
Rev. Mat. Iberoamericana 25 (2009), no. 1, 275–421

The Cm Norm of a Function with
Prescribed Jets II

Charles Fefferman

Abstract

We give algorithms to compute a function F on R
n, having pre-

scribed Taylor polynomials (or taking prescribed values) at N given
points, with the Cm-norm of F close to least possible.

Contents

0. Introduction . 276
1. Notation and Preliminaries . 291
2. The Model of Computationv . 292
3. Cm Norm . 293
4. Background from Computer Science . 298
5. Gentle Partitions of Unity . 301
6. The Main Patching Lemma . 304
7. Proof of the Main Patching Lemma . 306
8. Comparing Polynomials at Representative Points 312
9. Computing a Regularized Distance .313
10. Computing Partitions of Unity .316
11. Computing Testing Sets . 319
12. Smoothing Lemmas .326
13. Extending a Whitney Field from a Fine Net . 335
14. Local Extension of a Whitney Field from a Testing Set 341
15. Singletons . 355
16. Extending a Whitney Field from a Testing Set I 358
17. Extending a Whitney Field from a Testing Set II 362
18. Extending a Whitney Field from a Testing Set III 366

2000 Mathematics Subject Classification: 65D05, 65D17.
Keywords : Interpolation, Whitney extension theorem, algorithm.

276 C. Fefferman

19. Extending a Whitney Field from a Testing Set IV370
20. Extending a Whitney Field from a Testing Set V 375
21. The Main Extension Algorithm . 375
22. The One-Time Work . 376
23. The Main Extending Function . 380
24. The Query Algorithm . 384
25. Remarks on the One-Time Work .386
26. Minimax Functions . 389
27. Minimax Functions of Whitney Fields . 396
28. Minimax Functions and the Main Algorithm . 408
29. From Whitney Fields to Functions . 412

0. Introduction

Fix m, n ≥ 1. We compute the least possible (infimum) Cm-norm of a
function F : R

n −→ R having prescribed mth order Taylor polynomials at N

given points. Also, given ε > 0, we compute such an F, whose Cm-norm is
within ε percent of least possible. Our computation consists of an algorithm,
to be implemented on an (idealized) digital computer. Given ε and N as
above, our computation uses at most exp(C/ε)N log N computer operations,
where C is a “controlled constant” (see below).

We also present preliminary results on the more difficult problem of com-
puting the least possible (infimum) Cm-norm of a function F taking pre-
scribed values at N given points. Again, given ε > 0, we compute such
an F, whose Cm-norm is within ε percent of the least possible. This time,
our computation uses exp(C/ε)N5(log N)2 operations. Surely this result is
not optimal; we look forward to future improvements.

In previous work [22, 23], Fefferman-Klartag computed functions F hav-
ing prescribed values, or prescribed Taylor polynomials, at N given points,
with the Cm-norm of F having the least possible “order of magnitude”. Our
goal here is to gain precision, by passing from “orders of magnitude” to
errors of at most ε percent, for an arbitrarily small given ε.

To state our results precisely, we must say exactly what we mean by “the
Cm-norm”, an “idealized digital computer”, and “computing a function”.
Let us start with the Cm-norm.

If Ω ⊂ R
n is open, then Cm(Ω) denotes the space of functions F : Ω → R,

whose derivatives through order m are continuous and bounded on Ω. For
F ∈ Cm(Ω) and x ∈ Ω, we write Jx(F) (the “jet” of F at x) to denote the
mth order Taylor polynomial of F at x. Thus, Jx(F) belongs to P, the vector
space of all (real) mth degree polynomials on R

n.

The Cm
Norm of a Function with Prescribed Jets II 277

There are many equivalent norms on Cm(Ω), e.g.,

(1) ‖ F ‖= sup
x∈Ω

max
|α|≤m

|∂αF(x)|,

or

(2) ‖ F ‖= sup
x∈Ω

(∑
|α|≤m

|α|!
α!

|∂αF(x)|2
)1/2

.

To fix a particular norm on Cm, we assume throughout this paper that,
for each x ∈ R

n, we are given a norm | · |x on the vector space P. These
norms are subject to restrictions, to be spelled out in Section 3 below. We
then define

(3) ‖ F ‖Cm(Ω) = sup
x∈Ω

|Jx(F)|x.

For instance, the norms (1) and (2) arise by taking

(4) |P|x = max
|α|≤m

|∂αP(x)|

or

(5) |P|x =

(∑
|α|≤m

|α|!
α!

|∂αP(x)|2
)1/2

,

respectively, for P ∈ P, x ∈ R
n.

Throughout this paper, we assume that the Cm-norm is given by (3).
In Section 3 below, we introduce the notion of a “controlled constant”.

In this introduction, it is enough to note that a controlled constant may
depend only on m, n and the choice of the family of norms | · |x (x ∈ R

n)
in (3). Throughout this paper, we write c, C, C′, etc. to denote controlled
constants. These letters may denote different controlled constants in differ-
ent occurrences.

If X, Y ≥ 0 are real numbers computed from input data (such as pre-
scribed Taylor polynomials at N given points), then we say that X and Y

have “the same order of magnitude”, provided we have cX ≤ Y ≤ CX for
controlled constants c and C. To “compute the order of magnitude of X” is
to compute some Y ≥ 0 such that X and Y have the same order of magnitude.

Next, we discuss our “idealized digital computer”. Our computer has
standard Von Neumann architecture (see, e.g., [39]), but we assume here
that the computer can store, and perform elementary operations, on exact
real numbers, without roundoff error.

278 C. Fefferman

The elementary operations include addition, multiplication, comparison
(deciding whether two given numbers x and y satisfy x < y), exponentiation
and logarithms, and the “greatest integer” function. Each of these elemen-
tary operations takes one unit of “work”. See Section 2 below, for a more
careful discussion of this model of computation and its pitfalls.

Our computer will need to acquire information on the family of norms
| · |x on P, which we used in (3) to define the Cm-norm. We assume
that our computer has access to an Oracle. Given P ∈ P, x ∈ R

n, and
ε > 0, the Oracle returns a real number Nε(P, x), guaranteed to satisfy
(1 + ε)−1Nε(P, x) ≤ |P|x ≤ (1 + ε)Nε(P, x).

Each time our computer obtains an answer Nε(P, x) from the Oracle, we
are charged exp(C/ε) units of “work”.

Note that our assumptions regarding the Oracle are quite conservative.
For instance, for the norms given by (4) or (5), we can compute |P|x exactly
in at most C operations, for any given P ∈ P, x ∈ R

n.

This concludes our introductory remarks on the “idealized digital com-
puter”.

We still need to explain what we mean by “computing a function”. We
have in mind the following dialogue with the computer. First, we enter the
input data for our problem (e.g., a number ε > 0, points x1, . . . , xN ∈ R

n,
and polynomials P1, . . . , PN ∈ P; we will be “computing a function” F ∈
Cm(Rn), such that Jxi

(F) = Pi for each i = 1, . . . , N). The computer then
executes an algorithm, performing L0 elementary operations (the “one-time
work”). When it has finished the one-time work, the machine signals that
it is ready to accept further input. We may then address “queries” to the
computer. A “query” consists of a point x ∈ R

n, and the computer re-
sponds to each query x by executing an algorithm (the “query work”, en-
tailing L1 elementary operations) and returning a polynomial Px ∈ P. We
say that our algorithms “compute the function” F ∈ Cm(Rn), provided we
have Px = Jx(F) for any query point x ∈ R

n. Here, we demand that F be
uniquely determined by the input data. We do not allow “adaptive algo-
rithms” in which query work performed in computing Px is stored and used
subsequently to compute Py for another query point y. We allow the com-
puter to access the Oracle during the one-time work, but not at query time.
The work charged by the Oracle is part of the one-time work L0.

The computer resources used in “computing a function” F are the one-
time work L0; the query work L1; and the “space” or “storage”, i.e., the
number of memory cells in the random-access memory (RAM).

We will be working with algorithms that compute a function F as well
as other data (e.g., a real number). We regard any work done in computing
the “other data” to be part of the one-time work.

The Cm
Norm of a Function with Prescribed Jets II 279

This concludes our explanation of “computing a function”.
It will be convenient to introduce the following definitions and notation.

A “Whitney field” is a family �P = (Px)x∈E of polynomials Px ∈ P, indexed

by the points x in a finite set E ⊂ R
n. We say that �P = (Px)x∈E is a Whitney

field “on E”, and we write Wh(E) for the vector space of all Whitney fields

on E. If �P is a Whitney field on E, and if S ⊂ E, then we define the
“restriction” �P|S ∈ Wh(S) in an obvious way.

If �P = (Px)x∈E is a Whitney field, Ω ⊃ E is an open set, and F ∈ Cm(Ω),

then we say that “F agrees with �P”, or “F is an extending function for �P”,
provided Jx(F) = Px for each x ∈ E.

We define a Cm norm on Whitney fields. If �P ∈ Wh(E), and if Ω ⊃ E is
an open set, then we define

‖ �P ‖Cm(Ω) = inf
{ ‖ F ‖Cm(Ω): F ∈ Cm(Ω) , F agrees with �P

}
.

Elementary examples show that this infimum need not be a minimum. For
a constant A > 1, we say that an extending function F ∈ Cm(Rn) for a

Whitney field �P is “A-optimal”, provided ‖ F ‖Cm(Rn)≤ A ‖ �P ‖Cm(Rn).
Similarly, if f : E −→ R and F ∈ Cm(Ω), with E ⊂ R

n finite and Ω ⊃ E

open, then we say that “F agrees with f”, or “F is an extending function
for f”, provided we have F = f on E. We define a Cm-norm on functions
f : E −→ R, by setting

‖ f ‖Cm(Ω)= inf
{ ‖ F ‖Cm(Ω): F ∈ Cm(Ω) , F agrees with f

}
.

Again, this infimum needn’t be a minimum. For a constant A > 1, we
say that an extending function F ∈ Cm(Rn) for f : E −→ R is “A-optimal”,
provided

‖ F ‖Cm(Rn)≤ A ‖ f ‖Cm(Rn) .

Note that an A-optimal extending function is always defined on the full R
n.

We are now ready to state the main results of this paper. We write #(E)

for the number of elements of a finite set E.

Theorem 1. Given 0 < ε < 1/2, and given a Whitney field �P ∈ Wh(E),
with #(E) = N ≥ 1, an algorithm to be specified below computes a (1 + ε)-

optimal extending function for �P, as well as a number Nε(�P), such that

(1 + ε)−1 Nε(�P) ≤‖ �P ‖Cm(Rn)≤ (1 + ε) Nε(�P) .

Our algorithm uses one-time work at most exp(C/ε)N log(N + 1), query
work at most C log(N/ε), and storage at most exp(C/ε)N.

280 C. Fefferman

Theorem 2. Given 0 < ε < 1/2, and given a function f : E −→ R, with
E ⊂ R

n and #(E) = N ≥ 1, an algorithm to be specified below computes a
(1 + ε)-optimal extending function for f, as well a number Nε(f), such that

(1 + ε)−1 Nε(f) ≤‖ f ‖Cm(Rn)≤ (1 + ε) Nε(f) .

Our algorithm uses one-time work at most exp(C/ε) N5(log(N+1))2, query
work at most C log(N/ε), and storage at most exp(C/ε)N2.

We would prefer a power of 1/ε in place of exp(C/ε) in Theorem 1, but
the N-dependence seems optimal.

The algorithm promised in Theorem 2 is presumably far from optimal.
To set the stage for discussion of the proofs of Theorems 1 and 2, we first

recall the previous work of Fefferman-Klartag [22, 23]. There, we proved the
following results.

Theorem 3. (Easy) Given a Whitney field �P ∈ Wh(E), with #(E) = N ≥ 1,
an algorithm presented in [22, 23] computes a C-optimal extending function

for �P, and a number N(�P) such that

cN(�P) ≤‖ �P ‖Cm(Rn)≤ CN(�P).

Our algorithm uses one-time work at most CN log(N + 1), query work at
most C log(N + 1), and storage at most CN.

Theorem 4. (Hard) Given a function f : E −→ R, with E ⊂ R
n and

#(E) = N ≥ 1, an algorithm presented in [22, 23] computes a C-optimal
extending function for f, and a number N(f) such that

cN(f) ≤‖ f ‖Cm(Rn)≤ CN(f) .

Our algorithm uses one-time work at most CN log(N + 1), query work at
most C log(N + 1), and storage at most CN.

The proofs of Theorems 3 and 4 are based on “finiteness principles”. A
“finiteness principle” for f : E −→ R asserts that

(6) ‖ f ‖Cm(Rn)≤ C · max{‖ (f|S) ‖Cm(Rn): S ⊆ E , #(S) ≤ k#},

with k# depending only on m and n.
For Whitney fields �P ∈ Wh(E), a finiteness principle asserts that

(7) ‖ �P ‖Cm(Rn)≤ C · max{‖ (�P|S) ‖Cm(Rn): S ⊆ E , #(S) ≤ k#} .

In fact, (7), with k# = 2, is immediate from the classical Whitney extension
theorem, which we now recall in the case of finite sets.

The Cm
Norm of a Function with Prescribed Jets II 281

Theorem 5. (Whitney) Let �P = (Px)x∈E be a Whitney field, and let M ≥ 0

be the smallest real number such that:

|∂αPx(x)| ≤ M for |α| ≤ m and x ∈ E; and

|∂α(Px − Py)(x)| ≤ M |x − y|m−|α| for |α| ≤ m − 1 , x, y ∈ E .

Then

cM ≤‖ �P ‖Cm(Rn)≤ CM .

See, e.g., [31, 38, 41].

Estimate (6) lies deeper. It was conjectured by Y. Brudnyi and P.
Shvartsman [6],...,[10], and proven by them [8] in the case m = 2, with an op-
timal constant k#. (The case m = 1 is trivial.) The general case was proven
in [14]. Related results on “Whitney’s extension problem” and its variants
appear in Whitney [41, 42, 43], Glaeser [25], Y. Brudnyi and P. Shvartsman
[5],[6],...,[10], [35],...,[37]; E. Bierstone, P. Milman and W. Paw�lucki [2, 3];
N. Zobin [44, 45] ; and C. Fefferman and B. Klartag [13],...,[20], [22, 23]. It
would be interesting to find an easy proof of Theorem 4 or estimate (6).

Estimate (6) allows us to compute the order of magnitude of ‖ f ‖Cm(Rn),
as in Theorem 4, because the order of magnitude of ‖ (f|S) ‖Cm(Rn) for
#(S) ≤ k# may be easily computed by linear algebra. (See [14] for details.)
Hence, in effect, we may take N(f) in Theorem 4 to be the right-hand side
of (6).

As for Theorem 3, we can take N(�P) to be the number M in Theo-
rem 5 (which is comparable to the right-hand side of (7), with k# = 2). A
glance at Theorem 5 suggests that it takes work N2 to compute the num-
ber M. In fact, the work to compute the order of magnitude of M can be
cut down to N log N, by using the “Well-Separated Pairs Decomposition”,
and the “Balanced Box Decomposition Tree” from computer science. (See
Callahan-Kosaraju [11] and Arya et al [1].) These ideas from computer sci-
ence are clearly related to our problems, since, e.g., they allow an efficient
computation of the Lipschitz norm of a function f : E −→ R, up to a factor
(1+ε). See Har-Peled and Mendel [26]. These results from computer science
play a key rôle in our work, here and in [22, 23].

The proofs of Theorem 5, and of (6), (7), are constructive. Thus, once we

know how to compute the order of magnitude of ‖ f ‖Cm(Rn) or ‖ �P ‖Cm(Rn),
we can also compute C-optimal extending functions.

This concludes our discussion of Theorems 3 and 4.

To continue our preparation for the proofs of Theorems 1 and 2, we next
discuss a result from our previous paper [21].

282 C. Fefferman

There, we gave a version of Whitney’s theorem (Theorem 5), in which
the Cm-norm of the extending function is controlled up to a factor (1 + ε).
To state the result, we introduce the notion of an “ε-testing set”:

Let ε > 0 be given. A finite set S ⊂ R
n is an “ε-testing set”, provided

there exists an open ball B(x0, r) ⊂ R
n, such that

(8) S ⊂ B(x0, r), and

(9) |y − y′| > cεe−2/εr for any two distinct points y, y′ ∈ S.

