D, then by the proof of (5.3) in [16], we obtain (3.31). Now suppose
that R ∈ D. We choose

f :=
|g − αR(g)|p′
g − αR(g)

χQ∩{g 
=αR(g)}.

Then f is a p-block with supp (f) ⊂ R and

|f |h1, p
atb(µ) � [1 + δ(Q, R)]

[∫
Q

|g(x) − αR(g)|p′ dµ(x)

]1/p

[µ(2Q)]1/p′.
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Consequently, by applying (3.32), Proposition 3.6 (i) and the doubling prop-
erty of R, we see that∫

Q

|g(x) − αR(g)|p′ dµ(x)

=

∫
Q

[g(x) − αR(g)]f(x) dµ(x)

≤
∣∣∣ ∫

Q

g(x)f(x) dµ(x)
∣∣∣ + |αR(g)|

∫
Q

|f(x)| dµ(x) � ‖Lg‖[h1, p
atb(µ)]∗‖f‖h1, p

atb(µ)

� ‖Lg‖[h1, p
atb(µ)]∗[1 + δ(Q, R)]

[∫
Q

|g(x) − αR(g)|p′ dµ(x)

]1/p

[µ(2Q)]1/p′.

Therefore,[
1

µ(2Q)

∫
Q

|g(x) − αR(g)|p′ dµ(x)

]1/p′

� [1 + δ(Q, R)]‖Lg‖[h1, p
atb(µ)]∗ .

Recall that Q is doubling. From this fact, the last estimate as above, (3.30)
and the Hölder inequality, it follows that

|αQ(g) − αR(g)|
≤ 1

µ(Q)

∫
Q

|g(x) − αQ(g)| dµ(x) +
1

µ(Q)

∫
Q

|g(x) − αR(g)| dµ(x)

� [1 + δ(Q, R)]‖Lg‖[h1, p
atb(µ)]∗ ,

which verifies (3.31) and hence completes the proof of Lemma 3.8. �

Lemma 3.9. Let p ∈ (1,∞). The local atomic Hardy space h1,∞
atb (µ) is dense

in the local Hardy space h1, p
atb(µ).

Proof. By Definition 3.3, for every f ∈ h1, p
atb(µ) and ε > 0, there ex-

ists m ∈ N and g :=
∑m

j=1 bj such that ‖f − g‖h1, p
atb(µ) < ε

2
, where for

j = 1, . . . , m, bj is a p-atomic block if supp (bj) ⊂ Rj /∈ D or a p-block
if supp (bj) ⊂ Rj ∈ D. Moreover, for any j = 1, . . . , m, it is easy to see that
there exists an hj ∈ L∞(µ) such that supp (hj) ⊂ Rj and

‖bj − hj‖Lp(µ) <
ε

2m+1[µ(2Rj)]1−1/p
.

For each j, if bj is a p-atomic block with supp (bj) ⊂ Rj /∈ D, then take

b̃j := hj −
χRj

µ(Rj)

∫
Rd

hj dµ.
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By an argument similar to that in the proof for Lemma 2.1 of [6], we see

that b̃j is an ∞-atomic block with supp (bj) ⊂ Rj and ‖bj − b̃j‖h1, p
atb(µ) < ε

2m .

If bj is a p-block with supp (bj) ⊂ Rj ∈ D, then take b̃j := hj. It is easy to

see that b̃j is an ∞-block with supp (b̃j) ⊂ Rj ∈ D and ‖bj − b̃j‖h1, p
atb(µ) < ε

2m .

Now let g̃ :=
∑m

j=1 b̃j . From Definition 3.2, it further follows that g̃ ∈
h1,∞

atb (µ) and

‖f − g̃‖h1, p
atb(µ) ≤ ‖f − g‖h1, p

atb(µ) + ‖g − g̃‖h1, p
atb (µ) < ε,

which completes the proof of Lemma 3.9. �

Theorem 3.2. For any fixed p ∈ (1,∞), h1, p
atb(µ) = h1,∞

atb (µ) and

[h1,∞
atb (µ)]∗ = rbmo (µ).

Proof. By Lemma 3.9, we see that if f ∈ [h1, p
atb(µ)]∗, then f ∈ [h1,∞

atb (µ)]∗.
With the aid of Lemma 3.8, we consider the maps i : h1,∞

atb (µ) → h1, p
atb(µ)

and

i∗ : rbmo (µ) = [h1, p
atb(µ)]∗ → [h1,∞

atb (µ)]∗.

Notice that the map i is an inclusion and i∗ is the canonical injection of
rbmo (µ) in [h1,∞

atb (µ)]∗ (with the identification g ≡ Lg for g ∈ rbmo (µ)).
By Lemma 3.5, i∗(rbmo (µ)) is closed in [h1,∞

atb (µ)]∗. An application of the
Banach closed range theorem (see [29, p. 205]) shows that h1,∞

atb (µ) is closed
in h1, p

atb(µ), which together with Lemma 3.9 implies that h1,∞
atb (µ) = h1, p

atb(µ) as
a set. Thus i maps h1,∞

atb (µ) onto h1, p
atb(µ). Observing that both h1,∞

atb (µ) and
h1, p

atb(µ) are Banach spaces, by the corollary of the open mapping theorem
(see [29, p. 77]), we obtain that h1,∞

atb (µ) = h1, p
atb(µ) with an equivalent norm,

which completes the proof of Theorem 3.2. �

We next come to establish relations between spaces H1(µ) and h1,∞
atb (µ),

and between spaces RBMO(µ) and rbmo (µ), respectively. If µ is the d-
dimensional Lebesgue measure, Proposition 3.7 and Corollary 3.2 below are
obtained by Goldberg [4].

Proposition 3.7. Let k ∈ N and Sk be as in Section 2. If f ∈ h1,∞
atb (µ),

then f − Sk(f) ∈ H1(µ) and

‖f − Sk(f)‖H1(µ) ≤ C‖f‖h1,∞
atb (µ),

where C is a positive constant independent of f and k.
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Proof. Notice that for any ∞-block or ∞-atomic block b :=
∑2

j=1 λjaj as
in Definition 3.2 or Definition 2.7, and any k ∈ N, by (A-2) in Section 2 and
the Tonelli theorem, we have

(3.34) ‖Sk(b)‖L1(µ) ≤ ‖b‖L1(µ) �
2∑

j=1

|λj|.

From this and Definition 2.6, to prove Proposition 3.7, it suffices to show
that

(3.35) ‖MΦ(b − Sk(b))‖L1(µ) �
2∑

j=1

|λj|,

where MΦ is as in Definition 2.5.
Let b be an ∞-atomic block with supp (b) ⊂ R /∈ D. Then by the fact

that {Sk}k∈N are uniformly bounded on H1(µ) (see Theorem 3.1 in [28]), we
have

‖MΦ(Sk(b))‖L1(µ) �
2∑

j=1

|λj|.

This together with the sublinear property of MΦ and Definition 2.6
yields (3.35) in this case.

Now assume that b is an ∞-block with supp (b) ⊂ R ∈ D. Fix any
x0 ∈ R ∩ supp (µ). We consider the following two cases: (1) k ≤ Hx0

R ; (2)
k ≥ Hx0

R + 1.
In Case (1), write

‖MΦ(b − Sk(b))‖L1(µ) =

∫
8R

MΦ(b − Sk(b))(x) dµ(x) +

∫
Rd\8R

· · ·
=: I1 + I2.

Since MΦ is sublinear, we have that

I1 ≤
2∑

j=1

|λj|
∫

2Qj

MΦ(aj)(x) dµ(x) +

2∑
j=1

|λj|
∫

8R\2Qj

· · ·

+

∫
8R

MΦ(Sk(b))(x) dµ(x)

=: J1 + J2 + J3.

By an argument similar to that in the proof for I in Theorem 3.1 of [28], we
have J3 �

∑2
j=1 |λj|. Thus I1 is reduced to showing that J1 + J2 �

∑2
j=1 |λj|.
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For each j = 1, 2, by Definition 3.2, for any x ∈ 2Qj and ϕ ∼ x,∣∣∣∣∫
Rd

ϕ(y)aj(y) dµ(y)

∣∣∣∣ ≤ ‖aj‖L∞(µ)‖ϕ‖L1(µ) ≤ ‖aj‖L∞(µ),

which implies that MΦ(aj)(x) ≤ ‖aj‖L∞(µ) for any x ∈ 2Qj. This fact
together with Definition 3.2 further yields that

J1 ≤
2∑

j=1

|λj|‖aj‖L∞(µ)µ(2Qj) �
2∑

j=1

|λj|.

On the other hand, for any j = 1, 2, and any x ∈ 8R \ 2Qj , we obtain
that for any y ∈ Qj, |x − y| ∼ |x − xj |, where xj is the center of Qj. From
this, it follows that for any x ∈ 8R \ 2Qj ,

MΦ(aj)(x) ≤ sup
ϕ∼x

∣∣∣∣∫
Rd

ϕ(y)aj(y) dµ(y)

∣∣∣∣ � ‖aj‖L1(µ)

|x − xj |n ,

which together with Lemma 2.1 and Definition 3.2 yields that∫
8R\2Qj

MΦ(aj)(x) dµ(x) � ‖aj‖L1(µ)δ(2Qj , 8R)

� ‖a‖L∞(µ)µ(Qj)[1 + δ(Qj, R)] � 1.

Therefore J2 �
∑2

j=1 |λj|, which together with estimates for J1 and J3 im-

plies that I1 �
∑2

j=1 |λj|.
Now we estimate I2. By the facts that

∫
Rd[b(x)−Sk(b)(x)] dµ(x) = 0 and

that supp (b) ⊂ R, we write

I2 ≤
∫

Rd\8R

sup
ϕ∼x

∫
R

|b(y)||ϕ(y)− ϕ(x0)| dµ(y) dµ(x)

+

∫
Rd\8R

sup
ϕ∼x

∫
2R

|Sk(b)(y)||ϕ(y)− ϕ(x0)| dµ(y) dµ(x)

+

∫
Rd\8R

sup
ϕ∼x

∣∣∣∣∫
Rd\2R

Sk(b)(y)[ϕ(y) − ϕ(x0)] dµ(y)

∣∣∣∣ dµ(x)

=: L1 + L2 + L3.

Observing that by arguing as in the proofs for II1 and II2 in Theorem 3.1
of [28], we obtain L2 + L3 �

∑2
j=1 |λj|. Thus, we only need to verify that

L1 �
∑2

j=1 |λj|.
For any y ∈ R and x ∈ 2m+1R \ 2mR with m ≥ 3, it is obvious that

|x − x0| ≥ l(2m−2R) and |y − x0| ≤
√

dl(R), which implies that |y − x0| �
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|x−x0|. This fact together with the mean value theorem yields that for any
ϕ ∼ x,

|ϕ(y)− ϕ(x0)| � |y − x0|
|x − x0|n+1

.