An ε-testing set has simple geometry; roughly speaking, it has only one
relevant lengthscale. Note that any ε-testing set S satisfies

(10) #(S) ≤ exp(C/ε),

and that any singleton or pair, S = {x} or S = {x, y}, is an ε-testing set.
The main result of [21] is as follows.

Theorem 6. Let �P = (Px)x∈E be a Whitney field. Then, for 0 < ε < c,
we have

(11) ‖ �P ‖Cm(Rn)≤ (1+Cε) ·max{‖ (�P|S) ‖Cm(Rn): S ⊆ E is an ε-testing set }

In view of (10), Theorem 6 is a “(1 + ε)-finiteness principle”, with k# =
k#(ε) = exp(C/ε).

We comment on the proof of Theorem 6. Recall that Whitney’s classical
proof of Theorem 5 is based on a “Whitney partition of unity”, adapted
to a decomposition of R

n into “Whitney cubes”. Our proof of Theorem 6
patches together (1 + ε)-optimal extending functions for �P|S (for suitable
ε-testing sets S), by means of a “gentle partition of unity”. (See Sections 5
and 6 below.)

The proof of Theorem 6 is constructive. We refine it here, bringing in
computer-science ideas from [11], to prove the following result, analogous to
the main result in [20].

Theorem 7. Let E ⊂ R
n be given, with #(E) = N ≥ 1. Let 0 < ε < c.

Then there exists a list S1, S2, . . . , SL of ε-testing sets contained in E, with
the following properties.

(A) L ≤ C
ε

N.

(B) ‖ �P ‖Cm(Rn)≤ (1 + Cε) · max{‖ (�P|S�
) ‖Cm(Rn) : � = 1, . . . , L} for any

�P ∈ Wh(E).

(C) The list S1, . . . , SL can be computed from ε and E, using work at most
exp(C/ε)N log N, and storage at most exp(C/ε)N.

The Cm
Norm of a Function with Prescribed Jets II 283

Moreover, given a (1 + ε)-optimal extending function F� for �P|S�
, for each

� = 1, . . . , L, the proof of Theorem 7 constructs a (1+Cε)-optimal extending

function for �P. (We patch together the F�, using a gentle partition of unity.)

We are now ready to discuss the proof of Theorem 1.
Once we have established Theorem 7, our task in proving Theorem 1 reduces
to the following extension problem.

Problem 1: Given 0 < ε < c, and given a Whitney field �P on an ε-testing
set, compute a (1 + Cε)-optimal extending function for �P, and compute a

number Nε(�P), such that

(12) (1 + Cε)−1Nε(�P) ≤‖ �P ‖Cm(Rn)≤ (1 + Cε)Nε(�P).

This is unfortunately not trivial, even for a Whitney field on a single
point. (Recall that the analogous computation in the setting of Theorems 3
and 4 required nothing more than trivial linear algebra.)

To explain our solution to Problem 1, we confine our discussion to the
computation of a number Nε(�P) satisfying (12). Once we can do this, we
can also compute a (1+ Cε)-optimal extending function, since our methods
are constructive.

To simplify further, we replace Problem 1 by the following easier version.

Problem 2: Let 0 < ε < c, and let S ⊂ B(x0, r) be an ε-testing set, as

in (8), (9). Assume r < ε−1. Given a Whitney field �P ∈ Wh(S), compute a

number Nε(�P) such that

(1 + Cε)−1 ‖ �P ‖Cm(B(x0,r))≤ Nε(�P) ≤ (1 + Cε) ‖ �P ‖Cm(B(x0,2r)) .

Problem 2 is easier than Problem 1, since it is enough to construct a
nearly optimal extending function on the ball B(x0, r), as opposed to the
whole R

n. We will see, in Sections 14...20 below, that the solution of Prob-
lem 2 is in fact one step in our solution of Problem 1. We omit details here,
and confine our discussion to Problem 2. Our introductory discussion of
Problem 2 is oversimplified; see Section 14 for correct statements.

A crucial step in our solution of Problem 2 is the following

Smoothing Lemma: Let S ⊂ B(x0, r) be an ε-testing set, as in (8), (9)
where 0 < ε < c. Then, for any function F ∈ Cm(B(x0, 2r)), there exists a
function F̃ ∈ Cm+1(B(x0, r)), with the following properties:

(A) Jy(F̃) = Jy(F) for all y ∈ S.

(B) ‖ F̃ ‖Cm(B(x0,r))≤ (1 + Cε) ‖ F ‖Cm(B(x0,2r)) .

(C) |∂αF̃(x)| ≤ C exp
(

4m
ε

)
r−1 ‖ F ‖Cm(B(x0,2r)) for |α| = m+1, x ∈ B(x0, r).

284 C. Fefferman

Thus, F̃ inherits the good properties of F, and its (m + 1)rst derivatives
are under control.

Let us first discuss the proof of the Smoothing Lemma, and then see how
it applies to Problem 2.

It is natural to try to prove the Smoothing Lemma by convolving F

with an approximate identity. This produces a function F̃0 that satisfies (B)
and (C) but not (A). In fact, for y ∈ S, we expect that Jy(F̃0) will be nowhere
near Jy(F), since we have no control over the modulus of continuity of the
mth derivatives of F. Our problem is to “correct” F̃0, to achieve (A), without
spoiling (B) and (C).

To do so, we let P̃y = Jy(F) ∈ P, for each y ∈ S. The function P̃y

satisfies (A), (B), (C) locally on a tiny ball By about y; but it makes no
sense to use P̃y as an extending function outside By. We patch together
our functions F̃0 and P̃y (all y ∈ S), by using a gentle partition of unity, to
produce a function F̃ that satisfies (A), (B) and (C).

This concludes our summary of the proof of the Smoothing Lemma.

We prepare to apply the Smoothing Lemma to Problem 2. To do so, we
extend our testing set S to a “fine net”, i.e., a finite set S+ with the following
properties.

(13) S ⊂ S+ ⊂ B(x0, r).

(14) For any x ∈ B(x0, r), there exists y ∈ S+ such that |x−y| ≤ exp
(
−6m

ε

)
r.

(15) #(S+) ≤ exp(C/ε).

It is trivial to construct such an S+.
To solve Problem 2 using the Smoothing Lemma, we now pose a

Linear Programming Problem: Find a real number M and polynomials P+
y ∈P

for all y ∈ S+, satisfying the following constraints, with M as small as
possible.

The Constraints:

(16) |P+
y |y ≤ M for each y ∈ S+.

(17) |∂α(P+
y−P+

y′)(y)| ≤ Cr−1exp
(

4m
ε

)
|y−y′|m+1−|α|M for |α|≤m, y, y′∈S+.

(18) P+
y = Py for each y ∈ S, where �P = (Py)y∈E is the given Whitney field

in Problem 2.

Using the Oracle, we can replace (16) by a family of linear constraints,
without significantly changing the problem. Thus, the above minimization
problem is indeed a linear programming problem. This linear programming
problem involves at most exp(C/ε) linear constraints in a vector space of
dimension at most exp(C/ε).

The Cm
Norm of a Function with Prescribed Jets II 285

Let (M0, (P
0
y)y∈S+) be a solution of the above linear programming prob-

lem. Using the Smoothing Lemma, we will show that

(19) (1 + Cε)−1 ‖ �P ‖Cm(B(x0,r))≤ M0 ≤ (1 + Cε) · ‖ �P ‖Cm(B(x0,2r)).

Once we know (19), we can just take Nε(�P) = M0, and we will have
solved Problem 2.

To see (19), we argue as follows. By definition of the Cm-norm of a
Whitney field, there exists F ∈ Cm(B(x0, 2r)), such that

(20) Jy(F) = Py for each y ∈ S, and

(21) ‖ F ‖Cm(B(x0,2r))≤ (1 + ε) · ‖ �P ‖Cm(B(x0,2r)).

Applying the Smoothing Lemma, we obtain a function F̃ ∈ Cm(B(x0, r)),
satisfying

(22) Jy(F̃) = Jy(F) for each y ∈ S,

(23) ‖ F̃ ‖Cm(B(x0,r))≤ (1 + Cε) · ‖ �P ‖Cm(B(x0,2r)), and

(24) |∂αF̃(x)| ≤ C exp
(

4m
ε

)
r−1 · ‖ �P ‖Cm(B(x0,2r)) for |α| = m + 1, x ∈

B(x0, r).

Let us set

(25) M = (1 + Cε) · ‖ �P ‖Cm(B(x0,2r)) and

(26) P+
y = Jy(F̃) for all y ∈ S+.

Then the constraints (16), (17), (18) hold. In fact, (16) follows from (23), (25)
and (26), by definition (3) of the Cm-norm.

Moreover, (17) follows from (24), (25) and (26) and Taylor’s theorem;
while (18) is immediate from (20), (22) and (26).

Thus, the above (M, (P+
y)y∈S+) satisfies the constraints (16), (17), (18),

whereas (M0, (P0
y)y∈S+) is a minimizer. Consequently, M0 ≤ M. That is,

M0 ≤ (1 + Cε) · ‖ �P ‖Cm(B(x0,2r)) ,

which is half of the desired estimate (19).

To establish the other half of (19), we recall that (M0, (P
0
y)y∈S+) satisfies

the constraints (16), (17), (18). Thus,

(27) |P0
y|y ≤ M0 for y ∈ S+;

(28) |∂α(P0
y − P0

y′)(y)| ≤ Cr−1 exp
(

4m
ε

)
|y − y′|m+1−|α|M0 for |α| ≤ m,

y, y′ ∈ S+;

286 C. Fefferman

and

(29) P0
y = Py for each y ∈ S.

From (27) we obtain the estimates

(30) |∂αP0
y(y)| ≤ CM0 for |α| ≤ m, y ∈ S+.

(This step uses the “Bounded Distortion Property”, which is one of the as-
sumptions made in Section 3 on the family of norms | · |x in (3).)

In the statement of Problem 2, we assume that r < ε−1 and ε < c.
Hence, (30) trivially implies

(31) |∂αP0
y(y)| ≤ Cr−1 exp

(
4m
ε

)
M0 for |α| ≤ m, y ∈ S+.

Thanks to (28), (31) and the classical Whitney extension theorem (Theo-
rem 5 with m+1 in place of m), there exists a function F ∈ Cm+1(Rn), such
that

(32) Jy(F) = P0
y for all y ∈ S+,

and

(33) |∂αF(x)| ≤ Cr−1 exp
(

4m
ε

)
M0 for |α| = m + 1 and x ∈ R

n.

In view of (29) and (32), we have

(34) Jy(F) = Py for y ∈ S.

We will show that

(35) ‖ F ‖Cm(B(x0,r))≤ (1 + Cε)M0.

Once we establish (35), we obtain from (34), (35) and the definition of the
Cm-norm of a Whitney field that

‖ �P ‖Cm(B(x0,r))≤ (1 + Cε)M0,

which is the remaining half of our desired estimate (19).
Thus, to prove (19) and thereby solve Problem 2, it remains only to

prove (35). By definition (3), estimate (35) is equivalent to the estimate

(36) |Jx(F)|x ≤ (1 + Cε)M0 for all x ∈ B(x0, r).

So our task is to prove (36). To do so, we start with the points of the fine
net S+. From (27) and (32), we see at once that

(37) |Jy(F)|y ≤ M0 for all y ∈ S+.

Moreover, whenever |x − y| ≤ exp
(
−6m

ε

)
r and |α| ≤ m, estimate (33) and

Taylor’s theorem give

(38) |∂α[Jx(F) − Jy(F)](x)| ≤ Cr−1 exp
(

4m
ε

)
|x − y|m+1−|α| M0

≤ Cr−1 exp
(

4m
ε

)
[exp

(
−6m

ε

)
r]m+1−|α| M0 ≤ εM0,

since r < ε−1 in Problem 2.

The Cm
Norm of a Function with Prescribed Jets II 287

Thus, the jets Jx(F) and Jy(F) are “close”. From (38) and the properties
of the norms | · |x assumed in Section 3, we conclude that

(39) |Jx(F)|x ≤ (1+ Cε)| Jy(F)|y + CεM0, whenever |x−y| ≤ exp
(
−6m

ε

)
r.

The desired estimate (36) now follows at once from (37) and (39), to-
gether with property (14) of the fine net S+.

This completes our summary of the solution of Problem 2, as well as our
discussion of the proof of Theorem 1. We pass to the proof of Theorem 2.

A fundamental difference between Theorems 1 and 2 is that the nat-
ural “finiteness principle” analogous to Theorem 6 is false in the context of
Theorem 2. In fact, the following negative result is proven in Fefferman-
Klartag [24], for the case of C2(R2), equipped with the norm (1) or (2).

Theorem 8. There exists a universal constant ε0 > 0, for which the follow-
ing holds.

Given any k#, there exists a function f : E −→ R on a finite set E ⊂ R
2,

such that

max
{‖ (f|S) ‖C2(R2): S ⊆ E, #(S) ≤ k#

} ≤ 1 , but ‖ f ‖C2(R2)≥ 1 + ε0.

Thus, an efficient algorithm to compute ‖ f ‖Cm(Rn) up to a factor (1+ε)

will require new ideas. Our Theorem 2 provides a (presumably) inefficient
solution to this problem.

To explain the ideas in the proof of Theorem 2, we again confine ourselves
to the computation of the norm, leaving the construction of a nearly optional
extending function to Sections 26...29 below.

Let us say that a Whitney field �P = (Px)x∈E “agrees” with a function
f : E −→ R, provided (Px)(x) = f(x) for each x ∈ E. Immediately from the
relevant definitions, we then have

‖ f ‖Cm(Rn) = inf
{‖ �P ‖Cm(Rn): �P ∈ Wh(E) , �P agrees with f

}
.

Together with Theorem 1, this yields

(40) (1 + Cε)−1 ‖ f ‖Cm(Rn)≤ inf
{
Nε(�P) : �P ∈ Wh(E), �P agrees with f

}
≤ (1 + Cε) ‖ f ‖Cm(Rn) ,

with Nε(�P) as in Theorem 1.

To exploit (40), we review the proof of Theorem 1 to see how Nε(�P) depends

on �P ∈ Wh(E). We find that there exist a finite-dimensional vector space W,
and (real-valued) linear functionals λ1, . . . , λK on Wh(E) ⊕ W, such that

(41) Nε(�P) = min
w∈W

max
k=1,...,K

|λk(�P, w)| .

Moreover, W and λ1, . . . , λK may be computed efficiently from ε and E.

288 C. Fefferman

Combining (40) and (41), we now see that

(42) (1 + Cε)−1 ‖ f ‖Cm(Rn)≤
≤ min

{
max

k=1,...,K
|λk(�P, w)| : (�P, w) ∈ Wh(E)⊕W , �P agrees with f

}
≤ (1 + Cε) ‖ f ‖Cm(Rn) .

Consequently, we may take Nε(f) to be the “minimax” in (42), and we have

(1 + Cε)−1 Nε(f) ≤‖ f ‖Cm(Rn)≤ (1 + Cε) Nε(f) ,

as in Theorem 2. The computation of Nε(f) is a linear programming prob-
lem, involving at most exp(C/ε) · N constraints, in a vector space of dimen-
sion at most exp(C/ε) · N.

We solve this linear programming problem using the “ellipsoid method”
from computer science. (See [29].) The one-time work and storage given
in Theorem 2 arise from the ellipsoid method. More efficient linear pro-
gramming algorithms will surely sharpen Theorem 2, but are unlikely to
yield an efficient computation of ‖ f ‖Cm(Rn) up to a factor (1 + ε) without
further ideas.

Note that the computation for Theorem 1 entails solving ∼ N/ε “lit-
tle” linear programming problems, each having “size” ∼ exp(C/ε). On the
other hand, our computation for Theorem 2 involves a single “big” linear
programming problem, of “size” ∼ exp(C/ε) · N. Of course, the “big prob-
lem” requires much more work than all the “little problems” combined.

This completes our introductory remarks on the proof of Theorem 2.
Again, we stress that our discussion of the proofs of Theorems 1 and 2 is
oversimplified. (For instance, the proof of Theorem 7 actually comes after
that of Theorem 1.) We refer the reader to Sections 1...29 below, for the
real story.

Let us briefly explain what happens in each of the sections to follow.

Section 1 gives notation and elementary definitions.

Section 2 specifies our model of computation in more detail than in this
introduction.

Section 3 gives our assumptions on the norms | · |x in (3), defines “controlled
constants”, and shows how to replace (16) by a family of linear
constraints, using the Oracle.

Section 4 recalls well-known results from computer science.

Section 5 recalls the basic lemma from [21] on “gentle partitions of unity”,
and gives a few simple corollaries.

The Cm
Norm of a Function with Prescribed Jets II 289

Section 6 states the “Main Patching Lemma”, which is a constructive ver-
sion of Theorem 6. Given a list of useful inputs, the Main Patch-
ing Lemma constructs a (1 + Cε)-optimal extending function for

a given Whitney field �P.

The task of computing the “useful inputs” for the Main Patching
Lemma occupies Sections 8...20 below.

Section 7 proves the Main Patching Lemma, along the lines of [21].

Section 8 uses the Well-Separated-Pairs Decomposition to compute effi-
ciently the order of magnitude of the number M in Theorem 5.

Section 9 computes the “regularized distance”, a smooth function compa-
rable to the distance to a given finite set E ⊂ R

n. See [31, 38, 41]
for this notion.

Section 10 gives routine algorithms to compute some cutoff functions ap-
pearing in the Main Patching Lemma.

Section 11 computes the list of testing sets used by the Main Patching
Lemma.

Section 12 states and proves the Smoothing Lemma, which we have stated
(not quite correctly) in this introduction.

Section 13 implements our discussion of (27)...(39) above, as an algorithm.

Section 14 (roughly speaking) applies the Smoothing Lemma to solve Prob-
lem 2 (local extension from a Whitney field on a testing set), as
explained earlier in this introduction.

Sections 15...20 pass from our solution of Problem 2 (local extension) to a
solution of Problem 1 (global extension). Section 15 treats the
case of a Whitney field on a single point, while Sections 16...20
combine our results from Sections 14 and 15 to treat the general
case. More precisely, we subdivide the general case into several
subcases, depending essentially on the diameter of the given ε-
testing set. Sections 16...19 treat the various subcases, and Sec-
tion 20 puts them together.

Sections 21...24 present the proof of Theorem 1. The algorithm promised
in Theorem 1 uses the results of Sections 8 through 20, in order
to apply the Main Patching Lemma.

Section 25 proves Theorem 7, and also records some observations on the
algorithm in Theorem 1. These observations will be used in the
proof of Theorem 2.

Sections 26...29 give the proof of Theorem 2. In Section 26, we introduce
“minimax functions”, similar to the minimax in (41) above. We

290 C. Fefferman

prove in Sections 27 and 28 that the quantity Nε(�P) in Theorem 1

is a minimax function of �P, thus establishing (41). Finally, Sec-
tion 29 exploits (41), as explained in our introduction, to compute

an almost-optimal Whitney field �P ∈ Wh(E) agreeing with a given
function f : E −→ R. This reduces Theorem 2 to Theorem 1.

In the sections below, we present algorithms in the following format.

Algorithm [Name]: Given [data] satisfying [assumptions], we compute
[stuff] such that [some properties hold].

The algorithm requires work at most [W] and storage at most [S].

Explanation: [Here, we specify the algorithm and prove that it performs as
asserted.]

If the above [assumptions] are not satisfied, then we make no claim as
to what our algorithm does, or even whether it terminates. Our algorithm
need not check whether the [assumptions] are satisfied.

Many of our algorithms compute a function F ∈ Cm(Rn), and possibly

other data as well (e.g., a number Nε(�P) or a ball B(x0, r)). In this case,
instead of saying that our algorithm “requires work at most [W] and storage
at most [S]”, we say the following:

The algorithm requires one-time work at most [L0], query work at most
[L1], and storage at most [S].

Recall that any work used to compute answers other than the function F

is counted as part of the one-time work.
For a few algorithms, which are either well-known or discussed in [23],

we provide a reference to the literature in place of an Explanation.

Acknowledgments. It is a pleasure to thank Bo’az Klartag for many valuable
conversations, some of which led to major improvements in this paper. I am
grateful also to A. Naor, A. Razborov, and A. Wigderson, for pointing me
to the relevant ideas and literature from computer science. I thank A. Tsao,
for bringing to my attention the practical problem of passing a smooth
surface through N given points. From E. Bierstone, Y. Brudnyi, B. Klartag,
P. Milman, W. Paw�lucki, P. Shvartsman, and N. Zobin I learned a lot about
“Whitney’s extension problems”.

As always, Gerree Pecht spoils me with her rapid, accurate LATEXing of
my long manuscript.

We conclude this introduction with a trivial remark about our labeling
of equations. Let k, k′, � be integers, and suppose we are in Section k′. Then
we write (k.�) to denote equation (�) in Section k. In the case k′ = k, we
simply write (�).

Let us get to work.

The Cm
Norm of a Function with Prescribed Jets II 291

1. Notation and Preliminaries

Recall that we have fixed m, n ≥ 1, and that P denotes the vector space of
all (real) polynomials of degree at most m on R

n.

For Ω ⊂ R
n open, we write Cm

loc(Ω) for the space of real-valued locally
Cm functions on Ω, and we write Cm(Ω) for the space of all F ∈ Cm

loc(Ω)
such that F and its derivatives through mth order are bounded on Ω. We
define Cm+1

loc (Ω) and Cm+1(Ω) similarly. For F∈Cm
loc(Ω) and x∈Ω, we write

Jx(F) for the mth order Taylor polynomial of F at x. Thus, Jx(F) belongs to P.

For P1, P2 ∈ P and x ∈ R
n, we write P1 	x P2 to denote the product

of P1 and P2 as m-jets at x; i.e., P1	x P2 is the unique polynomial in P that
satisfies

∂α([P1 	x P2] − P1P2) (x) = 0 for |α| ≤ m .

If F1, F2 ∈ Cm
loc(Ω) and x ∈ Ω, then Jx(F1F2) = Jx(F1) 	x Jx(F2).

For F ∈ Cm
loc(Ω), we write suppΩF to denote the set of all points x ∈ Ω

such that F is not identically zero on any neighborhood of x. When Ω = R
n,

we write supp F for suppΩF.

Recall that a Whitney field on a finite set S ⊂ R
n is a family of polyno-

mials

(1) �P = (Py)y∈S

indexed by S, with each Py ∈ P. If S ⊂ Ω (with Ω open), and if F ∈ Cm
loc(Ω),

then we say that F agrees with �P as in (1) if we have Jy(F) = Py for all y ∈ S.

If �P as in (1) is a Whitney field on S, and if S′ ⊂ S is a subset, then we

write �P|S′ for the Whitney field (Py)y∈S′, and we call �P|S′ the “restriction”

of �P to S′.
If F agrees with �P|S′ , then we say that F “agrees with �P on S′”. If S′ = {y0}

is a singleton, then we say that F “agrees with �P at y0”.
We write Wh(S) for the vector space of Whitney fields on a given set

S ⊂ R
n.

Let x ∈ R
n and r > 0. Then B(x, r) denotes the open ball in R

n with
center x and radius r.

A dyadic cube in R
n is a Cartesian product of the form

Q = [2�m1, 2
�(m1 + 1)) × · · · × [2�mn, 2�(mn + 1))

where �, m1, . . . , mn are integers. More generally, a “cube” in R
n is a Carte-

sian product of half-open intervals

Q = [a1, b1) × [a2, b2) × · · · × [an, bn) ⊂ R
n,

with b1 − a1 = b2 − a2 = · · · = bn − an. We write δQ to denote the
sidelength of a cube Q, and we write cent(Q) to denote the center of Q.

292 C. Fefferman

We define Q∗ to be the unique cube satisfying cent(Q∗) = cent(Q) and
δQ∗ = 3δQ. Also, we write Q∗∗ to denote (Q∗)∗, and Q∗∗∗ to denote (Q∗∗)∗.
Note that if Q is a dyadic cube, then Q∗, Q∗∗ and Q∗∗∗ may be trivially
partitioned into dyadic cubes .

For any set E ⊂ R
n, we write Eint and Ecl for the interior and closure

of E, respectively.
For any set S, we write #(S) to denote the number of elements of S. If S

is infinite, then we define #(S) = + ∞. We write φ to denote the empty set.
For E ⊂ R

n, we write diam(E) to denote the diameter of E, i.e., sup{|x −
x′| : x, x′ ∈ E}. Also, for E, E′ ⊂ R

n, we write dist(E, E′) to denote inf{|x−x′| :
x ∈ E, x′ ∈ E′}. If E = φ, then diam(E) = 0, and if E = φ or E′ = φ, then
dist(E, E′) = + ∞. We write dist(x, E′) to denote inf{|x − x′| : x′ ∈ E′}.
If E′ = φ, then dist(x, E′) = + ∞.

2. The Model of Computation

Our model of computation (called “real RAM” in the computer science
literature) differs from a standard Von Neumann computer [39] in that we
assume that the computer can store, retrieve from memory, and manipulate
exact real numbers , without roundoff errors. Our computer includes several
registers, and finitely many memory cells labeled by integers 1,2,..., Memory-
Size. Each memory cell and each register is capable of storing either an
integer or a real number. The machine can perform the following operations,
each of which costs one unit of “work”.

• Retrieve the contents of memory cell k, and write it to one of the
registers. (1 ≤ k ≤ Memory-Size).

• Write the contents of a register to memory cell k (1 ≤ k ≤ Memory-
Size).

• Write the number 0 or 1 to one of the registers.

• Given two real numbers x and y appearing in the registers, compute
x + y, x − y, xy, and (if y
= 0) x/y. Also, decide whether x < y,
x > y, or x = y.

• Given a real number x appearing in a register, compute exp(x); and,
if x > 0, compute log(x).

• Given a real number x appearing in a register, compute �x�, the great-
est integer ≤ x.

• Retrieve a real number entered by the user, and place it in a register.

• Output to the user a real number or integer appearing as the contents
of a register.

The Cm
Norm of a Function with Prescribed Jets II 293

We assume that the above operations can be carried out perfectly, with-
out roundoff error.

Also, as mentioned in the introduction, we assume that our computer
is capable of communicating with an Oracle, which will be used to convey
to the computer (an approximation to) |P|x for a given P ∈ P and x ∈ R

n.
Thus, we assume that the computer can do the following:

• Output the contents of a register to the Oracle.

• Wait for the Oracle to communicate a real number S; once the Oracle
speaks, the number S is placed in one of the registers of our machine.

To output a number to the Oracle costs us one unit of “work”. However,
when the Oracle speaks to our machine, then she decides how many units of
“work” to charge us. For more about the Oracle, see Section 3.

The flow of control in our computer proceeds as for a standard Von
Neumann machine [39]. This concludes our brief description of the model
of computation used in this paper.

It is well-known to computer scientists that the above “real RAM” model
of computation (even without an Oracle) leads to some suspiciously efficient
algorithms that make crucial use of the complete absence of roundoff errors.
See, e.g., [34]. This issue can be dealt with in various ways. In Fefferman-
Klartag [23], we made a rigorous analysis of the effect of roundoff errors on
the algorithms presented there. We believe that the algorithms in this paper
can be analyzed in a somewhat similar spirit, but we have not put in the
hard work required to decide the issue. The best we can say now is that it
is natural to guess that our algorithms will survive in the presence of small
enough roundoff errors.

3. Cm Norm

Suppose we are given a norm | · |x on the vector space P, for each x ∈ R
n. We

assume that these norms satisfy the following conditions, for certain given
constants c̄0, C̄0, C̄1.

Bounded Distortion Property: We have

c̄0 · max
|α|≤m

|∂αP(x)| ≤ |P|x ≤ C̄0 · max
|α|≤m

|∂αP(x)|

for all x ∈ R
n and P ∈ P.

Approximate Translation-Invariance Property: Let P ∈ P and x, y ∈ R
n be

given. Define a polynomial Py ∈ P by setting Py(z) = P(z−y) for all z ∈ R
n.

Then we have
|Py|x+y ≤ exp(C̄1|y|) · |P|x .

294 C. Fefferman

Throughout this paper, we assume that we are given the family of norms
| · |x, and the constants c̄0, C̄0, C̄1, such that the above properties hold. We
say that a constant is controlled if it is determined by m, n, c̄0, C̄0 and C̄1.

We write c, C, C′, etc., to denote controlled constants. Unless otherwise
specified, these constants may change from one occurrence to the next. We
recall the following definitions from the introduction.

For F ∈ Cm(Ω), we define ‖ F ‖Cm(Ω) = supx∈Ω |Jx(F)|x .

Also, for any Whitney field �P, we define ‖ �P ‖Cm(Rn) to denote the infimum

of ‖ F ‖Cm(Rn) over all F ∈ Cm(Rn) that agree with �P.
We need to specify the norms | · |x to our computer. Therefore, we assume

we have access to an Oracle, as follows. We query the Oracle by specifying
a point x ∈ R

n, a polynomial P ∈ P, and a number ε, with 0 < ε < 1. The
Oracle responds by producing a number Nε(P, x), such that

(1 + ε)−1 Nε(P, x) ≤ |P|x ≤ (1 + ε) Nε(P, x) .

We are charged exp(C/ε) units of work for each query (P, x, ε) addressed to
the Oracle.

We may suppose that Nε(P, x) = Nε(−P, x), for any P, x, ε. (In fact, we
may replace Nε(P, x) by max{Nε(P, x), Nε(−P, x)} without harm.)

The following algorithm gives us a close approximation to the unit ball
for the norm | · |x.

Algorithm 3.1. (“Find-Unit-Ball”).
Given a number ε, with 0 < ε < 1; and given a point x ∈ R

n; we
compute a finite set O(ε, x) of linear functionals on P, with the following
properties.

(O0) For any λ ∈ O(ε, x), we have also −λ ∈ O(ε, x).

(O1) (1 + ε)−1|P|x ≤ max{λ(P) : λ ∈ O(ε, x)} ≤ (1 + ε)|P|x for all P ∈ P.

(O2) #(O(ε, x)) ≤ exp(C/ε).

Moreover,

(O3) The work and storage used for the computation are at most exp(C/ε).

Explanation: We introduce some definitions and prove a few elementary
facts, then we give the algorithm and prove (O0)...(O3). Fix x ∈ R

n. For
P ∈ P, let |P| = max|α|≤m |∂αP(x)|. Thus,

(1) c|P| ≤ |P|x ≤ C|P| for P ∈ P, by the Bounded Distortion Property.

Let P∗ be the dual vector space to P, and let | · |∗ and | · |∗x be the norms
dual to | · |, | · |x, respectively. Thus (1) implies

(2) c|λ|∗ ≤ |λ|∗x ≤ C|λ|∗ for λ ∈ P∗.

The Cm
Norm of a Function with Prescribed Jets II 295

Let A , ε > 0 be real numbers. Assume that

(3) A exceeds a large enough controlled constant, and

(4) 0 < ε < A−2.

Later, we will pick A to be a controlled constant, large enough to satisfy (3).
For now, however, we just assume (3) and (4).

We introduce two finite sets Γ ⊂ P and Λ∗ ⊂ P∗, with the following
properties.

(5) Every P0 ∈ Γ satisfies |P0| ≤ 2A.

(6) For any P ∈ P with |P| ≤ A, there exists P0 ∈ Γ such that |P − P0| ≤ ε.

(7) Every λ0 ∈ Λ∗ satisfies |λ0|
∗ ≤ 2A.

(8) For any λ ∈ P∗ with |λ|∗ ≤ A, there exists λ0 ∈ Λ∗ such that |λ−λ0|
∗ ≤ ε.

(We can easily construct such Λ∗ and Γ . For instance, we can take Γ to
be the ball of radius 2A about 0 for the norm | · |, intersected with a fine
enough cubic lattice in P. We can define Λ∗ similarly.)
Now, we define sets Γ(ε) ⊆ Γ and O∗(ε, x) ⊆ Λ∗, as follows:

(9) Γ(ε) = {P0 ∈ Γ : Nε(P0, x) ≤ 1 + Aε}, where Nε(P0, x) is the
number computed by the Oracle for the query P0, x, ε; and

(10) O∗(ε, x) = {λ0 ∈ Λ∗ : λ0(P0) ≤ 1 + 2Aε for all P0 ∈ Γ(ε)}.