From this, Definition 3.2 and (1.1), it follows that

L1 ≤
2∑

j=1

|λj|
∞∑

m=3

∫
2m+1R\2mR

sup
ϕ∼x

∫
Qj

|aj(y)||ϕ(y)− ϕ(x0)| dµ(y) dµ(x)

�
2∑

j=1

|λj|
∞∑

m=3

∫
2m+1R\2mR

l(R)[
l(2mR)

]n+1‖aj‖L∞(µ)µ(Qj) dµ(x) �
2∑

j=1

|λj|.

Therefore, we obtain (3.35) in Case (1).
In Case (2), we further consider the following two subcases. Subcase (i)

k ≥ Hx0
R + 1 and for all y ∈ R ∩ supp (µ), R �⊂ Qy, k−1. In this subcase,

it is easy to see that for any y ∈ R, Qy, k−1 ⊂ 4R, which together with
supp (Sk(b)) ⊂ ∪y∈RQy, k−1 implies that supp (Sk(b)) ⊂ 4R. Let I1 and
I2 be as in Case (1). We also have ‖MΦ(b − Sk(b))‖L1(µ) ≤ I1 + I2 and

I1 �
∑2

j=1 |λj|. On the other hand, since supp (Sk(b)) ⊂ 4R, by∫
Rd

[b(x) − Sk(b)(x)] dµ(x) = 0,

we have

I2 ≤
∫

Rd\8R

sup
ϕ∼x

∣∣∣∣∫
Rd

[b(y) − Sk(b)(y)][ϕ(y) − ϕ(x0)] dµ(y)

∣∣∣∣ dµ(x)

≤
∫

Rd\8R

sup
ϕ∼x

∫
R

|b(y)||ϕ(y)− ϕ(x0)| dµ(y) dµ(x)

+

∫
Rd\8R

sup
ϕ∼x

∫
4R

|Sk(b)(y)||ϕ(y)− ϕ(x0)| dµ(y) dµ(x).

Moreover, using estimates similar to those for L1 and L2 in Case (1) with
2R in L2 replaced by 4R, we obtain I2 �

∑2
j=1 |λj|.

Subcase (ii) k ≥ Hx0
R + 1 and there exists some y0 ∈ R ∩ supp (µ) such

that R ⊂ Qy0, k−1. In this subcase, by applying Lemma 4.2 in [17], we see
that supp (Sk(b)) ⊂ ∪y∈RQy, k−1 ⊂ Qy0, k−2 ⊂ Qx0, k−3. Then

‖MΦ(b − Sk(b))‖L1(µ)

=

∫
4Qx0, k−3

MΦ(b − Sk(b))(x) dµ(x) +

∫
Rd\4Qx0, k−3

· · · =: E1 + E2.
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Arguing as in estimates for L1 and L2 in Case (1) with 2R in L2 replaced
by Qx0, k−3, we have E2 �

∑2
j=1 |λj|. On the other hand, by the fact that

MΦ is sublinear, we obtain

E1 ≤
2∑

j=1

|λj |
∫

2Qj

MΦ(aj)(x) dµ(x) +
2∑

j=1

|λj|
∫

4Qx0, k−3\2Qj

· · ·

+

∫
4Qx0, k−3

MΦ(Sk(b))(x) dµ(x) =: F1 + F2 + F3.

By using an argument similar to that in the proof of J1 in Case (1),
we obtain F1 �

∑2
j=1 |λj|. On the other hand, because R ⊂ Qy0, k−1, we

obtain that k ≤ Hy0

R + 1. This fact together with Lemma 2.2 (c) yields
that k ≤ Hx0

R + 2. Then the assumption that Hx0
R + 1 ≤ k together with

Lemma 2.1 and Lemma 2.2 (g) implies δ(R, Qx0, k−3) � 1. Moreover, another
application of Lemma 2.1 implies that δ(2Qj , 4Qx0, k−3) � 1 + δ(Qj, R).
Therefore, arguing as in Case (1), we have that for any x ∈ 4Qx0, k−3 \ 2Qj ,

MΦ(aj)(x) � ‖aj‖L∞(µ)µ(Qj)

|x − xj |n .

This together with Definition 3.2 implies that

F2 �
2∑

j=1

|λj |‖aj‖L∞(µ)µ(Qj)δ(2Qj , 4Qx0, k−3) �
2∑

j=1

|λj|.

Similarly, by (A-2) and (A-4), we have

F3 ≤
2∑

j=1

|λj|
[∫

2Qj

MΦ(Sk(aj))(x) dµ(x) +

∫
4Qx0, k−3\2Qj

· · ·
]

�
2∑

j=1

|λj|‖aj‖L∞(µ)µ(2Qj) [1 + δ(2Qj , 4Qx0, k−3)] �
2∑

j=1

|λj|,

which completes the proof of Proposition 3.7. �
Remark 3.8. In fact, from Theorem 3.1 in [28], we see that Proposition 3.7
and Corollary 3.2 below also hold for Sk with k ≤ 0 when Rd is not an initial
cube.

To establish the relation between RBMO(µ) and rbmo (µ), we need the
following estimate, which is a simple corollary of Lemma 3.1 in [27] and the
fact that rbmo (µ) ⊂ RBMO(µ) (see Proposition 3.1). We only point out
that the proof of Lemma 3.1 in [27] still works, even when Rd is an initial
cube.
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Lemma 3.10. There exists a positive constant C such that for any two cubes
Q ⊂ R and f ∈ rbmo (µ),∫

R

|f(y)− m
�Q(f)|

[|y − xQ| + l(Q)]n
dµ(y) ≤ C[1 + δ(Q, R)]2‖f‖rbmo (µ).

Corollary 3.2. Let k ∈ N and Sk be as in Section 2. Then

(i) rbmo (µ) = {b ∈ RBMO(µ) : Sk(b) ∈ L∞(µ)}; moreover, for any
b ∈ rbmo (µ), k‖b‖rbmo (µ) ∼ ‖Sk(b)‖L∞(µ) + ‖b‖RBMO(µ).

(ii) If f ∈ RBMO (µ), then f − Sk(f) ∈ rbmo (µ); moreover, there exists
a positive constant C independent of k and f such that

‖f − Sk(f)‖rbmo (µ) ≤ C‖f‖RBMO(µ).

Proof. To prove (i), assume that b ∈ RBMO(µ) with Sk(b) ∈ L∞(µ) first.
For any f ∈ h1,∞

atb (µ), Proposition 3.7 together with (A-1) and Theorem 5.5
in [16] implies∣∣∣∣∫

Rd

b(x)f(x) dµ(x)

∣∣∣∣
≤

∣∣∣∣∫
Rd

b(x) [f(x) − Sk(f)(x)] dµ(x)

∣∣∣∣ +

∣∣∣∣∫
Rd

b(x)Sk(f)(x) dµ(x)

∣∣∣∣
� ‖f‖h1,∞

atb (µ)[‖b‖RBMO(µ) + ‖Sk(b)‖L∞(µ)].

Thus by Theorem 3.2, b ∈ rbmo (µ) and

‖b‖rbmo (µ) � ‖b‖RBMO(µ) + ‖Sk(b)‖L∞(µ).

Conversely, assume that b ∈ rbmo (µ). If k ≥ 2, then for any x ∈
supp (µ), Qx, k /∈ D by (e) of Lemma 2.2. Therefore, from (A-2) through
(A-4), the fact that Qx, 1 ∈ D, Definition 3.1 and Lemma 3.10, it follows
that for any x ∈ supp (µ),

|Sk(b)(x)| ≤
∫

Qx, k−1

Sk(x, y)
∣∣b(y) − mQx, k

(b)
∣∣ dµ(y)

+
∣∣mQx, k

(b) − mQx, 1(b)
∣∣ +

∣∣mQx, 1(b)
∣∣ � k‖b‖rbmo (µ).

Let k = 1. If Rd is an initial cube, we first claim that for any x ∈
supp (µ), ∫

Rd\Qx, 1

|b(y)|
|x − y|n dµ(y) � ‖b‖rbmo (µ).
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In fact, by the fact that 2j+1Qx, 1 ∈ D for all j ≥ 0 together with Defini-
tion 3.1 and the fact that δ(Qx, 1, Rd) � 1, for any j0 ∈ N,∫

2j0Qx, 1\Qx, 1

|b(y)|
|y − x|n dµ(y) �

j0−1∑
j=0

1

[l(2j+2Qx, 1)]n

∫
2j+1Qx, 1\2jQx,1

|b(y)| dµ(y)

� [1 + δ(Qx, 1, Rd)]‖b‖rbmo (µ) � ‖b‖rbmo (µ).

By letting j0 → ∞, we know that the above claim holds.
By this claim, (A-4) and Definition 3.1 together with Qx, 1 ∈ D, we see

that for any x ∈ supp (µ),

(3.36) |S1(b)(x)| �
∫

Rd

|b(z)|
[|x − z| + l(Qx, 1)]n

dµ(z)

≤
∫

Rd\Qx, 1

|b(z)|
|x − z|n dµ(z) +

∫
Qx, 1

|b(z)|
[l(Qx, 1)]n

dµ(z)

� ‖b‖rbmo (µ).

If Rd is not an initial cube, then by (A-3), (A-4) and Definition 3.1
together with Qx, 0, Qx, 1 ∈ D, for any x ∈ supp (µ),

|S1(b)(x)| �
∫

Qx, 0

|b(z)|
[|x − z| + l(Qx, 1)]n

dµ(z)

≤
∫

Qx, 0\Qx, 1

|b(z)|
|x − z|n dµ(z) +

∫
Qx,1

|b(z)|
[l(Qx, 1)]n

dµ(z) � ‖b‖rbmo (µ).

Combining these estimates above, we have that for each k ∈ N, Sk(b) ∈
L∞(µ) and ‖Sk(b)‖L∞(µ) � k‖b‖rbmo (µ), which implies that

‖Sk(b)‖L∞(µ) + ‖b‖RBMO(µ) � k‖b‖rbmo (µ).

This establishes (i).
For any b ∈ h1,∞

atb (µ), it follows from Proposition 3.7 that

‖b − Sk(b)‖H1(µ) � ‖b‖h1, ∞
atb (µ).