We will prove two elementary propositions regarding O∗(ε, x).

Proposition 1. Let λ0 ∈ O∗(ε, x), and let P ∈ P. Then

λ0(P) ≤ (1 + 10Aε) · |P|x.

Proof. We may assume that |P|x = 1. Then |P| ≤ C by (1). Hence, (3)
and (6) show that there exists P0 ∈ Γ such that |P − P0| ≤ ε. Fix such a P0.
By (1), we have |P−P0|x ≤ Cε. Hence, |P0|x ≤ |P|x + |P0−P|x ≤ 1 + Cε. The
defining property of Nε(P, x) then yields Nε(P0, x) ≤ (1 + C′ε) ≤ 1 + Aε

by (3).
Thus, P0 ∈ Γ and Nε(P0, x) ≤ 1 + Aε. By definition (9), we have

P0 ∈ Γ(ε). Since also λ0 ∈ O∗(ε, x), it follows from (10) that

(11) λ0(P0) ≤ 1 + 2Aε.

Moreover, we have λ0 ∈ O∗(ε, x) ⊆ Λ∗, hence |λ0|
∗ ≤ 2A by (7). Conse-

quently,

(12) |λ0(P − P0)| ≤ |λ0|
∗ · |P − P0| ≤ 2Aε.

From (11) and (12), we obtain λ0(P) ≤ 1 + 4Aε, proving Proposition 1. �

296 C. Fefferman

Proposition 2. Let P ∈ P. Then there exists λ0 ∈ O∗(ε, x) such that
λ0(P) ≥ (1 − Cε) · |P|x.

Proof. There exists λ ∈ P∗ such that

(13) |λ|∗x = 1 and

(14) λ(P) = |P|x.

By (13) and (2), we have |λ|∗ ≤ C. Hence, by (3) and (8), there exists
λ0 ∈ Λ∗ such that

(15) |λ − λ0|
∗ ≤ ε.

By (2), we therefore have

(16) |λ − λ0|
∗
x ≤ Cε.

From (13) and (16), we obtain

(17) |λ0|
∗
x ≤ 1 + Cε.

Let P0 ∈ Γ(ε). Then Nε (P0, x) ≤ 1 + Aε by (9); hence, |P0|x ≤ (1 +

Cε) · (1 + Aε) by defining property of Nε(P, x). Consequently, we have

λ0(P0) ≤ |λ0|
∗
x · |P0|x ≤ (1 + Cε) · [(1 + Cε) · (1 + Aε)] (see (17)).

Thanks to (3) and (4), it follows that λ(P0) ≤ 1 + 2Aε.
Thus, λ0 ∈ Λ∗, and λ0(P0) ≤ 1 + 2Aε for all P0 ∈ Γ(ε). By defini-

tion (10), we have

(18) λ0 ∈ O∗(ε, x).

Moreover, (14) and (16) yield the inequality

(19) λ0(P) = λ(P)−(λ−λ0)(P) ≥ |P|x− |λ−λ0|
∗
x · |P|x ≥ (1−Cε) · |P|x.

The conclusion of Proposition 2 is immediate from (18) and (19). �
Let us now take A to be a controlled constant, large enough that (3)

holds. We have also (4), provided ε > 0 is less than a small enough controlled
constant.

Since A is now a controlled constant, the two Propositions above tell us
that

(20) (1 − Cε) · |P|x ≤ max{λ(P) : λ ∈ O∗(ε, x)} ≤ (1 + Cε) · |P|x for P ∈ P.

Estimate (20) holds if ε is less than a small enough controlled constant.

The Cm
Norm of a Function with Prescribed Jets II 297

Now we can explain how to carry out Algorithm 3.1. First suppose
that ε is less than a small enough controlled constant. With A as above,
we compute sets Λ∗ and Γ satisfying (5)...(8). This elementary computation
takes work and storage at most Cε−D, where D = dim P. Moreover, we can
take our Λ∗ and Γ to satisfy also

(21) #(Λ∗), #(Γ) ≤ Cε−D.

(Details of the computation of Γ and Λ∗ are left to the reader.) We then
compute the set Γ(ε) from (9). This requires #(Γ) queries to the Oracle,
to learn the numbers Nε(P0, x) for all P0 ∈ Γ . Thus, the work to compute
Γ(ε) is at most exp(C/ε), thanks to (21) and our assumption on the work
to query the Oracle.

Having computed Γ(ε), we can then compute O∗(ε, x) from (10). The
work needed for this step is at most C · #(Λ∗) · #(Γ) ≤ C · ε−2D, while
the storage needed is at most C · ε−D.

Thus, we have computed O∗(ε, x) using total work and storage at most
exp(C/ε). The set O∗(ε, x) satisfies (20), and also

(22) #(O∗(ε, x)) ≤ #(Λ∗) ≤ Cε−D < exp(C/ε).

We have achieved (20) and (22), using work and storage at most exp(C/ε),
provided ε is less than a small enough controlled constant.

We now drop our assumption that ε is less than a small enough controlled
constant. We assume merely that 0 < ε < 1.

To compute O(ε, x) satisfying (O1), (O2), (O3) in Algorithm 3.1, it is
enough to replace ε by ε′ = cε for a small enough controlled constant c;
we then compute O∗(ε′, x), and we just set O(ε, x) = O∗(ε′, x). Proper-
ties (O1), (O2), (O3) are immediate from the corresponding properties of
O∗(ε′, x).

By taking the sets Λ∗ and Γ in (5)...(8) to be symmetric about the
origin, we obtain from the above construction that λ ∈ O(ε, x) if and only if
−λ ∈ O(ε, x), for any given functional λ on P. Thus, property (O0) holds
as well. This concludes our explanation of Algorithm 3.1.

We close this section by noting an elementary consequence of the Bounded
Distortion and Approximate-Translation Invariance properties.

Lemma 1. Let P ∈ P, x ∈ R
n, τ ∈ B(0, 1). If |P|x ≤ 1, then

|P|x+τ ≤ 1 + C|τ|.

Proof. Define the translate Pτ ∈ P, by setting Pτ(z) = P(z − τ) for all
z ∈ R

n. We have

(23) |Pτ|x+τ ≤ 1 + C|τ|,

by the Approximate-Translation Invariance property.

298 C. Fefferman

On the other hand, by the Bounded Distortion Property, we have |∂αP(x)| ≤ C

for |α| ≤ m, which implies the estimate

|∂α(P − Pτ)(x + τ)| ≤ C|τ| for |α| ≤ m .

Another application of the Bounded Distortion Property now gives

(24) |P − Pτ|x+τ ≤ C|τ|.

The desired conclusion is immediate from (23) and (24). �

4. Background from Computer Science

In this section, we recall some standard results from computer science. We
start with the “Ellipsoid Algorithm” for linear programming.

Let us work in R
D. We write v, v′, v0, etc., for vectors in R

D, and we
write λ, λ′, λ�, etc., to denote linear functionals on R

D. We denote a positive-
definite quadratic form on R

D by q(·). An “ellipsoid” is a subset E ⊂ R
D,

given by

(1) E = {v ∈ R
D : q(v − v0) ≤ 1}

for a positive-definite quadratic form q and a vector v0.

A “linear constraint” in R
D is an inequality of the form λ(v) ≥ b (with

λ ∈ (RD)∗ and b ∈ R given), for an unknown vector v ∈ R
D. Given a list

of linear constraints λ�(v) ≥ b� for � = 1, . . . , L, the “feasible region” is
defined as

K = {v ∈ R
D : λ�(v) ≥ b� for � = 1, . . . , L}.

Now suppose we are given a list of linear constraints, and a linear func-
tional λ̂ ∈ (RD)∗. We would like to find a vector v ∈ K, with λ̂(v) as small
as possible, or nearly so. Of course, this makes sense only if K is non-empty
and λ̂ is bounded below on K.

For the “ellipsoid algorithm”, we assume that K is roughly comparable
to a given ellipsoid E, in the sense that

(2) K ⊆ E, and volK ≥ λD volE for given real number λ > 0.

(In (2), λ does not denote a linear functional. We trust that no confusion
will result.)

The idea of the ellipsoid method is that either the center of E belongs
to K, or else one can trivially produce another ellipsoid E′, such that K ⊂ E′

and vol (E′) ≤ (1 − c/D) vol (E) for a universal constant c.

The Cm
Norm of a Function with Prescribed Jets II 299

This allows us to perform the following algorithm.

Ellipsoid Algorithm: Given positive real numbers ε, λ, with 0 < ε < 1/2

and 0 < λ < 1/2; and given an ellipsoid E with center v0; and given a list
of L linear constraints on R

D, whose feasible region K satisfies

(a) K ⊆ E and

(b) volK ≥ λD volE;

and given a linear functional λ̂∈(RD)∗; we compute a vector v1∈K such that

λ̂(v1) ≤ min{λ̂(v) : v ∈ K} + ε · max{|̂λ(v − v0)| : v ∈ E}.

The computation requires work at most CD4 L log
(

1
λ

)
log

(
1
ε

)
, and storage

at most C · (D + L)2.

The following special case will be used below. We write

BD = {(v1, . . . , vD) ∈ R
D : |vi| ≤ 1 for i = 1, . . . , D} .

Special Ellipsoid Algorithm: Given positive real numbers ε, ∧, λ, as-
sumed to satisfy 0 < ε < 1/2 and 2λ < ∧; and given a list of L linear
constraints in R

D, whose feasible region K is assumed to satisfy

(a) K ⊆ ∧ BD and

(b) K ⊇ λBD + ṽ for an (unknown) vector ṽ ∈ R
D;

we compute a vector (v0
1, . . . , v

0
D) ∈ K, such that

v0
1 ≤ min{v1 : (v1, . . . , vD) ∈ K} + ε ∧ .

The work required is at most CD4L log
(

∧D
λ

)
log

(
D
ε

)
, and the storage re-

quired is at most C · (D + L)2.

See [29]. Also, see [28, 32] as a sample of the extensive literature on linear
programming.

Next, we give some standard results from computational geometry. We
start this discussion with the Well-Separated Pairs Decomposition due to
Callahan and Kosaraju [11]. The results below are significantly weaker than
those of [11]. We state here only what we will need below.

Let E ⊂ R
n, with #(E) = N < ∞; and let 0 < κ < 1 be given. (We

assume N ≥ 2.) We write A(κ), A′(κ), etc., to denote constants determined
by κ and n. Then there exists a finite list of Cartesian products, E′

ν × E′′
ν,

ν = 1, . . . , vmax, with the following properties:

• Each E′
ν and E′′

ν is a non-empty subset of E.

• {(x′, x′′) ∈ E × E : x′
= x′′} is the disjoint union of the E′
ν × E′′

ν,
ν = 1, . . . , νmax.

300 C. Fefferman

• diam(E′
ν), diam(E′′

ν) ≤ κ · dist(E′
ν, E′′

ν) for each ν.

• The number of E′
ν × E′′

ν is vmax ≤ A(κ)N.

• There is an algorithm, called Algorithm WSPD, that accepts as in-
put (E, κ), and produces as output a list of “representatives” (x′

ν, x′′
ν) ∈

E′
ν × E′′

ν, ν = 1, . . . , νmax.
Algorithm WSPD consumes work at most A′(κ)N log N, and storage
at most A′′(κ)N.

Later, we will take κ to be a small enough controlled constant. The quanti-
ties A(κ), A′(κ), A′′(κ) will then also be controlled constants.

We pass to the “Balanced Box Decomposition Tree” or “BBD Tree”, due
to Arya, Mount, Netanyahu, Silverman and Wu [1]. Again, we state only
what we will need below, which is significantly weaker than the full results
in [1].

BBD Tree Algorithm: There is an algorithm with the following properties.

• The input for the algorithm consists of a non-empty finite set E ⊂ R
n,

with #(E) = N.

• The algorithm performs one-time work, and then responds to queries
as follows.

• A query consists of a point x ∈ R
n or a dyadic cube Q in R

n.

• The response to a query x ∈ R
n is a point y ∈ E such that |x − y| ≤

2 dist(x, E).

• The response to a query Q is a “representative” xQ ∈ E ∩ Q, or a
message indicating that E ∩ Q is empty.

• The one-time work is at most CN log(N+1) using storage at most CN.

• The work to answer a query is at most C log(N + 1).

See also Sections 23 and 27 in [23], where the query algorithm for Q is spelled
out in detail.

As an obvious consequence of the above, we have the following algorithm.

Algorithm Find-Representative: Given a non-empty set E ⊂ R
n, with

#(E) = N < ∞, we can perform one-time work CN log(N+1) in space CN,
after which we can respond to queries as follows:

• A query consists of a dyadic cube Q ⊂ R
n.

• The response to a query Q is a “representative” xQ ∈ E ∩ Q∗∗, or a
message indicating that E ∩ Q∗∗ is empty.

• The work to answer a query is at most C log(N + 1).

The Cm
Norm of a Function with Prescribed Jets II 301

In fact, we have only to partition Q∗∗ into dyadic cubes {Qν}, and apply
the BBD Tree query algorithm to each Qν.

There is an analogue of Algorithm Find-Representative, with Q∗∗ re-
placed by Q∗. We again give this algorithm the name “Find-Representative”.
Similarly, we may take Q∗∗∗ in place of Q∗∗.

5. Gentle Partitions of Unity

We recall a result from our previous paper [21], and give two corollaries and
a simple variant.

Lemma GPU: Let {Uν} be an open cover of an open set Ω ⊂ R
n, and let

δ(x) > 0 be defined for all x ∈ Ω. Suppose that, for each ν, we are given
functions Fν ∈ Cm(Uν) and χν ∈ Cm(Ω). Let ε, A0, A1, A2 > 0 and M ≥ 0

be real numbers. Assume that the following conditions are satisfied.

(GPU1) Any given x ∈ Ω belongs to suppΩχν for at most A0 distinct ν.

(GPU2)
∑
ν

χν = 1 on Ω.

(GPU3) χν ≥ 0 on Ω for each ν.

(GPU4) suppΩ χν ⊂ Uν for each ν.

(GPU5) |∂α χν(x)| ≤ A1ε · (δ(x))−|α| for 0 < |α| ≤ m, x ∈ Ω, and for
each ν.

(GPU6) |Jx(Fν)|x ≤ M for x ∈ suppΩχν (any ν).

(GPU7) |∂α(Fν − Fµ)(x)| ≤ A2M · (δ(x))m−|α| for |α| ≤ m − 1, x ∈
suppΩ χν ∩ suppΩ χµ (any µ, ν).

Then the function F =
∑
ν

χν Fν belongs to Cm(Ω), and

‖ F ‖Cm(Ω)≤ (1 + A′ε)M ,

where A′ depends only on A0, A1, A2, m, n, and on c̄0, C̄0 in the Bounded
Distortion Property. (See Section 3.)

The above differs from “Lemma GPU” in [21] only in the most trivial
details.

Corollary 1. Let y0 ∈ R
n; let Ã > 0, M ≥ 0, δ > 0, 0 < ε < 1 be real

numbers; and let θ0 ∈ Cm(Rn). Assume that 0 ≤ θ0 ≤ 1 on R
n; θ0(x) = 1

for |x − y0| ≤ e1/(16ε) δ; suppθ0 ⊂ B(y0, e
1/(8ε) δ); and

|∂αθ0(x)| ≤ Ãε |x − y0|
−|α| for 0 < |α| ≤ m , x ∈ R

n
� {y0} .

302 C. Fefferman

Also, let F0 ∈ Cm(B(y0, e
1/(8ε) δ)), F1 ∈ Cm(Rn). Assume that

‖ F0 ‖Cm(B(y0,e1/(8ε) δ))≤ M,

‖ F1 ‖Cm(Rn)≤ M, and

Jy0
(F0) = Jy0

(F1).

Then the function F = θ0F0 + (1 − θ0)F1 belongs to Cm(Rn), and

‖ F ‖Cm(Rn)≤ (1 + A′ε)M,

with A′ depending only on Ã, m, n and the constants c̄0, C̄0 in the Bounded
Distortion Property.

Proof. We write A′, A′′, etc., to denote constants determined by Ã, m, n,
c̄0, C̄0 as in the conclusion of our Corollary.

We apply Lemma GPU with Ω = R
n, U0 = B(y0, e

1/(8ε) δ), U1 = R
n,

χ0 = θ0, χ1 = 1 − θ0, δ(x) = δ + |x − y0|, F0 and F1 as in the hypotheses
of Corollary 1, A0 = 2, A1 = 2mÃ, and A2= large enough constant of the
form A′.

All the hypotheses of Lemma GPU are immediate here, except for (GPU5)
and (GPU7). To check these, we argue as follows.

For 0 < |α| ≤ m and |x − y0| ≥ δ, we have

|∂αχ0(x)| = |∂αχ1(x)| = |∂αθ0(x)| ≤ Ãε|x − y0|
−|α|

≤ (2mÃ)ε · (δ + |x − y0|)
−|α|.

On the other hand, for 0 < |α| ≤ m and |x − y0| < δ, we have

|∂αχ0(x)| = |∂αχ1(x)| = 0, since θ0 = 1 on B(y0, δ).

(GPU5) is immediate from the above observations.
To check (GPU7), we first note that

|∂α(F0 − Jy0
(F0))(x)| ≤ A′M |x − y0|

m−|α|

for |α| ≤ m − 1, x ∈ B(y0, e
1/(8ε)δ); and

|∂α(F1 − Jy0
(F1))(x)| ≤ A′M |x − y0|

m−|α|

for |α| ≤ m − 1, x ∈ B(y0, e
1/(8ε) δ), thanks to our hypotheses on the Cm

norms of F0 and F1 together with Taylor’s theorem and the Bounded Dis-
tortion Property. Combining these last two estimates, and recalling that
Jy0

(F0) = Jy0
(F1), we find that

|∂α(F0 − F1)(x)| ≤ A′′M|x − y0|
m−|α| for |α| ≤ m − 1, x ∈ B(y0, e

1/8εδ),

from which (GPU7) follows at once. Thus Lemma GPU applies, and it yields
the conclusion of Corollary 1. �

The Cm
Norm of a Function with Prescribed Jets II 303

Corollary 2. Let 0 < ε0 < 1 and M ≥ 0 be real numbers, let Q0 ⊂ R
n be

a cube, let θ0 ∈ Cm(Rn), and let F0 ∈ Cm(Qint
0).

Assume that 0 ≤ θ0 ≤ 1 on R
n;

supp θ0 ⊂ Qint
0 ;

|∂αθ0(x)| ≤ ε0 for 0 < |α| ≤ m, x ∈ R
n; and

‖ F0 ‖Cm(Qint
0)≤ M.

Then

F = θ0 · F0 belongs to Cm(Rn), and

‖ F ‖Cm(Rn)≤ (1 + Cε0)M.

Proof. Immediate from Lemma GPU, with Ω = R
n, U0 = Qint

0 , U1 = R
n,

χ0 = θ0, χ1 = 1 − θ0, δ(x) = 1 for all x ∈ R
n, F0 as given, F1 = 0, ε = ε0,

A0 = 2, A1 = 1, A2 = 1/c̄0, with c̄0 from the Bounded Distortion Property. �

The next result is an easier variant of Lemma GPU.

Lemma LGPU: Let 0 < ε < 1, A ≥ 1, M ≥ 0 be real numbers. Let Q̂ν be
pairwise disjoint dyadic cubes of sidelength δ̂, where A−1 ε−1 ≤ δ̂ ≤ ε−1.
Let θν ∈ Cm(Rn), and assume that θν ≥ 0 on R

n (each ν),
∑

ν θν ≤ 1

on R
n, supp θν ⊂ (Q̂∗

ν)
int (each ν), and |∂αθν(x)| ≤ Aε for 0 < |α| ≤ m,

x ∈ R
n (each ν).

Let Fν ∈ Cm((Q̂∗
ν)int), with ‖ Fν ‖Cm((Q̂∗

ν)int)≤ M (each ν).

Then F =
∑

ν θνFν belongs to Cm(Rn), and

‖ F ‖Cm(Rn)≤ (1 + A′ε)M,

where A′ depends only on A, m, n and c̄0, C̄0 in the Bounded Distortion
Property.

Proof. Obviously, F ∈ Cm(Rn). Our task is to estimate ‖ F ‖Cm(Rn). We
write A′, A′′, etc., to denote constants determined by A, m, n, c̄0, C̄0.

Fix x ∈ R
n, and note that

(1) Jx(F) =
∑
ν

θν(x)Jx(Fν) +
∑
ν

Eν, where

(2) Eν = Jx(θνFν) − θν(x)Jx(Fν) ∈ P.

By hypothesis, we have |Jx(Fν)|x ≤ M for each ν; and
∑

ν θν(x) ≤ 1 with
each θν(x) ≥ 0. Since | · |x is a norm, it follows that

(3)
∣∣∣ ∑

ν

θν(x)Jx(Fν)
∣∣∣
x
≤ M.

304 C. Fefferman

We turn to the Eν. From (2) we have

(4) ∂αEν(x) =
∑

β+γ=α
|β| �=0

α!
β!γ!

∂βθν(x) · ∂γFν(x).

For 0 < |β| ≤ m, we have |∂βθν(x)| ≤ Aε; and, for |γ| ≤ m, we have
|∂γFν(x)| ≤ A′M, thanks to our hypothesis on ‖ Fν ‖Cm and the Bounded
Distortion Property. Putting these remarks into (4), we find that

(5) |∂αEν(x)| ≤ A′′εM for |α| ≤ m (each ν).

Since x belongs to at most A′′′ distinct Q̂∗
ν, and since supp θν ⊂ Q̂∗

ν, we see
from (2) that Eν is nonzero for at most A′′′ distinct ν. Hence, (5) implies

∣∣∣∣∂α

[∑
ν

Eν

]
(x)

∣∣∣∣ ≤ A′εM for |α| ≤ m.

Another application of the Bounded Distortion Property now yields

(6) |
∑
ν

Eν|x ≤ A′′ εM.

From (1), (3), (6), we see that |Jx(F)|x ≤ (1 + A′′ε)M. Since x ∈ R
n was ar-

bitrary, it follows that ‖ F ‖Cm(Rn)≤ (1+A′′ε)M, proving Lemma LGPU. �

6. The Main Patching Lemma

In this section and the next, we adapt to our purposes the arguments from
Section 5 in [21]. Here, we give the set-up and state a result. The next
section proves that result.

Our set-up is as follows. We are given real numbers ε > 0 and M ≥ 0,
and positive constants A0, . . . , A7. In addition, we suppose we are given the
following objects.

Whitney Field: We suppose we are given a Whitney field �P = (Py)y∈E on a
finite set E ⊂ R

n.
We assume that

(1) |∂α(Px − Py)(x)| ≤ A0M · |x − y|m−|α| for |α| ≤ m, x, y ∈ E, x
= y.

Regularized Distance: We suppose we are given a function δ(·) in Cm
loc(R

n
�E).

We assume that

(2) A−1
1 dist (x, E) ≤ δ(x) ≤ A1 dist (x, E) for all x ∈ R

n
� E, and

(3) |∂αδ(x)| ≤ A2 · (δ(x))1−|α| for |α| ≤ m, x ∈ R
n

� E.

The Cm
Norm of a Function with Prescribed Jets II 305

Partitions of Unity: We suppose we are given a Cm partition of unity

(4) 1 =
∑

−∞ <�<∞ χ�(t) on R.

We assume for each � that

(5) χ�(t) ≥ 0 for t ∈ R; supp χ� ⊂ (� − 1, � + 1); |
(

d
dt

)k
χ�(t)| ≤ A3 for

k ≤ m, t ∈ R.

For each � ∈ Z, we suppose we are given a Cm partition of unity

(6) 1 =
∑
ν

θ�
ν on R

n.

We assume, for each �, ν, that

(7) θ�
ν ≥ 0 on R

n, and θ�
ν is supported in the interior of a cube Q�

ν of
sidelength δ�, where

(8) A−1
4 ε−1 exp((� + 1)/ε) ≤ δ� ≤ A4ε

−1 exp((� + 1)/ε).

Also, for each �, ν, we assume that

(9) |∂αθ�
ν(x)| ≤ A5 · [ε−1 exp((� + 1)/ε)]−|α| for |α| ≤ m, x ∈ R

n.

Regarding the cubes Q�
ν, we assume that

(10) For fixed � ∈ Z and x ∈ R
n, there are at most A6 distinct ν for which

x ∈ Q�
ν.

Testing Sets: For each �, ν, we suppose we are given a set

(11) S�
ν ⊂ E ∩ (Q�

ν)∗.

We assume that

(12) dist (y, S�
ν) ≤ A7 · exp((� − 1)/ε) for all y ∈ E ∩ (Q�

ν)
∗.

Local Extending Functions: For each �, ν, we suppose we are given a function

F�
ν ∈ Cm(Rn). We assume that

(13) F�
ν agrees with �P on S�

ν, and

(14) ‖ F�
ν ‖Cm(Rn)≤ M.

For each x ∈ E, we suppose we are given a function Fx ∈ Cm(Rn). We
assume that

(15) Jx(F
x) = Px for x ∈ E, and

(16) For each � and ν, if S�
ν = {x}, then F�

ν = Fx.

306 C. Fefferman

We call a constant “weakly controlled” if it is determined by A0, . . . , A7

above, together with m, n and c̄0, C̄0, C̄1 from Section 3. We write A1, A
′, A′′,

etc., to denote weakly controlled constants.
We patch together the F�

ν into a single function F̃ on R
n, by setting

(17) F̃(x) = Px(x) for x ∈ E, and

(18) F̃(x) =
∑
�,ν

χ�(ε log δ(x)) · θ�
ν(x) · F�

ν(x) for x ∈ R
n

� E.

Under the above assumptions, we have the following result.

Main Patching Lemma: Suppose ε is less than a small enough weakly
controlled constant. Then F̃ belongs to Cm(Rn), agrees with �P, and satisfies
‖ F̃ ‖Cm(Rn)≤ (1 + Aε)M for a weakly controlled constant A.

The proof of this lemma will be given in the next section.

7. Proof of the Main Patching Lemma

In this section, we prove the Main Patching Lemma, using ideas from Sec-
tion 5 of [21]. We adopt the convention that, for k ≥ 1, the label 〈k〉 refers to
equation (k) in Section 6 of our present paper. Also, we retain the assump-
tions and conventions of Section 6. In particular, A, A′, A′′, etc., denote
“weakly controlled constants”.

We adapt the arguments in Section 5 of [21], using the hypotheses of
the Main Patching Lemma in place of equations (6), (8)...(13), (18)...(22),
and (34), (35) in Section 5 of [21].
Let

(1) Ω = R
n

� E.

For each �, ν, define

(2) χ�
ν(x) = θ�

ν(x) · χ�(ε log δ(x)) for x ∈ Ω.

From 〈4〉 . . . 〈7〉 and 〈10〉, we see that

(3) Any given x ∈ Ω belongs to suppΩ χ�
ν for at most A distinct (�, ν);

(4)
∑
�,ν

χ�
ν = 1 on Ω; and

(5) χ�
ν ≥ 0 on Ω.

Setting

(6) U�
ν = Ω for each �, ν, we have

(7) suppΩχ�
ν ⊂ U�

ν,

by definition of suppΩ.

The Cm
Norm of a Function with Prescribed Jets II 307

We prepare to estimate the derivatives of χ�
ν.

As in Section 5 of [21], we first note that ∂α[χ�(ε log δ(·))](x) is a sum of
terms of the form

r∏
ν=1

∂βν [ε log δ(·)](x) · χ
(r)
� (ε log δ(x)),

where χ
(r)
� denotes the rth derivative of χ�, and where β1+ · · ·+βr = α and

each βν is non-zero. Moreover, each ∂βν [ε log δ(x)] is a sum of terms of the
form

ε
∂γ1 δ(x) · · · ∂γsν δ(x)

(δ(x))sν
,

with γ1 + · · · + γsν = βν. Consequently, for 0 < |α| ≤ m, the quantity
∂α[χ�(ε log δ(·))](x) is a sum of terms

εr ∂γ1 δ(x) · · · ∂γs δ(x)

(δ(x))s
· χ

(r)
� (ε log δ(x)),

with 1 ≤ r ≤ m and γ1 + · · · + γs = α. Thanks to 〈3〉 and 〈5〉, it follows
that

(8) |∂α[χ�(ε log δ(·))](x)| ≤ Aε · (δ(x))−|α| for 0 < |α| ≤ m, x ∈ Ω.

We note also that

(9) exp((� − 1)/ε) < δ(x) < exp((� + 1)/ε) for x ∈ suppΩ χ�(ε log δ(·)),
as we see at once from 〈5〉. Hence, for

x ∈ suppΩχ�
ν = suppΩ(θ�

ν · χ�(ε log δ(·))),
we have

(10) |∂αθ�
ν(x)| ≤ Aε|α| (δ(x))−|α| for |α| ≤ m (see 〈9〉).

Since 0 ≤ χ�(ε log δ(x)) ≤ 1 (see 〈4〉, 〈5〉), it follows from (8), (10) and our
definition (2) of χ�

ν that

(11) |∂αχ�
ν(x)| ≤ Aε · (δ(x))−|α| for 0 < |α| ≤ m, x ∈ Ω, each �, ν.

Thus, we have succeeded in estimating the derivatives of χ�
ν.

We next turn to the extending functions F�
ν in 〈13〉, 〈14〉. Since F�

ν ∈
Cm(Rn), we have in particular that

(12) F�
ν ∈ Cm(U�

ν).

From 〈14〉, we have

(13) |Jx(F
�
ν)|x ≤ M for all x ∈ suppΩχ�

ν (any �, ν).

308 C. Fefferman

We prepare to estimate the derivatives of F�
ν − F�′

ν′ at a point

(14) x ∈ suppΩχ�
ν ∩ suppΩχ�′

ν′ .

For x as in (14), we have x ∈ suppΩθ�
ν ⊂ Q�

ν; and also x ∈ suppχ�(ε log δ(·)),
hence δ(x) is estimated by (9). Comparing (9) with 〈7〉, 〈8〉, we see that
δ(x) ≤ Aε sidelength (Q�

ν); hence 〈2〉 yields a point

(15) ȳ ∈ E

such that

(16) |x − ȳ| ≤ Aδ(x) ≤ A′ε sidelength (Q�
ν).

Since x ∈ Q�
ν and ε is less than a small enough weakly controlled constant,

we learn from (15), (16) that ȳ ∈ E∩ (Q�
ν)∗. Consequently, 〈12〉 applies and

we obtain a point

(17) y ∈ S�
ν,

such that

(18) |y − ȳ| ≤ A · exp((� − 1)/ε) ≤ Aδ(x), thanks to (9).

From (16), (17), (18), we conclude that

(19) There exists y ∈ S�
ν, such that |x − y| ≤ Aδ(x).

Similarly,

(20) There exists y′ ∈ S�′
ν′, such that |x − y′| ≤ Aδ(x).

Fix y, y′ as in (19), (20), and note that

(21) |y − y′| ≤ Aδ(x).

From 〈13〉 and (19), we have

(22) Jy(F�
ν) = Py,

and from 〈13〉 and (20), we have

(23) Jy′(F�′
ν′) = Py′

.

From 〈14〉, the Bounded Distortion Property, and Taylor’s theorem, we obtain
the estimate

|∂α(F�
ν − Jy(F�

ν))(x)| ≤ AM|x − y|m−|α| for |α| ≤ m.

In view of (19) and (22), this implies that

(24) |∂α(F�
ν − Py)(x)| ≤ AM(δ(x))m−|α| for |α| ≤ m.

Similarly,

(25) |∂α(F�′
ν′ − Py′

)(x)| ≤ AM(δ(x))m−|α| for |α| ≤ m.

The Cm
Norm of a Function with Prescribed Jets II 309

Next, invoking 〈1〉, we see that

|∂α(Py − Py′
)(y)| ≤ AM|y − y′|m−|α| for |α| ≤ m, if y
= y′.

Since |y − y′|, |x − y| ≤ Aδ(x) (see (19) and (21)), it follows that

|∂α(Py − Py′
)(y)| ≤ AM(δ(x))m−|α| for |α| ≤ m,

and hence

(26) |∂α(Py−Py′
)(x)| ≤ AM(δ(x))m−|α| for |α| ≤ m, since Py−Py′ ∈ P.