By this fact and the duality between H1(µ) and RBMO (µ), for any f ∈
RBMO (µ),∣∣∣∣∫

Rd

[f(x) − Sk(f)(x)]b(x) dµ(x)

∣∣∣∣ =

∣∣∣∣∫
Rd

f(x)[b(x) − Sk(b)(x)] dµ(x)

∣∣∣∣
� ‖f‖RBMO(µ)‖b‖h1, ∞

atb (µ),

which via Theorem 3.2 implies that f − Sk(f) ∈ rbmo (µ). This estab-
lishes (ii), and hence completes the proof of Corollary 3.2. �



h1
, bmo, blo and Littlewood-Paley g-functions 641

3.2. The spaces RBLO (µ) and rblo (µ)

To begin with, we prove that the definition of the space RBLO (µ) is inde-
pendent of the chosen constants η ∈ (1,∞) and ρ ∈ (1,∞).

Let η ∈ (1,∞). Suppose that for a given f ∈ L1
loc (µ), there exists a

nonnegative constant C̃ and a collection of numbers {fQ}Q such that

(3.37) sup
Q

1

µ(ηQ)

∫
Q

[f(y) − fQ] dµ(y) ≤ C̃,

that for any two cubes Q ⊂ R,

(3.38) |fQ − fR| ≤ C̃[1 + δ(Q, R)],

and that for any cube Q,

(3.39) fQ ≤ essinf
Q

f.

We then define the norm ‖f‖∗∗, η := inf{C̃}, where the infimum is taken over

all the constants C̃ as above and all the numbers {fQ}Q satisfying (3.37)
through (3.39).

With a minor modification of the proof for Lemma 2.6 in [16], we have
the following proposition and we leave the details to the reader.

Proposition 3.8. The norm ‖ · ‖∗∗, η is independent of the choice of the
constant η ∈ (1,∞).

Based on Proposition 3.8, from now on, we write ‖·‖∗∗ instead of ‖·‖∗∗, η.
Proposition 3.9. Let η ∈ (1,∞), ρ ∈ (1,∞) and βρ := ρd+1. Then the
norms ‖ · ‖∗∗ and ‖ · ‖RBLO (µ) are equivalent.

Proof. Suppose that f ∈ L1
loc (µ). We first show that

(3.40) ‖f‖∗∗ � ‖f‖RBLO(µ).

For any cube Q, let fQ := essinf
�Qρ f. Then (3.37) and (3.39) hold with C̃ :=

‖f‖RBLO(µ). To verify that (3.38) also holds, let R0 := 2̃R̃ρ if l(R̃ρ) ≥ l(Q̃ρ)

and R0 := 2̃ρQ̃ρ if l(R̃ρ) < l(Q̃ρ). Then arguing as in the proof of (3.7), we
obtain that for any two cubes Q ⊂ R,

(3.41)

∣∣∣∣essinf
�Qρ

f − essinf
�Rρ

f

∣∣∣∣ � [1 + δ(Q, R)]‖f‖RBLO(µ).
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Now let us establish the converse of (3.40). For f ∈ L1
loc (µ), assume that

there exists a sequence of numbers {fQ}Q satisfying (3.37) through (3.39)

with C̃ replaced by ‖f‖∗∗. For any cube Q, by (3.38), (3.39) and Lemma 2.1,

fQ − essinf
�Qρ

f = fQ − f
�Qρ + f

�Qρ − essinf
�Qρ

f ≤ [1 + δ(Q, Q̃ρ)]‖f‖∗∗ � ‖f‖∗∗.

This fact together with (3.37) yields that for any cube Q,

1

µ(ηQ)

∫
Q

[
f(y) − essinf

�Qρ

f

]
dµ(y)

=
1

µ(ηQ)

∫
Q

[f(y)− fQ] dµ(y) +
µ(Q)

µ(ηQ)

[
fQ − essinf

�Qρ

f

]
� ‖f‖∗∗.

On the other hand, for any (ρ, βρ)-doubling cube Q, since (3.37) holds
with η = ρ by Proposition 3.8, (3.39) implies that

mQ(f) − fQ =
1

µ(Q)

∫
Q

[f(x) − fQ] dµ(x) ≤ µ(ρQ)

µ(Q
‖f‖∗∗ � ‖f‖∗∗.

Then from (3.38) and (3.39), it follows that for any two (ρ, βρ)-doubling
cubes Q ⊂ R,

essinf
Q

f − essinf
R

f ≤ essinf
Q

f − fQ + fQ − fR

≤ mQ(f) − fQ + [1 + δ(Q, R)]‖f‖∗∗ � [1 + δ(Q, R)]‖f‖∗∗.
This establishes the converse of (3.40), and hence completes the proof of
Proposition 3.9. �
Proposition 3.10. Let η ∈ (1,∞), ρ ∈ (1,∞) and βρ := ρd+1. For f ∈
L1

loc (µ), the following statements are equivalent:

(i) f ∈ RBLO (µ).

(ii) There exists a nonnegative constant C3 satisfying (2.5) and that for
any (ρ, βρ)-doubling cube Q,

(3.42)
1

µ(Q)

∫
Q

[
f(x) − essinf

Q
f
]
dµ(x) ≤ C3.

(iii) There exists a nonnegative constant C4 satisfying (3.42) and that for
any (ρ, βρ)-doubling cubes Q ⊂ R,

(3.43) mQ(f) − mR(f) ≤ C4[1 + δ(Q, R)].

Moreover, the minimal constants C3 and C4 are equivalent to ‖f‖RBLO(µ).
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Proof. By Proposition 3.8 and Proposition 3.9, it suffices to establish
Proposition 3.10 with η = ρ = 2. Notice that the fact (i) implies (ii)
automatically. We now prove that (ii) implies (iii). From (2.5) together
with (3.42), it follows that for any doubling cubes Q ⊂ R,

mQ(f) − mR(f) ≤ mQ(f) − essinf
Q

f + essinf
Q

f − essinf
R

f � C3[1 + δ(Q, R)],

which implies (iii).
Finally, assume that (iii) holds. For any cube Q ⊂ Rd and any x ∈ Q ∩

supp (µ), let Qx be the biggest doubling cube centered at x with side length
2kl(Q), k ≤ 0, and l(Qx) ≤ 1

20
l(Q). Then Lemma 2.1 yields that δ(Qx, Q) �

1 . By the Besicovitch covering theorem, there exists a subsequence of cubes
{Qxi

}i which covers Q ∩ supp (µ) and has a bounded overlap. Moreover,
from (3.42), (3.43) and the fact that Qxi

⊂ 2Q, it follows that

essinf
Qxi

f − essinf
�

2 �Q

f ≤ mQxi
(f) − m

�

2 �Q
(f) + m

�

2 �Q
(f) − essinf

�

2 �Q

f

� C4[1 + δ(Qxi
, 2̃Q̃)] � C4.

This fact together with the facts that {Qxi
}i covers Q ∩ supp (µ) with

a bounded overlap, that Qxi
⊂ 2Q, that Qxi

is doubling and (3.42) implies
that∫

Q

[
f(x) − essinf

�Q
f
]
dµ(x)

≤
∑

i

∫
Qxi

[
f(x) − essinf

Qxi

f
]
dµ(x) +

∑
i

µ(Qxi
)

[
essinf

Qxi

f − essinf
�

2 �Q

f

]
� C4

∑
i

µ(Qxi
) � C4µ(2Q).

On the other hand, from (3.43) and (3.42), it follows that for any doubling
cubes Q ⊂ R,

essinf
Q

f − essinf
R

f ≤ mQ(f) − mR(f) + mR(f) − essinf
R

f � C4[1 + δ(Q, R)].

Therefore, we see f ∈ RBLO (µ), which implies (i). This completes the
proof of Proposition 3.10. �
Remark 3.9. (i) Let η ∈ (1,∞) and ρ ∈ (1,∞). From Proposition 3.8
and Proposition 3.9, it follows that the definition of the space RBLO(µ) is
independent of the choices of η and ρ. From now on, we will always assume
η = ρ = 2 when we consider RBLO(µ).

(ii) From Lemma 2.8 in [16], Proposition 3.8 and Proposition 3.9, it is
easy to see that RBLO(µ) ⊂ RBMO (µ).
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We next recall the notion of the natural maximal operator, which is a
variant in the non-doubling context of the so-called natural maximal oper-
ator on Rd in [1, 15] and was introduced by Jiang in [7]. For any locally
integrable function f and x ∈ Rd, define

M(f)(x) := sup
Q�x

Q doubling

1

µ(Q)

∫
Q

f(y) dµ(y).

Recall that the non centered doubling maximal operator N(f) := M(|f |) is
defined in [16, p. 126].

The following theorem is an improvement of Theorem 2 of [7] by prov-
ing that (3.45) below holds automatically under the assumption that f ∈
RBMO (µ) and M(f) is finite almost everywhere.

Theorem 3.3. Let f ∈ RBMO (µ). Then M(f) is either infinite every-
where or finite almost everywhere, and in the latter case, there exists a pos-
itive constant C independent of f such that

‖M(f)‖RBLO (µ) ≤ C‖f‖RBMO(µ).

Proof. Suppose that f ∈ RBMO(µ) and there exists a point x0 ∈ Rd such
that M(f)(x0) < ∞. It then follows from Lemma 2 in [7] that there exists
a positive constant C independent of f such that for any doubling cube
Q 
 x0,

(3.44)
1

µ(Q)

∫
Q

M(f)(x) dµ(x) ≤ C‖f‖RBMO(µ) + essinf
Q

M(f).

By (3.44) and Proposition 3.10, Theorem 3.3 is reduced to proving that
for any doubling cubes Q ⊂ R,

(3.45) mQ[M(f)] − mR[M(f)] � [1 + δ(Q, R)]‖f‖RBMO(µ).

To prove (3.45), for any point x ∈ Q, we further set

M1(f)(x) := sup
P�x, P doubling

l(P )≤4l(R)

1

µ(P )

∫
P

f(y) dµ(y),

M2(f)(x) := sup
P�x, P doubling

l(P )>4l(R)

1

µ(P )

∫
P

f(y) dµ(y),

U1, Q := {x ∈ Q : M1(f)(x) ≥ M2(f)(x)} and U2, Q := Q \ U1, Q.
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Then for any x ∈ Q, M(f)(x) = max(M1(f)(x),M2(f)(x)). By writing

f = [f − mR(f)]χ 4
3
Q + [f − mR(f)]χRd\ 4

3
Q + mR(f)

and using the fact that mR(f) ≤ mR[M(f)], we see that

mQ[M(f)] − mR[M(f)] ≤ 1

µ(Q)

∫
U1, Q

M1([f − mR(f)]χ 4
3
Q)(x) dµ(x)

+
1

µ(Q)

∫
U1, Q

M1([f − mR(f)]χRd\ 4
3
Q)(x) dµ(x)

+
1

µ(Q)

∫
U2, Q

{M2(f)(x) − mR[M(f)]} dµ(x)

= : I1 + I2 + I3.

Notice that M(|f |) = N(f), which is bounded on L2(µ) (see [16, p. 126]).
From this, the Hölder inequality, Corollary 3.5 in [16], the doubling property
of Q and Lemma 2.1, it follows that

I1 ≤
{

1

µ(Q)

∫
Q

{
N

(
[f − mR(f)]χ 4

3
Q

)
(x)

}2

dµ(x)

}1/2

�
{

1

µ(Q)

∫
4
3
Q

|f(x) − mR(f)|2 dµ(x)

}1/2

�
{

1

µ(Q)

∫
4
3
Q

∣∣∣f(x) − m
�4
3
Q
(f)

∣∣∣2 dµ(x)

}1/2

+
∣∣∣m
�4
3
Q
(f) − mQ(f)

∣∣∣
+|mQ(f) − mR(f)|

� [1 + δ(Q, R)]‖f‖RBMO(µ).

To estimate I2, we will prove that for any point x ∈ Q and any doubling
cube P 
 x with l(P ) ≤ 4l(R),

(3.46) J : =
1

µ(P )

∫
P

|f(y)− mR(f)|χRd\ 4
3
Q(y) dµ(y)

� [1 + δ(Q, R)]‖f‖RBMO(µ).

If P ⊂ 4
3
Q, then J ≡ 0 and (3.46) holds automatically. Assume that P �⊂

4
3
Q. We then have that l(P ) ≥ 1

6
l(Q), which together with the fact that

l(P ) ≤ 4l(R) implies that Q ⊂ 13P ⊂ 57R. Thus, Lemma 2.1 together with
(2.10) in [16] yields that

J ≤ 1

µ(P )

∫
P

|f(y)− mP (f)| dµ(y) +
∣∣mP (f) − m

�13P (f)
∣∣

+
∣∣m
�13P (f) − mQ(f)

∣∣ + |mQ(f) − mR(f)| � [1 + δ(Q, R)]‖f‖RBMO(µ).
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Now we estimate I3. Notice that for any x ∈ Q and any doubling cube P
containing x with l(P ) > 4l(R), R ⊂ 3

2
P . Then from the fact that m

�3
2
P
(f) ≤

mR[M(f)], it follows that

mP (f) − mR[M(f)] ≤
∣∣∣mP (f) − m

�3
2
P
(f)

∣∣∣ + m
�3
2
P
(f) − mR[M(f)]

� ‖f‖RBMO(µ).

Taking the supremum over all doubling cubes P containing x with l(P ) >
4l(R), we have that for any x ∈ Q,

M2(f)(x) − mR[M(f)] � ‖f‖RBMO(µ).

This implies that I3 � ‖f‖RBMO(µ).
Combining the estimates for I1 through I3 leads to (3.45), which together

with (3.44) implies that M is bounded from RBMO (µ) to RBLO (µ) and
hence completes the proof of Theorem 3.3. �
Remark 3.10. (i) If µ is the d-dimensional Lebesgue measure, Theorem 3.3
was obtained by Bennett in [1].

(ii) From Theorem 3.3 and the facts that for any f ∈ RBMO (µ), |f | ∈
RBMO (µ) with ‖|f |‖RBMO(µ) � ‖f‖RBMO(µ) (see [16, Proposition 2.5]) and
that N(f) = M(|f |), it follows that if f ∈ RBMO (µ), then N(f) is ei-
ther infinite everywhere or finite almost everywhere, and in the latter case,
N(f) ∈ RBLO (µ) and there exists a positive constant C independent of f
such that

‖N(f)‖RBLO(µ) ≤ C‖f‖RBMO(µ).

If µ is the d-dimensional Lebesgue measure and RBLO(µ) is replaced by
RBMO (µ), this conclusion was obtained by Bennett, DeVore and Sharpley
in [2].

It was proved in [7] that f ∈ RBLO (µ) if and only if M(f)−f ∈ L∞(µ)
and f satisfies (3.43), and moreover, ‖f‖RBLO(µ) ∼ ‖M(f) − f‖L∞(µ). As
a corollary of this fact and Theorem 3.3, we can improve Theorem 3 of [7]
by removing the regularity assumption on M(f) as in (3.45). We omit the
details here.

Theorem 3.4. A locally integrable function f belongs to RBLO (µ) if and
only if there exist h ∈ L∞(µ) and g ∈ RBMO (µ) with M(g) finite µ-a. e.
such that

(3.47) f = M(g) + h.

Furthermore, ‖f‖RBLO(µ) ∼ inf(‖g‖RBMO(µ) + ‖h‖L∞(µ)), where the infimum
is taken over all representations of f as in (3.47).
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Now we introduce the definition of the space rblo (µ).

Definition 3.4. Let η ∈ (1,∞), ρ ∈ [η,∞) and βρ := ρd+1. A function
f ∈ L1

loc (µ) is said to belong to the space rblo (µ) if there exists a nonnegative

constant C̃ such that for any cube Q /∈ D,

1

µ(ηQ)

∫
Q

[
f(x) − essinf

�Qρ

f
]
dµ(x) ≤ C̃,

that for any two (ρ, βρ)-doubling cubes Q ⊂ R with Q /∈ D,

(3.48) essinf
Q

f − essinf
R

f ≤ C̃[1 + δ(Q, R)],

that for any cube Q ∈ D,

(3.49)
1

µ(ηQ)

∫
Q

|f(y)| dµ(y) ≤ C̃,

and that for any cube Q ∈ D,

(3.50)

∣∣∣∣essinf
�Qρ

f

∣∣∣∣ ≤ C̃.

Moreover, we define the rblo (µ) norm of f by the minimal constant C̃ as
above and denote it by ‖f‖rblo (µ).

We now prove that the definition of the space rblo (µ) is independent of
the chosen constants η and ρ. To this end, let η ∈ (1,∞). Suppose that for

a given f ∈ L1
loc (µ), there exists a nonnegative constant C̃ and a collection

of numbers {fQ}Q such that

(3.51) sup
Q/∈D

1

µ(ηQ)

∫
Q

[f(y) − fQ] dµ(y) ≤ C̃,

that for any two cubes Q ⊂ R with Q /∈ D,

(3.52) |fQ − fR| ≤ C̃[1 + δ(Q, R)],

that for any cube Q ∈ D,

(3.53)
1

µ(ηQ)

∫
Q

|f(y)| dµ(y) + |fQ| ≤ C̃,

and that for any cube Q,

(3.54) fQ ≤ essinf
Q

f.
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We then define the norm ‖f‖	, η := inf{C̃}, where the infimum is taken over

all the constants C̃ as above and all the numbers {fQ}Q satisfying (3.51)
through (3.54).

Similar to Proposition 3.8, with a slight modification of the proof for
Proposition 3.2, we have the following property on the norm ‖ · ‖	, η and we
leave the details to the reader.

Proposition 3.11. The norm ‖ · ‖	, η is independent of the choice of the
constant η ∈ (1,∞).

Based on Proposition 3.11, from now on, we write ‖·‖	 instead of ‖·‖	, η.
The proofs of the following two propositions are slight modifications of the
proofs for Proposition 3.3 and Proposition 3.4. We leave the details to the
reader.

Proposition 3.12. Let η, ρ and βρ be as in Definition 3.4. Then the norms
‖ · ‖	 and ‖ · ‖rblo (µ) are equivalent.

Proposition 3.13. Let η ∈ (1,∞), ρ ∈ [η,∞) and βρ := ρd+1. For f ∈
L1

loc (µ), the following statements are equivalent:

(i) f ∈ rblo (µ).

(ii) There exists a nonnegative constant C5 satisfying (3.48) through (3.50)
and that for any (ρ, βρ)-doubling cube Q /∈ D,

(3.55)
1

µ(Q)

∫
Q

[
f(x) − essinf

Q
f
]
dµ(x) ≤ C5.

(iii) There exists a nonnegative constant C6 satisfying (3.49), (3.50), (3.55)
and that for any (ρ, βρ)-doubling cubes Q ⊂ R with Q /∈ D,

mQ(f) − mR(f) ≤ C6[1 + δ(Q, R)].

Moreover, the minimal constants C5 and C6 as above are equivalent to
‖f‖rblo (µ).

Remark 3.11. Let η ∈ (1,∞) and ρ ∈ [η,∞). From Proposition 3.11
and Proposition 3.12, it follows that the definition of the space rblo (µ) is
independent of the choices of η and ρ. From now on, we will always assume
η = ρ = 2 when we consider rblo (µ).

From Definition 2.9 and Definition 3.4 together with Proposition 3.2 and
Proposition 3.11, it is easy to see that rblo (µ) ⊂ {RBLO(µ) ∩ rbmo (µ)}.
Therefore, as a consequence of Corollary 3.2, we have the following result.
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Corollary 3.3. Let k ∈ N and Sk be as in Section 2. Then

rblo (µ) ⊂ {b ∈ RBLO (µ) : Sk(b) ∈ L∞(µ)}.

We now establish the relation between the space RBLO (µ) and the space
rblo (µ) and some characterizations of the space rblo (µ) by certain maximal
function.

Proposition 3.14. Let k ∈ N and Sk be as in Section 2. If f ∈ RBLO (µ),
then f − Skf ∈ rblo (µ) and

‖f − Sk(f)‖rblo (µ) ≤ C‖f‖RBLO(µ),

where C is a positive constant independent of k and f .

Proof. Without loss of generality, we may assume that ‖f‖RBLO(µ) = 1.
We first show that for any cube Q ∈ D,

(3.56)
1

µ(2Q)

∫
Q

|f(x) − Sk(f)(x)| dµ(x) � 1.

To do so, let us consider the following two cases:
Case (i) There exists some x0 ∈ Q ∩ supp (µ) such that Q ⊂ Qx0, k−2.

In this case, we have Hx0
Q ≥ k − 2. On the other hand, by the fact that

Q ∈ D and Lemma 2.2 (d), we see that Hx0
Q ≤ 1, which in turn implies

that 1 ≤ k ≤ 3. Moreover, from the facts that −2 ≤ Hx0
Q − k ≤ 0 and that

Q ⊂ Qx0, k−2, Lemma 2.2 (c) and Lemma 4.2 in [17], it follows that for any
x ∈ supp (µ)∩Q, −1 ≤ Hx

Q−k+2 ≤ 3 and Q ⊂ Qx, k−3. By this fact, (3.41),
Lemma 2.1 and Lemma 2.2 (g), we have that for any x ∈ supp (µ) ∩ Q,

(3.57)

∣∣∣∣essinf
�Q

f − essinf
Qx, k

f

∣∣∣∣ ≤ ∣∣∣∣essinf
�Q

f − essinf
Qx, k−3

f

∣∣∣∣ +

∣∣∣∣essinf
Qx, k−3

f − essinf
Qx, k

f

∣∣∣∣ � 1.