From (24), (25), (26), we obtain our desired estimate,

(27) |∂α(F�
ν − F�′

ν′)(x)| ≤ AM(δ(x))m−|α| for |α| ≤ m, x ∈ suppΩχ�
ν ∩

suppΩχ�′
ν′ (any (�, ν), (�′, ν′)).

We can now apply Lemma GPU to the open set Ω, the open cover {U�
ν}, the

function δ(x), the partition of unity {χ�
ν}, and the functions F�

ν ∈ Cm(U�
ν).

The hypotheses of Lemma GPU are immediate from our present re-
sults (3), (4), (5), (7), (11), (13), (27).

Thus, we learn from Lemma GPU that the function F̃, defined in 〈17〉, 〈18〉,
satisfies

(28) F̃ ∈ Cm(Rn
� E), and ‖ F̃ ‖Cm(Rn�E)≤ (1 + Aε)M.

Next, we investigate how F̃ behaves on R
n

� E near a point of E. Fix

(29) x0 ∈ E,

let � be a small enough positive number to be fixed later, and suppose

(30) x ∈ R
n

� E, with

(31) |x − x0| < �.

Recall that E is finite; hence, we may suppose that

(32) 2� < dist(x0, E � {x0}).

For y ∈ E � {x0}, we then have

|x − y| ≥ |x0 − y| − |x0 − x| > 2� − � = � > |x − x0|.

Consequently,

(33) |x − x0| = dist(x, E).

310 C. Fefferman

Let (�, ν) be such that

(34) suppΩχ�
ν � x.

Then x ∈ suppΩχ�(ε log δ(·)); hence (9) applies. From (9) and 〈2〉, we obtain

(35) A−1 exp((� − 1)/ε) < |x − x0| < A exp((� + 1)/ε).

Also, (34) yields

(36) x ∈ suppΩθ�
ν ⊂ Q�

ν.

Recall from 〈7〉 , 〈8〉 that sidelength (Q�
ν) = δ� < Aε−1 exp((� + 1)/ε);

together with (35) and (31), this yields

(37) sidelength (Q�
ν) < Aε−1 exp(2/ε) · |x − x0| ≤ Aε−1 exp(2/ε) · �.

On the other hand, 〈7〉 and 〈8〉 yield also

(38) sidelength (Q�
ν) = δ� > A−1ε−1 exp((� + 1)/ε) > A−1ε−1|x − x0|,

thanks to (35). Since ε is less than a small enough weakly controlled con-
stant, it follows from (29), (36) and (38) that

(39) x0 ∈ (Q�
ν)∗ ∩ E.

We next show that E ∩ (Q�
ν)∗ consists of the single point x0. In fact, if

y ∈ E ∩ (Q�
ν)

∗ with y
= x0, then from (37) and (39) we would have

(40) |y − x0| ≤ A· sidelength (Q�
ν) ≤ Aε−1 exp(2/ε) · �.

If � is small enough, then (40) cannot hold for two distinct points y, x0 in
the finite set E. We assume that � is small enough that (32) holds and (40)
is impossible. We then obtain E ∩ (Q�

ν)∗ = {x0}.
Together with 〈11〉 and 〈12〉, this shows that S�

ν = {x0}. Therefore,
from 〈16〉, we obtain the equality

(41) F�
ν = Fx0 .

We have proven (41) for every (�, ν) satisfying (34).
Consequently, for x0, x as in (29), (30), (31), the definition 〈18〉 and (2) yield

F̃(x) =
∑
�,ν

χ�
ν(x) · F�

ν(x) =
∑
�,ν

χ�
ν(x) · Fx0(x).

Recalling (4), we conclude that

(42) F̃(x) = Fx0(x) for all x ∈ R
n

� E such that |x − x0| < �.

The Cm
Norm of a Function with Prescribed Jets II 311

Here, x0 is an arbitrary point of E, and � is a small enough positive number.
We note that

(43) Fx0 ∈ Cm(Rn), and ‖ Fx0 ‖Cm(Rn)≤ M, for x0 ∈ E,

thanks to (41) and 〈14〉.
Also, we recall from 〈15〉 that

(44) Jx0
(Fx0) = Px0 for any x0 ∈ E.

We now define a function F on R
n, by setting

(45) F = F̃ on R
n

� E, and F = Fx0 on B(x0,�) for each x0 ∈ E.

Note that (45) provides a consistent definition of a function F, since the
balls B(x0,�) (x0 ∈ E) are pairwise disjoint for � small enough, and thanks
to (42). Since F̃ ∈ Cm(Rn

� E) and Fx0 ∈ Cm(B(x0,�)) for each x0 ∈ E, it
follows from (45) that

(46) F ∈ Cm(Rn).

(We can now pick � to be any positive number small enough that the
above arguments work.) Moreover, (44) and (45) show that

(47) Jx0
(F) = Px0 for all x0 ∈ E.

We estimate the Cm norm of F, by checking that

(48) |Jx(F)|x ≤ (1 + Aε)M for all x ∈ R
n.

Indeed, for x ∈ R
n

� E0, (48) follows from (28) and (45); while, for
x ∈ E0, (48) follows from (43) and (45). Thus, (48) holds in all cases, and
consequently,

(49) ‖ F ‖Cm(Rn)≤ (1 + Aε)M.

We note that, in fact,

(50) F = F̃ on R
n.

In fact, (50) holds on R
n

� E, thanks to (45). For x0 ∈ E, we have

F(x0) = Px0(x0) = F̃(x0)

by (47) and 〈17〉. Thus (50) holds also on E.
In view of (50), our results (46), (47), (49) show that F̃ ∈ Cm(Rn), F̃

agrees with �P, and ‖ F̃ ‖Cm(Rn)≤ (1 + Aε)M. These are the conclusions of
the Main Patching Lemma.

The proof of that Lemma is complete. �

312 C. Fefferman

8. Comparing Polynomials at Representative Points

Let E ⊂ R
n be a finite set, and let 0 < κ < 1 be a real number. Recall

the representatives (x′
ν, x′′

ν) (1 ≤ ν ≤ νmax) arising from the Well-Separated
Pairs Decomposition from Section 4, for the parameter κ. As an application
of the Well-Separated Pairs Decomposition, we recall the following lemma
from [20]. (See also Har-Peled and Mendel [26].)

Lemma 8.1. Suppose we are given an (m−1)rst degree polynomial P̄x on R
n,

for each x ∈ E. Let M ≥ 0, and assume that

|∂α(P̄x′
ν − P̄x′′

ν)(x′
ν)| ≤ M · |x′

ν−x′′
ν|m−|α| for |α| ≤ m − 1, 1 ≤ ν ≤ νmax.

Assume also that κ is less than a small enough constant determined by m, n.
Then, for any x, y ∈ E, we have

|∂α(P̄x − P̄y)(x)| ≤ CM · |x − y|m−|α| for |α| ≤ m − 1,

with C depending only on m and n.

In order to check efficiently that estimate (1) in Section 6 is satisfied, we
will use the following variant of Lemma 8.1.

Lemma 8.2. Let �P = (Px)x∈E be a Whitney field on E, and let M ≥ 0.
Assume that κ is less than a small enough constant determined by m, n.
Assume also that

(1) |∂αPy(y)| ≤ M for |α| = m, y ∈ E; and that

(2) |∂α(Px′
ν − Px′′

ν)(x′
ν)| ≤ M · |x′

ν − x′′
ν|m−|α| for |α| ≤ m − 1, 1 ≤ ν ≤

νmax .

Then

(3) |∂α(Px − Py)(x)| ≤ CM · |x − y|m−|α| for |α| ≤ m, x, y ∈ E, x
= y,

with C depending only on m, n.

Proof. We reduce matters to Lemma 8.1. We write c, C, C′, etc. (in this
proof) to denote constants depending only on m, n. Let

Px(z) =
∑

|α|≤m

λx
α · (z − x)α for x ∈ E, z ∈ R

n.

Then (1) yields

(4) |λx
α| ≤ CM for |α| = m.

Define
P̄x(z) =

∑
|α|≤m−1

λx
α · (z − x)α for x ∈ E, z ∈ R

n.

The Cm
Norm of a Function with Prescribed Jets II 313

Thus, each P̄x is an (m−1)rst degree polynomial on R
n. Also, for x, y ∈ E

and |α| ≤ m − 1, we have

∂αP̄y(x) = ∂αPy(x) −
∑

|γ|=m−|α|

c(α, γ) λ
y
α+γ · (x − y)γ,

which implies that

(5) |∂αP̄y(x) − ∂αPy(x)| ≤ CM|x − y|m−|α| thanks to (4).

In view of (5), our hypothesis (2) implies the estimate

|∂α(P̄x′
ν − P̄x′′

ν)(x′
ν)| ≤ CM|x′

ν − x′′
ν|m−|α| for |α| ≤ m − 1, 1 ≤ ν ≤ νmax.

Therefore, Lemma 8.1 tells us that

(6) |∂α(P̄x − P̄y)(x)| ≤ C′M|x − y|m−|α| for |α| ≤ m − 1, x, y ∈ E, x
= y.

The conclusion (3) of Lemma 9.2 follows from (5) and (6), for |α| ≤ m − 1.
For |α| = m, conclusion (3) follows from (1), since ∂αPx and ∂αPy are
constant polynomials. The proof of the lemma is complete. �

9. Computing a Regularized Distance

Suppose E ⊂ R
n and #(E) = N < ∞, with N ≥ 2. In this section we

show how to compute a function δ(x) > 0, defined on R
n

�E, and satisfying
estimates (2) and (3) in Section 6. The idea goes back to Whitney [41]. To
give an efficient algorithm, we bring in the BBD Tree from Section 4.

We define Q to be the set of all dyadic cubes Q ⊂ R
n, such that

(1) E ∩ Q∗∗∗ = φ,

but (1) fails for any dyadic cube strictly containing Q. For fixed x ∈ R
n

� E,
one checks easily that any sufficiently small dyadic cube containing x sat-
isfies (1), while any sufficiently large dyadic cube containing x fails to sat-
isfy (1). Consequently, x ∈ Q for some Q ∈ Q. Thus Q is a covering of
R

n
� E. Also, the cubes in Q are pairwise disjoint, since any two distinct

dyadic cubes Q, Q′ satisfy one of the three conditions Q ∩ Q′ = φ, Q⊂Q′,
Q′ ⊂Q. Moreover, each Q ∈ Q is obviously contained in R

n
�E. The above

remarks show that

(2) The cubes of Q form a partition of R
n

� E.

Next, suppose Q, Q′ ∈ Q, and Q∗ ∩ (Q′)∗
= φ. Then

(3) 1
2
δQ ≤ δQ′ ≤ 2δQ.

314 C. Fefferman

In fact, suppose (3) fails. Since Q, Q′ are dyadic cubes, their sidelengths
are powers of two. Therefore, δQ and δQ′ must differ by at least a factor of 4.
Without loss of generality, we may assume that δQ ≤ 1

4
δQ′ . Let Q+ be the

dyadic “parent” of Q, i.e., the dyadic cube for which Q+ ⊃ Q, δQ+ = 2δQ.
Then we have δQ+ ≤ 1

2
δQ′ and (Q+)∗∩(Q′)∗
= φ. Consequently, (Q+)∗∗∗ ⊂

(Q′)∗∗∗. Therefore, (1) holds for the cube Q+, since it holds for Q′ ∈ Q.

This contradicts our assumption that Q ∈ Q, completing the proof of (3).

For any dyadic cube Q, we introduce a function ϕQ ∈ Cm(Rn), with the
properties:

(4) ϕQ ≥ 0 on R
n; ϕQ = 1 on Q; supp ϕQ ⊂ Q∗; and

(5) |∂αϕQ| ≤ C δ
−|α|
Q on R

n, for |α| ≤ m.

By taking ϕQ to be an appropriate spline, we can satisfy (4), (5), and give
a query algorithm as follows.

Algorithm 9.1. (“Find-jet-of ϕQ”): Given a dyadic cube Q and a point
x ∈ R

n, we compute the jet Jx(ϕQ) with work at most C.

We now define the “regularized distance” by Whitney’s formula

(6) δ(x) =
∑

Q∈Q

δQ · ϕQ(x) for x ∈ R
n

� E.

Using the definition of Q and properties (2), (3), one checks easily that

(7) c dist (x, E) ≤ δQ ≤ C dist(x, E) for x ∈ Q∗, Q ∈ Q,

and therefore the function δ(x) in (6) satisfies

(8) c dist (x, E) ≤ δ(x) ≤ C dist (x, E) for x ∈ R
n

� E

and

(9) |∂α δ(x)| ≤ C · (δ(x))1−|α| for |α| ≤ m, x ∈ R
n

� E.

Thus, the properties (2), (3) in Section 6 hold for our function δ(x).

We prepare to compute the function δ(x).

Given x ∈ R
n

� E, we define

(10) Q(x) = {Q ∈ Q : x ∈ Q∗}.

Since supp ϕQ ⊂ Q∗ for any Q, a glance at (6) gives

(11) Jx(δ(·)) =
∑

Q∈Q(x)

δQ · Jx(ϕQ), for x ∈ R
n

� E.

The Cm
Norm of a Function with Prescribed Jets II 315

Moreover, (7) shows that

(12) c dist (x, E) ≤ δQ ≤ C dist (x, E) for x ∈ R
n

� E, Q ∈ Q(x).

Our computation of δ(x) proceeds as follows

Algorithm 9.2. (“Compute-Regularized-Distance”): After one-time work
at most CN log N in space CN, we can answer queries as follows. Given
x ∈ R

n
� E, we compute Jx(δ(·)) with work at most C log N.

Explanation: We perform the one-time work of the BBD Tree, and of Algo-
rithm “Find-Repepresentative”, as in Section 4. Recall that this one-time
work is at most CN log N, and requires space at most CN.

Suppose we have done the above one-time work, and suppose we are given
a query point x ∈ R

n
� E. Then, using the BBD Tree Query algorithm, we

can compute a number d > 0 such that

(13) 1
2
dist (x, E) ≤ d ≤ 2dist (x, E).

The computation of d requires work at most C log N. From (10), (12)
and (13), we have

(14) cd ≤ δQ ≤ Cd and Q∗ � x for each Q ∈ Q(x).

There are at most C dyadic cubes Q satisfying (14) for given x, d; and it
takes work at most C to list them. Let Q1, . . . , QL be a list of all the dyadic
cubes satisfying (14).

Next, we test each Q�(1 ≤ � ≤ L), to decide whether Q� ∈ Q. To do so,
we let Q+

� be the dyadic “parent” of Q�, i.e., the dyadic cube containing Q�,
with sidelength twice that of Q�. Then, by definition of Q, we have Q� ∈ Q

if and only if

(15) E ∩ Q∗∗∗
� = φ but E ∩ (Q+

�)∗∗∗
= φ.

We can test whether (15) holds, thanks to Algorithm “Find-Representative”
from Section 4, applied to the two dyadic cubes Q� and Q+

� . For each Q�,
this requires work at most C log N, and there are at most C distinct Q�.
Thus, it takes work at most C log N to decide which of the cubes Q1, . . . , QL

belong to Q.
However, one checks easily that Q(x) is precisely the set of all the cubes Q�

(1 ≤ � ≤ L) that belong to Q.
Thus, we have produced a list of all the cubes in Q(x). There are at

most C such cubes. We can now trivially compute Jx(δ(·)), using equa-
tion (11) and Algorithm 9.1. The work of this last step is at most C. This
completes our explanation of Algorithm 9.2.

316 C. Fefferman

10. Computing Partitions of Unity

In this section, we compute cutoff functions χ�(t), θ�
ν(x), as well as cubes

Q�
ν, satisfying conditions (4)...(10) in Section 6. We also compute additional

cutoff functions that will be used later.
By taking χ0(t) to be an appropriate spline on R, and then defining

χ�(t) = χ0(t − �) for � ∈ Z, we can arrange that

(1) χ� ∈ Cm(R) for each � ∈ Z,

and that for each � ∈ Z, we have

(2) χ� ≥ 0 on R; supp χ� ⊂ (�−1, �+1) ; |
(

d
dt

)k
χ�(t)| ≤ C for |k| ≤ m, t ∈ R;

and that

(3)
∑
�∈Z

χ�(t) = 1 for all t ∈ R;

moreover, we can answer queries as follows.

Algorithm 10.1. (“Compute-χ�”): Given � ∈ Z, t ∈ R, 0 ≤ k ≤ m, we

compute
(

d
dt

)k
χ�(t) with work at most C.

In view of (1), (2), (3), the χ� form a Cm partition of unity satisfying (4)
and (5) in Section 6.

Next, we prepare to define and compute cubes Q�
ν and cutoff functions θ�

ν

as in (6)...(10) in Section 6.

For s ∈ Z, and for any lattice point ν = (ν1, . . . , νn) ∈ Z
n, we let Q

〈s〉
ν

denote the dyadic cube Q
〈s〉
ν = [2s · ν1, 2

s · (ν1 + 1)) × · · · × [2s · νn, 2s ·
(νn + 1)) ⊂ R

n.

Thus, for fixed s ∈ Z, the Q
〈s〉
ν (ν ∈ Z

n) partition R
n into dyadic cubes

of sidelength 2s.

By taking θ̂
〈0〉
0 ∈ Cm(Rn) to be an appropriate spline, and then defining

θ̂
〈s〉
ν (x) = θ̂

〈0〉
0 (2−sx − ν) for s ∈ Z and ν ∈ Z

n, we can arrange that, for
each s, ν, we have:

θ̂
〈s〉
ν ∈ Cm(Rn);

θ̂
〈s〉
ν ≥ 0 on R

n;

θ̂
〈s〉
ν ≥ 1 on Q

〈s〉
ν ;

supp θ̂
〈s〉
ν ⊂ [(

Q
〈s〉
ν

)∗]int
(recall, “int” denotes the interior);

|∂αθ̂
〈s〉
ν (x)| ≤ C · 2−s|α| for |α| ≤ m, x ∈ R

n;

and we can answer queries as follows.

The Cm
Norm of a Function with Prescribed Jets II 317

Algorithm 10.2. Given s ∈ Z, ν ∈ Z
n, x ∈ R

n, we compute the jet Jx(θ̂
〈s〉
ν)

with work at most C.

We now define

θ〈s〉
ν (x) = θ̂〈s〉

ν (x)

/∑
ν′∈Zn

θ̂
〈s〉
ν′ (x) for x ∈ R

n, s ∈ Z, ν ∈ Z
n.

Here, we may restrict the sum to run over only those ν′ ∈ Z
n such that

x ∈ (Q
〈s〉
ν′)∗.

From the properties of the θ̂
〈s〉
ν , we see that the θ

〈s〉
ν satisfy the following.

θ
〈s〉
ν ∈ Cm(Rn);

θ
〈s〉
ν ≥ 0 on R

n;

supp θ
〈s〉
ν ⊂ [(Q

〈s〉
ν)∗]int;∑

ν∈Zn

θ
〈s〉
ν = 1 on R

n;

|∂αθ
〈s〉
ν (x)| ≤ C · 2−s|α| for |α| ≤ m, x ∈ R

n;

and we can answer queries as follows.

Algorithm 10.3. Given s ∈ Z, ν ∈ Z
m, x ∈ R

n, we compute Jx(θ
〈s〉
ν) with

work at most C.

Now suppose we are given 0 < ε < 1 and � ∈ Z. With work at most C,
we can compute an s ∈ Z, such that

(4) 1
32

ε−1 exp((� + 1)/ε) ≤ 2s ≤ 1
8
ε−1 exp((� + 1)/ε).

Fix s as in (4). For any ν ∈ Z
n, we then define

Q�
ν = (Q〈s〉

ν)∗, θ�
ν = θ〈s〉

ν , Q̂�
ν = Q〈s〉

ν .

Also, we define δ� = 3 · 2s.

The properties of the θ
〈s〉
ν and Q

〈s〉
ν then yield the following.

(5) Each θ�
ν belongs to Cm(Rn).

(6)
∑

ν∈Zn

θ�
ν = 1 on R

n, for each � ∈ Z.

For each �, ν,

(7) θ�
ν ≥ 0 on R

n, and θ�
ν is supported in the interior of the cube Q�

ν;

(8) the sidelength of Q�
ν is δ�; and

(9) 1
32

ε−1 exp((� + 1)/ε) ≤ δ� ≤ ε−1 exp((� + 1)/ε).

318 C. Fefferman

Also, for each �, ν, we have

(10) |∂αθ�
ν(x)| ≤ C · [ε−1 exp((� + 1)/ε)]−|α| for |α| ≤ m, x ∈ R

n.

Moreover,

(11) For fixed � ∈ Z and x ∈ R
n, we have x ∈ Q�

ν for at most C distinct ν.

Furthermore, we can answer queries as follows.

Algorithm 10.4. (“Compute θ�
ν”): Given 0 < ε < 1, � ∈ Z, ν ∈ Z

n,
x ∈ R

n, we compute the jet Jx(θ
�
ν), as well as the cubes Q̂�

ν, Q�
ν. The work

of this algorithm is at most C.

Note that, by definition,

(12) Each Q̂�
ν is a dyadic cube, and Q�

ν = (Q̂�
ν)

∗.

In view of (5)...(12), the θ�
ν form a Cm partition of unity, satisfying condi-

tions (6)...(10) in Section 6.
This concludes our discussion of the θ�

ν. Regarding the Q�
ν, we note that

it is trivial to answer queries as follows.

Algorithm 10.5. (“Find-Relevant-Cubes”): Given � ∈ Z and x ∈ R
n, we

produce a list of all the ν ∈ Z
n such that x ∈ (Q�

ν)∗. There are at most C

such ν ∈ Z
n, and the work of the algorithm is at most C.

Next, we compute a cutoff function that will be used later in computing
local extending functions as in (13)...(16) in Section 6.

Algorithm 10.6. Given a point y0 ∈ R
n and numbers δ > 0 and 0 < ε < 1,

we compute a function θ0 ∈ Cm+1(Rn), with the following properties:

(a) 0 ≤ θ0 ≤ 1 on R
n;

(b) θ0(x) = 1 for |x − y0| ≤ e1/(16ε)δ;

(c) supp θ0 ⊂ B(y0 , e1/(8ε)δ); and

(d) |∂αθ0(x)| ≤ Cε · |x − y0|
−|α| for 0 < |α| ≤ m + 1, x ∈ R

n
� {y0}.

The one-time work to compute θ0 is zero, the storage used is at most C, and
the work to answer a query (by computing Jx(θ0) at a query point x) is at
most C.

Explanation: By taking χ ∈ Cm+1(R) to be an appropriate spline, we can
arrange the following.

(13) 0 ≤ χ ≤ 1; χ(t) = 1 for t ≤ 1/16; supp χ ⊂ (−∞ , 1/8); |χ(r)(t)| ≤ C

for 0 ≤ r ≤ m + 1, t ∈ R (where χ(r) denotes the rth derivative of χ);
and,

(14) given 0 ≤ r ≤ m, t ∈ R, we can compute χ(r)(t) with work at most C.

The Cm
Norm of a Function with Prescribed Jets II 319

We then define

θ0(x) = χ
(
ε log

|x − y0|

δ

)
for x
= y0, θ0(y0) = 1.

Evidently, θ0 ∈ Cm(Rn), and (a), (b), (c) hold for θ0. Also, evidently, Jx(θ0)

can be computed with work at most C. It remains to check properly (d) for
the function θ0. Suppose x ∈ R

n
� {y0}. Then, for 0 < |α| ≤ m + 1, the

quantity ∂αθ0(x) is a sum of terms of the form

(15)

r∏
ν=1

(
∂βν [ε log

|x − y0|

δ
]
)
· χ(r)

(
ε log

|x − y0|

δ

)
.

with β1 + · · ·+ βr = α, and with each βν non-zero. Since |χ(r)(t)| ≤ C for
all t ∈ R, and since∣∣∣∂βν

[
ε log

|x − y0|

δ

]∣∣∣ ≤ Cε|x − y0|
−|βν | for 0 < |βν| ≤ m + 1,

it follows that each term (15) is less than or equal in absolute value to
Cεr|x − y0|

−|α|, with 0 < r ≤ m + 1. This immediately implies (d), since
0 < ε < 1. Thus, our function θ0 has all the required properties.

11. Computing Testing Sets

The goal of this section is to compute suitable “testing sets” S�
ν satisfying

conditions (11) and (12) in Section 6.

Algorithm 11.1. (“Find-Testing-Set”): Given 0 < ε < 1; given E ⊂ R
n

with #(E) = N < ∞; and given a dyadic cube Q ⊂ R
n; we compute a

finite set S(Q) ⊂ E ∩ Q∗∗, such that

(a) |y − y′| > cεe−2/εδQ for any two distinct points y, y′ ∈ S(Q); and
such that

(b) dist(y, S(Q)) < Cεe−2/ε δQ for any y ∈ E ∩ Q∗∗.

After the one-time work of the BBD Tree Algorithm (See Section 4), the
work to compute S(Q) is at most exp(C/ε) · log(N + 1).

The storage needed is at most CN + exp(C/ε).

Explanation: Recall that δQ denotes the sidelength of Q. With work at most
exp(C/ε), we partition Q∗∗ into dyadic cubes Qν (1 ≤ ν ≤ νmax) of common
sidelength δQν , such that

(1) cεe−2/ε δQ ≤ δQν ≤ Cεe−2/ε δQ, and νmax ≤ exp(C/ε).

For each Qν, we check whether E ∩ Qν is empty; and, if E ∩ Qν
= φ, then
we compute a point yν ∈ E ∩ Qν.

320 C. Fefferman

To do so, we use the BBD Tree Algorithm. After the one-time work
of the BBD Tree Algorithm, the work to examine a single Qν is at most
C log(N + 1). Hence, the work to produce the set

(2) S̃(Q) = {yν : E ∩ Qν
= φ}

is at most C log(N+1)·νmax ≤ exp(C′/ε) log(N+1). Obviously, the set S̃(Q)
in (2) satisfies

(3) S̃(Q) ⊂ E ∩ Q∗∗,

and also

(4) dist (y, S̃(Q)) ≤ Cεe−2/ε δQ for any y ∈ E ∩ Q∗∗.

Unfortunately, S̃(Q) may fail to satisfy condition (a) above. Therefore, we
proceed as follows.

By induction on ν, we decide whether or not to discard yν, according to
the “Vitali rule”:

(5) We discard yν if and only if there exists ν′ < ν, such that yν′ was
not discarded, and |yν − yν′ | ≤ εe−2/ε δQ.

Let S(Q) be the set of all the points yν ∈ S̃(Q) that were not discarded.
We can compute S(Q) from S̃(Q) with work at most C(νmax)

2 ≤ exp (C/ε).
Note that S(Q) ⊆ S̃(Q) ⊂ E ∩ Q∗∗. Moreover, we cannot have

(6) |yν − yν′ | ≤ εe−2/εδQ for two distinct points yν, yν′ ∈ S(Q).

In fact, suppose (6) holds. Without loss of generality, we may assume ν′ < ν.
Since yν′ ∈ S(Q), the point yν′ ∈ S̃(Q) was not discarded. Consequently, (5)
and (6) tell us that yν is discarded, contradicting the assumption from (6)
that yν ∈ S(Q).

Thus, as claimed, (6) cannot hold. The set S(Q) therefore satisfies con-
dition (a). Let us check that S(Q) also satisfies condition (b).

Thus, let y ∈ E ∩ Q∗∗. From (4), we have

(7) |y − y′| ≤ Cεe−2/ε δQ for some y′ ∈ S̃(Q).

Fix y′ as in (7). If y′ belongs to S(Q), then (7) shows at once that

(8) dist(y, S(Q)) ≤ Cεe−2/ε δQ.

On the other hand, if y′ does not belong to S(Q), then, according to our
rule (5), there exists y′′ ∈ S(Q) such that |y′ − y′′| ≤ εe−2/ε δQ.

Together with (7), this shows that

dist(y, S(Q)) ≤ |y − y′′| ≤ |y − y′| + |y′ − y′′| ≤ Cεe−2/ε δQ,

and hence again (8) holds. Thus, (8) holds in all cases, completing the proof
of (b).

The Cm
Norm of a Function with Prescribed Jets II 321

We have computed a set S(Q) ⊂ E∩Q∗∗, satisfying (a) and (b). After the
one-time work of the BBD Tree Algorithm, the total work to compute S(Q)
is at most exp (C/ε) · log N.

Regarding the storage needed for Algorithm 11.1, we first recall that
we need space CN to allow us to use the BBD Tree. We then generate
the cubes Qν and the points yν one at a time. We need to store S̃(Q)
from (2), which requires at most space exp(C/ε). In a crude implementation,
we can mark each of the yν to indicate whether it is discarded according
to (5); and then we generate and store the set S(Q). The space needed for
these last steps is at most exp(C/ε). Thus, the total storage required for
Algorithm 11.1 is at most CN + exp(C/ε).

The explanation of Algorithm 11.1 is complete.
For most dyadic cubes Q, the set S(Q) produced by Algorithm 11.1 will

be empty or a singleton. This fact will be clear from the following algorithm.

Algorithm 11.2. (“Find-Interesting-Cubes”): Given 0 < ε < 1, and given
E ⊂ R

n with #(E) = N , 2 ≤ N < ∞, we produce a list of dyadic cubes,
Q(1), . . . , Q(L), with the following properties.

(a) For 1 ≤ λ ≤ L, the set S(Q(λ)) computed from ε, E, Q(λ) by Algo-
rithm 11.1 has cardinality at least two.

(b) For any dyadic cube Q other than Q(1), . . . , Q(L), the set S(Q) com-
puted from ε, E, Q by Algorithm 11.1 has cardinality at most one.

(c) No cube appears more than once in the list Q(1), . . . , Q(L).

(d) L ≤ (C/ε) · N.

(e) The work to compute Q(1), . . . , Q(L) is at most exp(C/ε) · N log N and
the storage needed is at most C

ε
N + exp(C/ε).

Explanation: First we discuss the properties of dyadic cubes Q such that

#(S(Q)) ≥ 2. Then we give the algorithm to compute the list Q(1) . . .Q(L).

Let Q be a dyadic cube such that the set S(Q) computed from ε, E, Q by
Algorithm 11.1 has cardinality at least 2. Let y′, y′′ be two distinct points
in S(Q). By the defining properties of S(Q), we have

(9) y′, y′′ ∈ E ∩ Q∗∗, and

(10) |y′ − y′′| > cεe−2/ε δQ.

Let x′
ν, x′′

ν, E′
ν, E′′

ν (1 ≤ ν ≤ νmax) be as in our discussion of the Well-
Separated Pairs Decomposition in Section 4, with κ less than a small enough
controlled constant. Since y′, y′′ are two distinct points of E, we have

(11) y′ ∈ E′
ν and y′′ ∈ E′′

ν for some ν.

322 C. Fefferman

Fix ν as in (11). We recall from Section 4 that also

(12) x′
ν ∈ E′

ν, x′′
ν ∈ E′′

ν, and

(13) diam(E′
ν), diam(E′′

ν) ≤ κ dist(E′
ν, E′′

ν).

From (9), (11), (12), (13), we learn that

(14) |x′
ν − y′|, |x′′

ν − y′′| ≤ κ |y′ − y′′| ≤ C κ δQ,

and consequently,

(15) x′
ν, x′′

ν ∈ Q∗∗∗,

by another application of (9). Returning to (14), and applying (10), we see
also that

(16) |x′
ν − x′′

ν| ≥ 1
2
|y′ − y′′| ≥ c′εe−2/ε δQ.

From (15), (16), we have learned the following: For any dyadic cube Q

such that #(S(Q)) ≥ 2, there exists ν (1 ≤ ν ≤ νmax), such that

(17) x′
ν, x′′

ν ∈ Q∗∗∗, and δQ ≤ Cε−1e2/ε|x′
ν − x′′

ν|.

Now we can describe how to carry out Algorithm 11.2.

Step 1: First, we do the one-time work of the BBD Tree and the WSPD
(for a small enough controlled constant κ).

In particular, we produce the “representatives” x′
ν, x′′

ν (1 ≤ ν ≤
νmax) from the WSPD. Recall that νmax ≤ CN, and that the above
one-time work is at most CN log N, using storage CN.

Step 2: Next, for each ν (1 ≤ ν ≤ νmax), we list all the dyadic cubes Q such
that (17) holds. For a given ν there are at most C/ε such cubes,
and we can compute them with work at most C/ε.