For each x ∈ Q ∩ supp (µ), write

|f(x) − Sk(f)(x)|
≤ f(x) − essinf

�Q
f +

∣∣∣ essinf
�Q

f − essinf
Qx, k

f
∣∣∣ +

∣∣∣ essinf
Qx, k

f − Sk(f)(x)
∣∣∣.

Notice that an easy argument involving (A-2) through (A-4) in Section 2
yields that for any x ∈ supp (µ),

(3.58)
∣∣∣ essinf

Qx, k

f − Sk(f)(x)
∣∣∣ � 1.
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Then (3.56) follows from the combination of (3.57), (3.58) and the following
trivial fact that

1

µ(2Q)

∫
Q

[
f(x) − essinf

�Q
f

]
dµ(x) ≤ 1.

Case (ii) For any x ∈ Q ∩ supp (µ), Q �⊂ Qx, k−2. In this case, notice
that by Lemma 2.2 (b), for any x ∈ Q, Qx, k−1 ⊂ 7

5
Q. Then from (A-1),

(A-2), the Tonelli theorem and Proposition 3.8, it follows that

1

µ(2Q)

∫
Q

|f(x) − Sk(f)(x)| dµ(x)

≤ 1

µ(2Q)

∫
Q

∣∣∣f(x) − essinf
�7
5
Q

f
∣∣∣ dµ(x) +

1

µ(2Q)

∫
Q

∣∣∣ essinf
�7
5
Q

f − Sk(f)(x)
∣∣∣ dµ(x)

≤ 2

µ(2Q)

∫
7
5
Q

[
f(y) − essinf

�7
5
Q

f

]
dµ(y) � 1.

Now we prove that for any doubling cube Q,

(3.59) mQ (f − Sk(f)) − essinf
Q

[f − Sk(f)] � 1.

From Proposition 3.10 and (3.58), it follows that

mQ (f − Sk(f)) − essinf
Q

[f − Sk(f)]

≤ 1

µ(Q)

∫
Q

{
[f(x) − Sk(f)(x)] − essinf

Q
f − essinf

Q
[−Sk(f)]

}
dµ(x)

� 1 +
1

µ(Q)

∫
Q

{[
−Sk(f)(x) + essinf

Qx, k

f

]
+

[
−essinf

Qx, k

f − essinf
Q

[−Sk(f)]

]}
dµ(x) � 1.

Thus (3.59) holds.
By (3.56) and (3.59), for any cube Q ∈ D,∣∣∣∣essinf

�Q
[f − Skf ]

∣∣∣∣
≤

∣∣∣∣essinf
�Q

[f − Skf ] − m
�Q (f − Sk(f))

∣∣∣∣ +
∣∣∣m
�Q (f − Sk(f))

∣∣∣ � 1.

From this together with (3.56), (3.59) and Proposition 3.13, to complete
the proof of Proposition 3.14, it remains to prove that for any two doubling
cubes Q ⊂ R with Q /∈ D,

mQ(f − Sk(f)) − mR(f − Sk(f)) � 1 + δ(Q, R).
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By Proposition 3.10, we first write

mQ(f − Sk(f)) − mR(f − Sk(f))

= mQ(f) − mR(f) − mQ(Sk(f)) + mR(Sk(f))

� [1 + δ(Q, R)] − mQ(Sk(f)) + mR(Sk(f)).

As in the proof of (3.56), we consider the following three cases.
Case (1) There exists some x0 ∈ R ∩ supp (µ) such that R ⊂ Qx0, k−2.

In this case, Lemma 4.2 in [17] and Lemma 2.1 yield that for any x ∈ Q ∩
supp (µ) and y ∈ R ∩ supp (µ), R ⊂ Qx0, k−2 ⊂ Qx, k−3 ⊂ Qy, k−4 ⊂ Qx, k−5

with δ(Qy, k−4, Qx, k−5) � 1. This implies that∣∣∣∣essinf
Qx, k

f − essinf
Qy, k

f

∣∣∣∣
≤

∣∣∣∣essinf
Qx, k

f − essinf
Qx, k−5

f

∣∣∣∣ +

∣∣∣∣essinf
Qx, k−5

f − essinf
Qy, k−4

f

∣∣∣∣ +

∣∣∣∣essinf
Qy, k−4

f − essinf
Qy, k

f

∣∣∣∣ � 1,

which together with (3.58) yields that

−mQ(Sk(f)) + mR(Sk(f))

≤ 1

µ(Q)

1

µ(R)

∫
Q

∫
R

{∣∣∣∣Sk(f)(x) − essinf
Qx, k

f

∣∣∣∣ +

∣∣∣∣essinf
Qx, k

f − essinf
Qy, k

f

∣∣∣∣
+

∣∣∣∣essinf
Qy, k

f − Sk(f)(y)

∣∣∣∣} dµ(x) dµ(y) � 1.

Case (2) For any x ∈ R ∩ supp (µ), Q �⊂ Qx, k−2. In this case, for any
x ∈ R ∩ supp (µ), R �⊂ Qx, k−2. It then follows from Lemma 2.2 (b) that
for any x ∈ Q ∩ supp (µ) and y ∈ R ∩ supp (µ), Qx, k ⊂ Qx, k−1 ⊂ 7

5
Q and

Qy, k ⊂ 7
5
R. By the Tonelli theorem and Lemma 2.1,

−mQ(Sk(f)) + mR(Sk(f))

≤ 1

µ(Q)

1

µ(R)

∫
Q

∫
R

{∣∣∣∣∣Sk(f)(x) − essinf
�7
5
Q

f

∣∣∣∣∣ +

∣∣∣∣∣essinf
�7
5
Q

f − essinf
�7
5
R

f

∣∣∣∣∣
+

∣∣∣∣∣essinf
�7
5
R

f − Sk(f)(y)

∣∣∣∣∣
}

dµ(x) dµ(y) � 1 + δ(Q, R).

Case (3) For any x ∈ R ∩ supp (µ), R �⊂ Qx, k−2 and there exists some
x0 ∈ R ∩ supp (µ) such that Q ⊂ Qx0, k−2. In this case, Lemma 4.2
in [17] implies that for any x ∈ Q ∩ supp (µ), Q ⊂ Qx0, k−2 ⊂ Qx, k−3, and
Lemma 2.2(b) implies that for any x ∈ Q ∩ supp (µ), Qx, k ⊂ Qx, k−1 ⊂ 7

5
R.
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By these facts, Lemma 2.1 (e) and (3.41), we have that for any x ∈
Q ∩ supp (µ),∣∣∣∣∣essinf

Qx, k

f − essinf
�7
5
R

f

∣∣∣∣∣ ≤ 1 + δ

(
Qx, k,

7

5
R

)
� 1 + δ(Q, R).

From this, (3.58) and the Tonelli theorem, we deduce that

−mQ(Sk(f)) + mR(Sk(f))

≤ 1

µ(Q)

1

µ(R)

∫
Q

∫
R

{ ∣∣∣∣Sk(f)(x) − essinf
Qx, k

f

∣∣∣∣ +

∣∣∣∣∣essinf
Qx, k

f − essinf
�7
5
R

f

∣∣∣∣∣
+

∣∣∣∣essinf
�7
5
R

f − Sk(f)(y)

∣∣∣∣} dµ(x) dµ(y) � 1 + δ(Q, R),

which completes the proof of Proposition 3.14. �
We next define the local natural maximal operator, which is a local variant

of M. For any locally integrable function f and x ∈ Rd, let

Ml(f)(x) := sup
Q�x, Q/∈D
Q doubling

1

µ(Q)

∫
Q

f(y) dµ(y).

Lemma 3.11. Let f be a locally integrable function. Then f ∈ rblo (µ) if
and only if Ml(f) − f ∈ L∞(µ) and f satisfies (3.48), (3.49) and (3.50).
Furthermore, ‖Ml(f) − f‖L∞(µ) ∼ ‖f‖rblo (µ).

Proof. Assuming that f ∈ rblo (µ), we then see that (3.48) through (3.50)
hold. For µ-a. e. x ∈ Rd, there exists a sequence of doubling cubes {Qk}k

centered at x with l(Qk) → 0 such that

(3.60) lim
k→∞

1

µ(Qk)

∫
Qk

f(y) dµ(y) = f(x);

see [16, p. 96]. Let x be any point satisfying (3.60) and Q containing x be
a doubling cube with Q /∈ D. Then we obtain that f(x) ≥ essinfQ f and so
mQ(f) − f(x) � ‖f‖rblo (µ). Taking the supremum over all doubling cubes
containing x in the complement of D, we have Ml(f)(x)−f(x) � ‖f‖rblo (µ).

Conversely, assume that f satisfies (3.48) through (3.50) and Ml(f)−f ∈
L∞(µ). Then it is easy to see that for any doubling cube Q �∈ D and µ-a. e.
x ∈ Q, f(x) ≥ mQ(f) − ‖Ml(f) − f‖L∞(µ). This yields that

essinf
Q

f ≥ mQ(f) − ‖Ml(f) − f‖L∞(µ),

which together with (3.48) through (3.50) and Proposition 3.13 implies that
f ∈ rblo (µ) and ‖f‖rblo (µ) � ‖Ml(f) − f‖L∞(µ). Therefore, the proof of
Lemma 3.11 is completed. �
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Lemma 3.12. If f ∈ rbmo (µ), then there exists a nonnegative constant C̃
independent of f such that for any doubling cube Q /∈ D,

1

µ(Q)

∫
Q

Ml(f)(x) dµ(x) ≤ C̃‖f‖rbmo (µ) + essinf
Q

Ml(f).

Moreover, if Ml(f) is µ-a. e. finite, then

1

µ(Q)

∫
Q

Ml(f)(x) dµ(x) − essinf
Q

Ml(f) ≤ C̃‖f‖rbmo (µ).

Proof. Fix f ∈ rbmo (µ). Without loss of generality, we may assume that
‖f‖rbmo (µ) = 1. For any doubling cube Q /∈ D, write

f = [f − mQ(f)]χ 4
3
Q + mQ(f)χ 4

3
Q + fχRd\ 4

3
Q.

Obviously, Ml is bounded on L2(µ) since Ml(f) ≤ N(f). Then by this
fact, the Hölder inequality, the doubling property of Q, Corollary 3.1 and
Lemma 2.1,∫

Q

Ml

[
(f − mQ(f))χ 4

3
Q

]
(x) dµ(x)

�
{∫

4
3
Q

|f(x) − mQ(f)|2 dµ(x)

}1/2

[µ(Q)]1/2

�
{∫

4
3
Q

∣∣∣f(x) − m
�4
3
Q
(f)

∣∣∣2 dµ(x)

}1/2

[µ(Q)]1/2 + µ
(
Q
)∣∣∣mQ(f) − m

�4
3
Q
(f)

∣∣∣
� µ(Q).

From this, it follows that

1

µ(Q)

∫
Q

Ml

[
(f − mQ(f))χ 4

3
Q

]
(x) dµ(x) � 1.

Therefore, with the aid of Proposition 3.13, Lemma 3.12 is reduced to
proving that there exists a positive constant C such that for µ-a. e. x ∈ Q,

(3.61) Ml

[
mQ(f)χ 4

3
Q + fχRd\ 4

3
Q

]
(x) ≤ C + essinf

Q
Ml(f).

For any doubling cube R containing x with R /∈ D and any y ∈ Q, if R ⊂ 4
3
Q,

then

E : =
1

µ(R)

∫
R

[
mQ(f)χ 4

3
Q(z) + f(z)χRd\ 4

3
Q(z)

]
dµ(z) −Ml(f)(y)

≤ mQ(f) −Ml(f)(y) ≤ 0.
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Assume that R �⊂ 4
3
Q now. We then see that l(R) ≥ 1

6
l(Q). There exist two

cases.
Case (i) l(R) ≤ 4l(Q). In this case, it is easy to see that Q ⊂ 13R ⊂ 57Q

with the aid of the fact that l(R) ≥ 1
6
l(Q). From this fact, Proposi-

tion 3.4, (3.7) and Lemma 2.1, it follows that

E =
1

µ(R)

∫
R

[f(z) − mQ(f)]χRd\ 4
3
Q(z) dµ(z) + mQ(f) −Ml(f)(y)

≤ 1

µ(R)

∫
R

[|f(z) − mR(f)| + ∣∣mR(f) − m
�13R(f)

∣∣
+

∣∣m
�13R(f) − mQ(f)

∣∣] dµ(z)

� 1 + δ(Q, 13R) � 1.

Case (ii) l(R) > 4l(Q). In this case, Lemma 2.2 (a) and (d) imply
that Q ⊂ 3

2
R ⊂ Qz, Hz

R−1 and Hz
R ≥ 0 for any z ∈ R ∩ supp (µ). Let

R1 := {z ∈ R : Qz, Hz
R−1 /∈ D} and R2 := R \ R1. Then we can write

E =
1

µ(R)

∫
R1

[
mQ(f)χ 4

3
Q(z) + f(z)χRd\ 4

3
Q(z) −Ml(f)(y)

]
dµ(z)

+
1

µ(R)

∫
R2

· · ·
= : E1 + E2.

If z ∈ R1, then mQz, Hz
R

−1
(f) ≤ Ml(f)(y) since y ∈ Qz, Hz

R−1. Therefore,

by (3.7), Proposition 3.4, Lemma 2.1, Lemma 2.2 (g) and the doubling
property of Q and R,

E1 ≤ 1

µ(R)

∫
R1

[∣∣∣mQ(f) − m
�3
2
R
(f)

∣∣∣χ 4
3
Q(z) +

∣∣∣f(z) − m
�3
2
R
(f)

∣∣∣χRd\ 4
3
Q(z)

+
∣∣∣m
�3
2
R
(f) − mQz, Hz

R
−1

(f)
∣∣∣ + mQz, Hz

R
−1

(f) −Ml(f)(y)
]

dµ(z)

� µ(4
3
Q)

µ(R)

∣∣∣mQ(f) − m
�3
2
R
(f)

∣∣∣ +
1

µ(R)

∫
R

[
1 + δ

(
3

2
R, Qz, Hz

R−1

)]
dµ(z)

� 1

µ(R)

∫
3
2
R

∣∣∣f(z) − m
�3
2
R
(f)

∣∣∣ dµ(z) + 1 � 1.

On the other hand, for z ∈ R2, Lemma 2.2 (d) implies that Hz
R ≤ 2, from

which it follows that Qy, 2 ⊂ Qy, Hz
R−1. The fact that y ∈ (Qy, Hz

R−1∩Qz, Hz
R−1)

together with Lemma 4.2 in [17] implies that Qy, Hz
R−1 ⊂ Qz, Hz

R−2 ⊂ Qy, Hz
R−3.

Moreover, the fact that Hz
R ≥ 0 yields that Qy, Hz

R−3 ⊂ Qy,−3 (Recall that
by Definition 2.4, if Rd is an initial cube, then for any y ∈ supp (µ) and
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k ≤ 0, Q(y, k) = Rd). Thus, from the fact that mQy, 2(f) ≤ Ml(f)(y), (3.7),
Proposition 3.4, Lemma 2.1, Lemma 2.2 (g) and the doubling property of Q
and R, it follows that

E2 ≤ 1

µ(R)

∫
R2

[∣∣∣mQ(f) − m
�3
2
R
(f)

∣∣∣χ 4
3
Q(z) +

∣∣∣f(z) − m
�3
2
R
(f)

∣∣∣χRd\ 4
3
Q(z)

+
∣∣∣m
�3
2
R
(f) − mQz, Hz

R
−2

(f)
∣∣∣ +

∣∣∣mQz, Hz
R

−2
(f) − mQy, 2(f)

∣∣∣] dµ(z)

� 1

µ(R)

∫
R

[1 + δ(Qy, 2, Qz, Hz
R−2)] dµ(z) � 1.

Then (3.61) holds, which completes the proof of Lemma 3.12. �
The following Theorem 3.5 and Theorem 3.6 are local variants of Theo-

rem 3.3 and Theorem 3.4; see also [7, 1, 15]. We point out that unlike the
case RBLO (µ), if f ∈ rbmo (µ), then Ml(f) is finite almost everywhere.

Theorem 3.5. Ml is bounded from rbmo (µ) to rblo (µ), namely, there
exists a positive constant C such that for all f ∈ rbmo (µ),

‖Ml(f)‖rblo (µ) ≤ C‖f‖rbmo (µ).

Proof. Fix f ∈ rbmo (µ). By the homogeneity of Ml, we only need to
prove the conclusion of the theorem for ‖f‖rbmo (µ) = 1. We first prove that
for any cube Q ∈ D,

(3.62)
1

µ(2Q)

∫
Q

|Ml(f)(x)| dµ(x) � 1.

Write f = fχ 4
3
Q + fχRd\ 4

3
Q. Then by the Hölder inequality, the bound-

edness of Ml in L2(µ) and Corollary 3.1, we deduce that

1

µ(2Q)

∫
Q

∣∣∣Ml

(
fχ 4

3
Q

)
(x)

∣∣∣ dµ(x) �
{

1

µ(2Q)

∫
4
3
Q

|f(x)|2 dµ(x)

}1/2

� 1.

On the other hand, for any x ∈ Q and any doubling cube P 
 x with P /∈ D
and P ∩ (Rd \ 4

3
Q) �= ∅, it is easy to see that l(P ) ≥ 1

6
l(Q). This implies that

Q ⊂ 13P and hence 1̃3P ∈ D. Therefore, Proposition 3.4 and Lemma 2.1
yield that

1

µ(P )

∫
P

|f(z)| dµ(z)

≤ 1

µ(P )

∫
P

|f(z) − mP (f)| dµ(z) +
∣∣mP (f) − m

�13P (f)
∣∣ +

∣∣m
�13P (f)

∣∣
� 1.

This further implies that (3.62) holds, and hence Ml(f) is finite almost
everywhere.
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Now we prove that for any doubling cubes Q ⊂ R with Q /∈ D,

(3.63) mQ[Ml(f)] − mR[Ml(f)] � 1 + δ(Q, R).

Let

Q1 : = {x ∈ Q : for any doubling cube P containing x,

if l(P ) > 4l(R), then P ∈ D}
and Q2 := Q \ Q1. Moreover, for any x ∈ Q, set

M1
l (f)(x) := sup

P�x, P doubling

P /∈D and l(P )≤4l(R)

1

µ(P )

∫
P

f(y) dµ(y),

and for any x ∈ Q2, set

M2
l (f)(x) := sup

P�x, P doubling

P /∈D and l(P )>4l(R)

1

µ(P )

∫
P

f(y) dµ(y),

U1, Q := {x ∈ Q2 : M1
l (f)(x) ≥ M2

l (f)(x)} and U2, Q := Q2 \ U1, Q.

Then for any x ∈ (Q1 ∪U1, Q), Ml(f)(x) = M1
l (f)(x) and for any x ∈ U2, Q,

Ml(f)(x) = M2
l (f)(x). By writing

f = [f − mR(f)]χ 4
3
Q + [f − mR(f)]χRd\ 4

3
Q + mR(f)

and using the fact that mR ≤ mR[Ml(f)], we see that

mQ[Ml(f)] − mR[Ml(f)]

≤ 1

µ(Q)

∫
(Q1∪U1, Q)

M1
l ([f − mR(f)]χ 4

3
Q)(x) dµ(x)

+
1

µ(Q)

∫
(Q1∪U1, Q)

M1
l ([f − mR(f)]χRd\ 4

3
Q)(x) dµ(x)

+
1

µ(Q)

∫
U2, Q

{M2
l (f)(x) − mR[Ml(f)]} dµ(x)

=: F1 + F2 + F3.

Using the estimate for I1 in the proof of Theorem 3.3, we see that F1 �
1 + δ(Q, R). On the other hand, an argument similar to (3.46) yields that
for any point x ∈ (Q1 ∪U1, Q) and any doubling cube P 
 x with P /∈ D and
l(P ) ≤ 4l(R),

1

µ(P )

∫
P

|f(y)− mR(f)|χRd\ 4
3
Q(y) dµ(y) � 1 + δ(Q, R).

This implies that F2 � 1 + δ(Q, R).
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To estimate F3, it suffices to prove that for any doubling cube P con-
taining x with P /∈ D and l(P ) > 4l(R), mP (f) − mR[Ml(f)] � 1. For any
z ∈ P ∩ supp (µ), Lemma 2.2 (a) and (d) imply that R ⊂ 3

2
P ⊂ Qz, Hz

P−1

and Hz
P ≥ 0. Set

R1 := {y ∈ R : there exists a point zy ∈ P such that Qzy, H
zy
P −1 /∈ D}

and R2 := R \ R1. Then we have

mP (f) − mR[Ml(f)]

=
1

µ(R)

∫
R1

[mP (f) −Ml(f)(y)] dµ(y) +
1

µ(R)

∫
R2

· · · .

Observe that for any y ∈ R1, mQ
zy, H

zy
P

−1
(f) ≤ Ml(f)(y). This together

with (3.7), Lemma 2.1 and Lemma 2.2 (g) implies that

mP (f) −Ml(f)(y) ≤
∣∣∣∣mP (f) − mQ

zy, H
zy
P

−1
(f)

∣∣∣∣ + mQ
zy, H

zy
P

−1
(f) −Ml(f)(y)

≤
∣∣∣mP (f) − m

�3
2
P
(f)

∣∣∣ +

∣∣∣∣m�3
2
P
(f) − mQ

zy, H
zy
P

−1
(f)

∣∣∣∣ � 1.

On the other hand, for any y ∈ (R2 ∩ supp (µ)), Lemma 2.2 (d) implies
that Hz

P ≤ 2 for any z ∈ (P ∩ supp (µ)). Moreover, an easy argument
involving the facts that y ∈ (Qy, Hz

P−1 ∩ Qz, Hz
P−1) and that Hz

P ≥ 0 and
Lemma 4.2 in [17] yields that

Qy, 2 ⊂ Qy, Hz
P−1 ⊂ Qz, Hz

P−2 ⊂ Qy, Hz
P−3 ⊂ Qy,−3.

Thus, from Lemma 2.2 (g) and the fact that Ml(f)(y) ≥ mQy, 2(f), it follows
that

mP (f) −Ml(f)(y) ≤
∣∣∣mP (f) − mQz, Hz

P
−2

(f)
∣∣∣ +

∣∣∣mQz, Hz
P

−2
(f) − mQy, 2(f)

∣∣∣
� 1 + δ(P, Qz,Hz

P−2) + δ(Qy, 2, Qz, Hz
P−2) � 1.

Therefore, combining these estimates above concludes that for any doubling
cube P 
 x with P /∈ D and l(P ) > 4l(R), mP (f) − mR[Ml(f)] � 1,
which implies that F3 � 1. The combination of estimates for F1 through F3

implies (3.63).
By Lemma 3.12, to finish the proof of Theorem 3.5, we need to verify

that for any cube Q ∈ D,

(3.64)

∣∣∣∣essinf
�Q

Ml(f)

∣∣∣∣ � 1.

If essinf
�Q Ml(f) ≥ 0, then (3.62) implies (3.64). Assume that

essinf
�Q

Ml(f) < 0.
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Then we see that | essinf
�Q Ml(f)| = esssup

�Q{−Ml(f)}. Recall that for
any x ∈ supp (µ), Qx, 2 /∈ D and Qx, 1 ∈ D (see Lemma 2.2 (d) and (e)). By
these facts and Proposition 3.1, for all x ∈ supp (µ),

−Ml(f)(x) ≤ inf
P�x, P /∈D
P doubling

mP (|f |)

≤ ∣∣mQx, 2(|f |) − mQx, 1(|f |)
∣∣ + mQx, 1(|f |) � 1,

which completes the proof of (3.64) and hence the proof of Theorem 3.5. �

Theorem 3.6. A locally integrable function f belongs to rblo (µ) if and only
if there exist h ∈ L∞(µ) and g ∈ rbmo (µ) such that

(3.65) f = Ml(g) + h.

Furthermore, ‖f‖rblo (µ) ∼ inf(‖g‖rbmo (µ) + ‖h‖L∞(µ)), where the infimum is
taken over all representations of f as in (3.65).

Proof. If there exist g and h satisfying (3.65), then by Theorem 3.5,
Ml(g) ∈ rblo (µ), which implies f ∈ rblo (µ) and

‖f‖rblo (µ) � ‖Ml(g)‖rblo (µ) + ‖h‖L∞(µ) � ‖g‖rbmo (µ) + ‖h‖L∞(µ).

To see the converse, suppose that f ∈ rblo (µ). By Theorem 3.5 again,
we see Ml(f) ∈ rblo (µ). Set h := f−Ml(f) and g := f . Then Theorem 3.6
follows from Lemma 3.11, which completes the proof of Theorem 3.6. �

4. Boundedness of inhomogeneous Littlewood-Paley g-
function

This section is devoted to establishing the boundedness of the inhomoge-
neous Littlewood-Paley g-function in h1,∞

atb (µ) and rbmo (µ).

Theorem 4.1. There exists a positive constant C such that for all f ∈
h1,∞

atb (µ),
‖g(f)‖L1(µ) ≤ C‖f‖h1,∞

atb (µ).

Proof. By the Fatou lemma, to prove the theorem, it suffices to show that
for any ∞-atomic block or ∞-block b :=

∑2
j=1 λjaj as in Definition 2.7 or

Definition 3.2, we have ‖g(b)‖L1(µ) �
∑2

j=1 |λj|.
Since for any x ∈ supp (µ),

g(b)(x) ≤ |S1(b)(x)| +
{ ∞∑

k=2

|Dk(b)(x)|2
} 1

2

,
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by (3.34), Theorem 4.1 is reduced to showing

(4.1)

∫
Rd

{ ∞∑
k=2

|Dk(b)(x)|2
} 1

2

dµ(x) �
2∑

j=1

|λj|.

Assume that b is an ∞-atomic block with supp (b) ⊂ R /∈ D. By an
argument similar to that used in the proof of Theorem 3.1 in [27], we obtain
the estimate (4.1).

If b is an ∞-block with supp (b) ⊂ R ∈ D, we write

∫
Rd

{ ∞∑
k=2

|Dk(b)(x)|2
} 1

2

dµ(x)

=

∫
4R

{ ∞∑
k=2

|Dk(b)(x)|2
} 1

2

dµ(x) +

∫
Rd\4R

{ ∞∑
k=2

|Dk(b)(x)|2
} 1

2

dµ(x)

=: I + II.

Using the boundedness of the g-function g(f) in L2(µ) and an argument
similar to the estimates for I1 and I2 in the proof of [27, Theorem 3.1] again,
we also obtain I �

∑2
j=1 |λj|.

To estimate II, choose any point x0 ∈ R ∩ supp (µ). By the Hölder
inequality, the fact that for any x, y ∈ Rd with x �= y,[ ∞∑

k=2

|Dk(x, y)|2
]1/2

� 1

|x − y|n (see [17, p. 82])

and (2.3), it follows that for j = 1, 2, and any x ∈ Qx0, H
x0
R −2 \ (4R),

{ ∞∑
k=2

|Dk(aj)(x)|2
} 1

2

≤
[ ∫

Qj

∞∑
k=2

|Dk(x, y)|2|aj(y)|2 dµ(y)

]1
2

[µ(Qj)]
1
2

�
[ ∫

Qj

|aj(y)|2
|x − y|2n

dµ(y)

]1
2

[µ(Qj)]
1
2 � 1

|x − x0|n ,

where xj is the center of Qj, and in the last step, we used the fact that
|x − xj | ∼ |x − x0| for any x ∈ Qx0, H

x0
R −2 \ (4R). On the other hand,

since R ∈ D, by Lemma 2.2 (d), we have Hx0
R ≤ 1. Thus for any k ≥ 2

and y ∈ R ∩ supp (µ), by (A-3) in Section 2 and Lemma 4.2 in [17], we
have Qy, k−2 ⊂ Qy, H

x0
R −1 ⊂ Qx0, H

x0
R −2, and so supp (Dk(b)) ⊂ Qx0, H

x0
R −2.
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Therefore, by Lemma 2.2 (a),

II =

∫
Q

x0, H
x0
R

−2
\4R

{ ∞∑
k=2

|Dk(b)(x)|2
} 1

2

dµ(x)

�
2∑

j=1

|λj|
∫

Q
x0, H

x0
R

−2
\Q

x0, H
x0
R

+1

1

|x − x0|n dµ(x) �
2∑

j=1

|λj|,

which completes the proof of Theorem 4.1. �
The following conclusion is a local variant of Lemma 9.3 in [16].

Lemma 4.1. There exists some constant P0 (big enough) depending on C0

and n such that if x ∈ Rd is some fixed point and {fQ}Qx is a collection of
numbers such that fQ − fR ≤ [1 + δ(Q, R)]Cx for all doubling cubes Q ⊂ R
with x ∈ Q and Q /∈ D such that 1 + δ(Q, R) ≤ P0, and |fR| ≤ Cx for all
doubling cubes R ∈ D with R 
 x, then

fQ − fR ≤ C[1 + δ(Q, R)]Cx

for all doubling cubes Q ⊂ R with x ∈ Q and Q /∈ D, where C depends on
C0, n and P0.

Proof. Let x ∈ Rd be as in the lemma, Q ⊂ R be two doubling cubes in
Rd with x ∈ Q and Q /∈ D. If R /∈ D, then Lemma 4.1 can be proved by a
slight modification of the proof for Lemma 9.3 [16]. Thus we only consider
the case that R ∈ D. Let Q0 := Q and Q1 be the first cube of the form 2kQ,
k ≥ 0, such that 1 + δ(Q, Q1) > P , where P (big enough) is the constant as
in [16, Lemma 9.2]. Since 1+δ(Q, 2−1Q1) ≤ P , by (d) and (a) of Lemma 2.1,
we have δ(Q, Q1) ≤ P + C. Therefore, by Lemma 2.1 (b), for the doubling

cube Q̃1, we have δ(Q, Q̃1) ≤ C̃, where C̃ is a positive constant.

In general, for any Q̃i, we denote by Qi+1 the first cube of the form 2kQ̃i,

k ≥ 0, such that 1+ δ(Q̃i, Qi+1) > P , and we consider the cube Q̃i+1. Then,

by (b) and (d) of Lemma 2.1, we have δ(Q̃i, Q̃i+1) ≤ C̃ and

1 + δ(Q̃i, Q̃i+1) ≥ 1 + δ(Q̃i, Qi+1) > P.

Let k0 be the smallest integer k such that Q̃k ∈ D. Notice that Q̃0 = Q0 =
Q /∈ D. By the increasing property of {Q̃i}i, we know that k0 ∈ N. We then
have that

fQ − fR ≤
k0−1∑
i=0

[f
�Qi

− f
Q̃i+1

] +
∣∣∣f
�Qk0

− fR

∣∣∣ .
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Let N be the smallest integer such that Q̃N+1 is the first cube of the sequence

{Q̃i}i such that R ⊂ Q̃N+1. Then we see that k0 ≤ N +1 by the assumption

that R ∈ D. From the fact that Q̃N ⊂ (3R) and Lemma 2.1, it follows that

δ(R, Q̃N+1) � 1. By this observation and [16, Lemma 9.2] together with the

assumptions of the lemma, if we take P0 := C̃, then

fQ − fR �
k0−1∑
i=0

[1 + δ(Q̃i, Q̃i+1)]Cx + 2Cx � [1 + δ(Q, Q̃k0)]Cx

≤ [1 + δ(Q, Q̃N+1)]Cx � [1 + δ(Q, R)]Cx,

which completes the proof of Lemma 4.1. �

Analogous to Theorem 3.2 in [27] for the boundedness of the homo-
geneous Littlewood-Paley g-function ġ(f) in RBMO(µ), we have Theo-
rem 4.2 below for the boundedness of the inhomogeneous Littlewood-Paley
g-function g(f) in rbmo (µ). However, unlike Theorem 3.2 there, if f ∈
rbmo (µ), then g(f) is finite almost everywhere.

Theorem 4.2. There exists a positive constant C such that for all f ∈
rbmo (µ), ∥∥[g(f)]2

∥∥
rblo (µ)

≤ C‖f‖2
rbmo (µ).

Proof. By the homogeneity of g(f), we may assume that ‖f‖rbmo (µ) = 1.
We first consider the case that Rd is an initial cube. In this case, to show
Theorem 4.2, we first verify that for any cube Q ∈ D,

(4.2)
1

µ(2Q)

∫
Q

[g(f)(x)]2 dµ(x) � 1.

For any x ∈ Q ∩ supp (µ), we write

[g(f)(x)]2 = |S1(f)(x)|2 +

Hx
Q+3∑

k=2

|Dk(f)(x)|2 +
[
gHx

Q(f)(x)
]2

,

where [
gHx

Q(f)(x)
]2

:=
∞∑

k=Hx
Q+4

|Dk(f)(x)|2.

By the fact that Qx, k ⊂ 7
5
Q for k ≥ Hx

Q + 2 (see Lemma 2.2 (b)), the
boundedness of the g-function g(f) in L2(µ) (see [17, Theorem 6.1]) and
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Corollary 3.1,

(4.3)
1

µ(2Q)

∫
Q

[
gHx

Q(f)(x)
]2

dµ(x) ≤ 1

µ(2Q)

∫
Q

[
g
(
fχ 7

5
Q

)
(x)

]2

dµ(x)

� 1

µ(2Q)

∫
7
5
Q

|f(x)|2 dµ(x) � 1.

Moreover, for any f ∈ rbmo (µ), k ≥ 2 and z ∈ supp (µ),

(4.4) |Dk(f)(z)| � 1.

Indeed, since supp (Dk(z, ·)) ⊂ Qz, k−2, by the vanishing moment of Dk,
(A-4) and Lemma 3.10, we have

|Dk(f)(z)| �
∫

Qz, k−2

|f(y)− mQz, k
(f)|

[|z − y| + l(Qz, k)]n
dµ(y) � 1.

Thus, (4.4) holds, which together with the fact that 0 ≤ Hx
Q ≤ 1

(Lemma 2.2 (d)) implies that

(4.5)

Hx
Q+3∑
k=2

|Dk(f)(x)|2 � 1.

The estimates (4.3) and (4.5) together with (3.36) imply that the esti-
mate (4.2) holds.

From (4.2), it follows immediately that for any doubling cube Q that
essinfQ[g(f)]2 � 1. Therefore, to complete the proof of Theorem 4.2, by
Proposition 3.13, (4.2) and Lemma 4.1, we still need to show that for any
doubling cube Q /∈ D and any y ∈ Q,

(4.6)
1

µ(Q)

∫
Q

{
[g(f)(x)]2 − [g(f)(y)]2

}
dµ(x) � 1,

and for any doubling cubes Q ⊂ R with Q /∈ D,

(4.7) mQ

[
g(f)2

]− mR

[
g(f)2

]
� [1 + δ(Q, R)]4.

We first establish (4.6). For any doubling cube Q /∈ D and x ∈ Q ∩
supp (µ), if 0 ≤ Hx

Q ≤ 5, we use the following trivial estimate that

(4.8)

[g(f)(x)]2 − [g(f)(y)]2 ≤ [g(f)(x)]2

= |S1(f)(x)|2 +

Hx
Q+3∑
k=2

|Dk(f)(x)|2 +
[
gHx

Q(f)(x)
]2

.



h1
, bmo, blo and Littlewood-Paley g-functions 663

If 7
5
Q ∈ D, then (4.6) can be deduced from (4.8), (4.3), (4.4) and (3.36)

directly. If 7
5
Q /∈ D, notice that

∫
Rd Dk(x, y) dµ(y) = 0 when 0 ≤ Hx

Q ≤ 5
and k ≥ Hx

Q + 4. Moreover, by Lemma 2.2 (b), we have supp (Dk(x, ·)) ⊂
Qx, k−2 ⊂ 7

5
Q. These facts imply that

Dkf(x) = Dk

[(
f − m

�7
5
Q
(f)

)
χ 7

5
Q

]
(x).

On the other hand, since gHx
Q(f) ≤ g(f), the doubling property of Q together

with the boundedness of the g-function g(f) in L2(µ) (see [17, Theorem 6.1])
and Corollary 3.1 yields that

(4.9)
1

µ(Q)

∫
Q

[
gHx

Q(f)(x)
]2

dµ(x)

≤ 1

µ(Q)

∫
Q

[
g
((

f − m
�7
5
Q
(f)

)
χ 7

5
Q

)
(x)

]2

dµ(x)

� 1

µ(2Q)

∫
7
5
Q

∣∣∣f(x) − m
�7
5
Q
(f)

∣∣∣2 dµ(x) � 1.

This together with (4.8), (3.36) and (4.4) implies (4.6).
Now suppose that Hx

Q ≥ 6. We then have

[g(f)(x)]2 − [g(f)(y)]2 ≤ |S1(f)(x)|2 +

Hx
Q−3∑
k=2

[|Dk(f)(x)|2 − |Dk(f)(y)|2]
+

Hx
Q+3∑

k=Hx
Q−2

|Dk(f)(x)|2 +
[
gHx

Q(f)(x)
]2

.

Using (4.3), (4.9), (4.4) and (3.36) again, we see that the estimate (4.6) is
reduced to showing that for any x, y ∈ Q ∩ supp (µ),

(4.10)

Hx
Q−3∑
k=2

[|Dk(f)(x)|2 − |Dk(f)(y)|2] � 1.

An application of (4.4) implies that

Hx
Q−3∑
k=2

[|Dk(f)(x)|2 − |Dk(f)(y)|2] �
Hx

Q−3∑
k=2

|Dk(f)(x) − Dk(f)(y)| .

For y ∈ Q ∩ supp (µ) and 2 ≤ k ≤ Hx
Q − 3, we have that Q ⊂ Qx, k, which

together with Lemma 4.2 (c) in [17] implies that Qy, k−2 ⊂ Qx, k−3. This fact



664 G. Hu, D. Yang and D. Yang

together with the vanishing moment of Dk, (A-5) and Lemma 3.10 further
yields that

|Dk(f)(x) − Dk(f)(y)|

=

∣∣∣∣∣
∫

Qx, k−3

[Dk(x, z) − Dk(y, z)]
[
f(z) − mQx, k

(f)
]

dµ(z)

∣∣∣∣∣
�

∫
Qx, k−3

|x − y| ∣∣f(z) − mQx, k
(f)

∣∣
l(Qx, k)[|x − z| + l(Qx, k)]n

dµ(z) � |x − y|
l(Qx, k)

.

Therefore from the fact that |x−y| � l(Q) and Lemma 3.4 in [17], it follows
that

Hx
Q−3∑
k=2

[|Dk(f)(x)|2 − |Dk(f)(y)|2] �
Hx

Q−3∑
k=2

|x − y|
l(Qx, k)

� l(Q)

l(Qx, Hx
Q−3)

� 1,

since Q ⊂ Qx, Hx
Q−3.

We now prove (4.7). For any doubling cubes Q ⊂ R with Q /∈ D, and
any x ∈ Q ∩ supp (µ) and y ∈ R ∩ supp (µ), we first consider the case that
Hx

Q ≥ Hx
R + 10. In this case, if Hx

R ≥ 6, we write

[g(f)(x)]2 − [g(f)(y)]2 ≤ |S1(f)(x)|2 +

Hx
R+3∑

k=2

[|Dk(f)(x)|2 − |Dk(f)(y)|2]
+

Hx
Q+3∑

k=Hx
R+4

|Dk(f)(x)|2 +
[
gHx

Q(f)(x)
]2

.

Observe that for k ≥ Hx
R + 4 and x ∈ supp (µ), supp (Dk(x, ·)) ⊂ Qx, k−2

and by Lemma 2.2 (e), Qx, k−2 /∈ D. Therefore, using (4.4) and repeating
the argument of (3.13) in [27], we obtain

(4.11)

Hx
Q+3∑

k=Hx
R+4

|Dk(f)(x)| � 1 +

Hx
Q−1∑

k=Hx
R+4

|Dk(f)(x)| � [1 + δ(Q, R)]2.

Consequently, (4.7) follows from (4.9), (3.36), (4.10) and (4.11).
While if 0 ≤ Hx

R ≤ 5, by writing

[g(f)(x)]2 − [g(f)(y)]2

≤ |S1(f)(x)|2 +

Hx
R+3∑

k=2

|Dk(f)(x)|2 +

Hx
Q+3∑

k=Hx
R+4

|Dk(f)(x)|2 +
[
gHx

Q(f)(x)
]2

,

we see that (4.7) follows from (4.9), (4.4), (3.36) and (4.11).
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Similarly, if Hx
R ≤ Hx

Q ≤ Hx
R + 9, (4.7) follows from (4.9), (4.4), (3.36)

and (4.10), which completes the proof of the case that Rd is an initial cube.
If Rd is not an initial cube, we can also show that (4.2), (4.6) and (4.7)

hold. We omit the details here; see [27]. This finishes the proof of Theo-
rem 4.2. �

An argument similar to the proof of [27, Corollary 3.1] yields the following
conclusion. We omit the details.

Corollary 4.1. There exists a positive constant C such that for all f ∈
rbmo (µ),

‖g(f)‖rblo (µ) ≤ C‖f‖rbmo (µ).

Remark 4.1. We point out that if we define the inhomogeneous Littlewood-
Paley g-function g̃(f) as follows,

g̃(f)(x) :=

[
|S0(f)(x)|2 +

∞∑
k=1

|Dk(f)(x)|2
]1/2

,

then Theorem 4.1, Theorem 4.2 and Corollary 4.1 are still true. Notice that
when Rd is an initial cube, then S0 ≡ 0 and g̃(f) degenerates into g(f).

Acknowledgements. Dachun Yang wishes to express his sincerely thanks
to Professor Xavier Tolsa for his useful remarks on the proof of Proposi-
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[5] Garćıa-Cuerva, J. and Rubio de Francia, J. L.: Weighted norm
inequalities and related topics. North-Holland Mathematics Studies 116.
North-Holland Publishing Co., Amsterdam, 1985.

[6] Hu, G., Meng, Y. and Yang, D.: New atomic characterization of H1

space with non-doubling measures and its applications. Math. Proc. Cam-
bridge Philos. Soc. 138 (2005), 151–171.



666 G. Hu, D. Yang and D. Yang

[7] Jiang, Y.: Spaces of type BLO for non-doubling measures. Proc. Amer.
Math. Soc. 133 (2005), 2101–2107 (electronic).
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