Step 3: For each dyadic cube Q produced in Step 2, we use Algorithm 11.1 to
compute S(Q), and we check whether #(S(Q)) ≥ 2. If #(S(Q))≥2,
then we add Q to a list L of “interesting cubes”.

Because νmax ≤ CN, the number of cubes in our list L at the end of
Step 3 is at most (C/ε) · N. Since νmax ≤ CN and Algorithm 11.1 computes
a single S(Q) with work at most exp(C/ε) log N, in space CN+exp(C/ε), we
see that the total work needed for Steps 2 and 3 is at most exp(C/ε)N log N,
and the storage required for these steps is at most C

ε
N + exp(C/ε).

Thanks to our result (17), we know that any dyadic cube Q for which
Algorithm 11.1 produces a set S(Q) with #(S(Q)) ≥ 2 must appear on the
list L.

The Cm
Norm of a Function with Prescribed Jets II 323

On the other hand, every cube Q appearing on our list L is such that
Algorithm 11.1 produces a set S(Q) with #(S(Q)) ≥ 2. (That’s immediate
from inspection of Step 3.)

Step 4: Finally, we sort our list L, and remove duplicates, to guarantee

that no cube Q appears more than once in our final list L0. Since
the length of L is at most C

ε
· N, the work of Step 4 is at most

(C/ε)N · log ((C/ε)N), which is less than exp(C/ε)N log N.

The space required for Step 4 is at most (C/ε)N.

The list L0 consists precisely of all the dyadic cubes Q such that the set
S(Q) produced from Q by Algorithm 11.1 satisfies #(S(Q)) ≥ 2. Moreover,
no cube Q appears more than once in the list L0. Also, the length of the
list L0 is at most that of L, which is at most C

ε
N.

Thus, our list L0 satisfies (a), (b), (c), (d).

Remark 11.1. Note also that the cubes in L0 appear sorted.

Let us estimate the work and storage used by the above algorithm. We
have seen that Step 1 requires work at most CN log N in space CN. We have
seen also that Steps 2 and 3 require work at most exp(C/ε)N log N in space
C
ε
N+ exp (C/ε). Finally, we have seen that Step 4 requires work (much) less

than exp(C/ε) N log N, in space C
ε
N. Altogether, then, Algorithm 11.2 con-

sumes work at most exp(C/ε)N log N in space C
ε
N + exp(C/ε), as claimed

in (e) above.
Thus, we have verified (a)...(e), completing our explanation of Algo-

rithm 11.2.
The next algorithm will be used to construct local extending functions

as in (13)...(16) in Section 6.

Algorithm 11.3. (“Produce-Fine-Net”): Given a number 0 < η < 1, a ball
B(x0, r) ⊂ R

n, and a set S ⊂ B(x0, r) such that

(WS) |y − y′| ≥ ηr
100n

for any two distinct points y, y′ ∈ S, we produce a set
S+ ⊂ R

n, with the following properties:

(a) S ⊆ S+ ⊂ B(x0, r);

(b) dist(x, S+) < ηr for any x ∈ B(x0, r); and

(c) |y − y′| ≥ ηr
100n

for any two distinct y, y′ ∈ S+.

Moreover,

(d) The work of the algorithm is at most Cη−2n, and the storage
needed is at most Cη−n.

324 C. Fefferman

Explanation: First, we define the set S+; next, we show that S+ satisfies (a),
(b), (c); and finally, we check (d).

To define S+, we set

(18) S̃ =
[(

ηr
100n

)
Z

n
] ∩ B(x0, r),

and then put

(19) S+ = S ∪ {y ∈ S̃ : dist(y, S) ≥ ηr
100n

}.

To prove (a), (b), (c), we first check the following property of S̃.

(20) dist(x, S̃) < ηr
10

for any x ∈ B(x0, r).

In fact, let x ∈ B(x0, r). We pick x′ ∈ B(x0, (1− η
50

)r) such that |x−x′| ≤ ηr
50

;
and then we pick y ∈ ηr

100n
Z

n such that |x′ − y| ≤ ηr
100

.

Since x′ ∈ B(x0, (1− η
50

)r) and |x′−y| ≤ ηr
100

, we have y ∈ B(x0, (1− η
100

)r) ⊂
B(x0, r), and thus y ∈ S̃ by definition (18). Since also

|x − y| ≤ |x − x′| + |x′ − y| ≤ ηr

50
+

ηr

100
<

ηr

10
,

the proof of (20) is complete.

Now we can check (a), (b), (c) for our set S+. In fact, (a) is obvious
from (18), (19), since S ⊂ B(x0, r). To check (b), let x ∈ B(x0, r). If
dist(x, S) < ηr, then (b) is obvious. Suppose dist(x, S) ≥ ηr. Thanks
to (20), there exists y ∈ S̃ with |x−y| ≤ ηr

10
. For this y, we have dist(y, S) ≥

dist(x, S) − |x − y| ≥ ηr − ηr
10

, and therefore y ∈ S+ according to (19).
Thus, dist(x, S+) ≤ |x − y| ≤ ηr

10
< ηr, completing the proof of (b).

To check (c), let y, y′ ∈ S+ be two distinct points.

If y, y′ ∈ S, then |y − y′| ≥ ηr
100n

, by our assumption (WS).

If y /∈ S, y′ /∈ S, then by (18), (19), we have y, y′ ∈ ηr
100n

Z
n, y
= y′, and

therefore |y − y′| ≥ ηr
100n

.

If y /∈ S, y′ ∈ S, then since y ∈ S+, we learn from (19) that |y − y′| ≥
dist(y, S) ≥ ηr

100n
.

If y ∈ S, y′ /∈ S, then since y′ ∈ S+, we learn from (19) that |y − y′| ≥
dist(y′, S) ≥ ηr

100n
.

Thus, (c) holds in all cases.

Let us estimate the work and storage needed to compute S+ from (18), (19).
Since S ⊂ B(x0, r), it follows from our assumption (WS) that

#(S) ≤ Cη−n.

The Cm
Norm of a Function with Prescribed Jets II 325

Also, a glance at (18) shows that

#(S̃) ≤ Cη−n,

and that the work and storage required to compute and store S̃ are at
most Cη−n.

To compute S+ from (19), we compute the distance from each point
of S̃ to each point of S. This requires work at most Cη−2n. Also, we want
to store the set S+, which requires space C · #(S+) ≤ C · [#(S) + #(S̃)]
(see (19)) ≤ Cη−n.

Thus, the work and storage for Algorithm 11.3 are as given in (d). This
completes our explanation of Algorithm 11.3.

Remark 11.2. In a model of computation that includes round-off errors,
there may be points y ∈ ηr

100n
Z

n such that we cannot determine whether

y ∈ B(x0, r). In such delicate cases, we decide not to place y in the set S̃.
Similarly, there may exist points y ∈ S̃ for which we cannot determine
whether or not dist(y, S) ≥ ηr

100n
. We decide to omit such points from the

set S.
With the above modifications, our discussion of Algorithm 11.3 carries

over to a model of computation with small enough roundoff errors.

Let ε, E, Q be as in Algorithm 11.1, and let Q(1), . . . , Q(L) be the list of
cubes produced by applying Algorithm 11.2 with inputs ε, E. If Q does not
appear in the list Q(1), . . . , Q(L), then we know that the set S(Q) computed
by Algorithm 11.1 satisfies #(S(Q)) ≤ 1. This will allow us to compute
S(Q) with less work than that of Algorithm 11.1, thanks to the following
observation:

(21) If #(S(Q)) ≤ 1, then E ∩ Q∗∗ has diameter at most Ĉεe−2/ε δQ.

This follows at once from the defining property (b) of the set S(Q) in
Algorithm 11.1. Exploiting (21), we present the following algorithm.

Algorithm 11.4. Given 0 < ε < 1; given E ⊂ R
n with #(E) = N < ∞;

and given a dyadic cube Q ⊂ R
n; we compute a set Scheap(Q) ⊂ R

n with the
following property:
Let S(Q) be the set computed from ε, E, Q by Algorithm 11.1.

If #(S(Q)) ≤ 1, then S(Q) = Scheap(Q).

After the one-time work of the BBD Tree Algorithm (see Section 4), the
work to compute Scheap(Q) is at most C log N, and the storage required is at
most CN.

326 C. Fefferman

Explanation: First, we perform the algorithm Find-Representative from Sec-
tion 4. With work at most C log N, either we learn that E ∩ Q∗∗ = φ (in
which case S(Q) = φ, and we may return the set Scheap(Q) = φ), or else we
obtain a point xQ ∈ E ∩ Q∗∗. If #(S(Q)) ≤ 1, then

(22) E ∩ Q∗∗ ⊂ B(xQ, 2Ĉεe−2/ε δQ), by (21).

Let Qν(1 ≤ ν ≤ νmax) be as in the explanation of Algorithm 11.1. If
dist(xQ, Qν) > 2Ĉεe2/ε δQ, then E ∩ Qν = φ by (22). Consequently, if
#(S(Q)) ≤ 1, then the only cubes Qν that may contribute to S̃(Q) in (2)
are those that satisfy

(23) dist(xQ, Qν) ≤ 2 Ĉεe−2/ε δQ.

Thanks to (1), there are at most C such cubes, and we can list them with
work at most C.

Whether or not #(S(Q)) ≤ 1, we now proceed as in the explanation
of Algorithm 11.1, except that instead of examining all the cubes Qν, we
now examine only those satisfying (23). In place of S̃(Q), S(Q), we thus
compute “cheap versions”, which we call S̃cheap(Q), Scheap(Q), respectively.
If #(S(Q)) ≤ 1, then we have S̃cheap(Q) = S̃(Q) and Scheap(Q) = S(Q).

Whether or not #(S(Q)) ≤ 1, the work to examine a single Qν as in our
explanation of Algorithm 11.1 is at most C log N, and we are now examining
at most C cubes Qν.

Thus, the work to compute S̃cheap(Q) is at most C log N. Moreover,
since #(S̃cheap(Q))≤C, the work to compute Scheap(Q) from S̃cheap(Q) is at
most C.

Thus, the total work to compute Scheap(Q) is at most C log N. If #(S(Q))
≤ 1, then we know that Scheap(Q) = S(Q). This completes our explanation
of Algorithm 11.4.

12. Smoothing Lemmas

In this section, we show that any given F∈Cm(B(x0, r)) can be closely approx-
imated on a slightly smaller ball B(x0, r

′) by a function F̃∈Cm+1(B(x0, r
′))

with controlled Cm+1-norm. Our main result here is Lemma 12.2 below.

Lemma 12.1. Assume that ε > 0 is less than a small enough controlled con-
stant, and let 0 < r ≤ 1/ε. Let F ∈ Cm(B(x0, r)), with ‖ F ‖Cm(B(x0,r))≤ 1.
Let 0 < η̄ < min(r, εm+1).

Then there exists F̃ ∈ Cm+1(B(x0, r − η̄)), with the following properties:

The Cm
Norm of a Function with Prescribed Jets II 327

(a) ‖ F̃ ‖Cm(B(x0,r−η̄))≤ 1 + Cε;

(b) |∂α(F̃ − F)(x)| ≤ C · (η̄/r) · rm−|α| for |α| ≤ m − 1, x ∈ B(x0, r − η̄);

(c) |∂αF̃(x)| ≤ C · η̄−1 for |α| = m + 1, x ∈ B(x0, r − η̄).

Proof. Let

(1) P0 = Jx0
(F) ∈ P,

and let

(2) F1 = F − P0.

Since ‖ F ‖Cm(B(x0,r))≤ 1, the Bounded Distortion Property and Taylor’s
theorem yield

(3) |∂αP0(x0)| ≤ C for |α| ≤ m, and

(4) |∂αF1(x)| ≤ Crm−|α| for |α| ≤ m, x ∈ B(x0, r).

Let ϕ ∈ Cm+1(Rn) be a function with the following properties.

(5) ϕ ≥ 0 on R
n; supp ϕ ⊂ B(0, η̄);

∫
Rn

ϕ(τ)dτ = 1; ϕ(τ) ≤ Cη̄−n for

τ ∈ R
n; and |�ϕ(τ)| ≤ C · (η̄)−(n+1) for τ ∈ R

n.

We define

(6) F̃ = P0 + ϕ ∗ F1 on B(x0, r − η̄), where ∗ denotes convolution.

Note that the right-hand side of (6) is well-defined on B(x0, r − η̄), since
supp ϕ ⊂ B(0, η̄) and F1 ∈ Cm(B(x0, r)). Since ϕ ∈ Cm+1(Rn), one sees at
once from (6) that F̃ ∈ Cm+1(B(x0, r − η̄)).

Let us check (a), (b), (c) for F̃. We begin with (b). From (2) and (6), we
have F̃ − F = ϕ ∗ F1 − F1. Hence, for |α| ≤ m − 1 and x ∈ B(x0, r − η̄), we
have

|∂α(F̃ − F)(x)| = |(ϕ ∗ ∂αF1 − ∂αF1)(x)|

=

∣∣∣∣
∫

τ∈B(0,η̄)

ϕ(τ) [∂αF1(x − τ) − ∂αF1(x)] dτ

∣∣∣∣

≤
∫

τ∈B(0,η̄)

ϕ(τ) ·
[
|τ| · supy∈B(x0,r) | � ∂αF1(y)|

]
dτ

≤ Crm−|α|−1

∫
τ∈B(0,η̄)

ϕ(τ)|τ|dτ ≤ C ·
(

η̄

r

)
· rm−|α| ,

thanks to (4), (5). Thus, (b) holds for F̃.

328 C. Fefferman

Next, we establish (c). For |β| = m, |γ| = 1, x ∈ B(x0, r − η̄), we have
∂β+γP0 = 0 since P0 ∈ P. Hence, (6) yields ∂β+γF̃(x) = ∂γ ϕ ∗∂βF1(x), and
therefore

|∂β+γ F̃(x)| ≤ supy∈B(x0,r) | ∂βF1(y)| ·
∫

τ∈Rn

|∂γ ϕ(τ)| dτ ≤ Cη̄−1,

thanks to (4) and (5). Thus, (c) holds for F̃.

It remains to establish (a). To do so, we first note that

(7) F̃ = ϕ ∗ F + (P0 − ϕ ∗ P0) on B(x0, r − η̄),

thanks to (2) and (6). Regarding the term ϕ ∗ F in (7), we note that

(8) ϕ ∗ F =

∫
τ∈B(0,η̄)

ϕ(τ)Fτ dτ on B(x0, r − η̄),

where Fτ ∈ Cm(B(x0, r − η̄)) is the translate,

(9) Fτ(x) = F(x − τ) for x ∈ B(x0, r − η̄).

Since ‖ F ‖Cm(B(x0,r))≤ 1, the Approximate Translation-Invariance property
and (9) yield

‖ Fτ ‖Cm(B(x0,r−η̄))≤ exp(C |τ|) ≤ 1 + C′η̄ for τ ∈ B(0, η̄),

and therefore (8) gives

(10) ‖ ϕ ∗ F ‖Cm(B(x0,r−η̄))≤ 1 + C′η̄,

thanks to (5). Regarding the term P0 − ϕ ∗ P0 in (7), we note that

P0 − ϕ ∗ P0 ∈ P,

and that
|∂α(P0 − ϕ ∗ P0)(x0)| ≤ Cη̄ for |α| ≤ m,

thanks to (3) and (5). Consequently, for x ∈ B(x0, r) ⊆ B(x0, ε
−1), we have

|∂α(P0 − ϕ ∗ P0)(x)| ≤ Cη̄ε−m, for |α| ≤ m.

The Bounded Distortion Property therefore gives |Jx(P0−ϕ∗P0)|x ≤ C′η̄ε−m

for x ∈ B(x0, r), which in turn gives the estimate

(11) ‖ P0 − ϕ ∗ P0 ‖Cm(B(x0,r−η̄))≤ C′′η̄ε−m

From (7), (10), (11), we see that

‖ F̃ ‖Cm(B(x0,r−η̄))≤ 1 + C′η̄ + C′′η̄ε−m ≤ 1 + C′′′ε,

since η̄ ≤ εm+1 and ε ≤ 1. Thus, (a) holds for F̃. The proof of Lemma 12.1
is complete. �

The Cm
Norm of a Function with Prescribed Jets II 329

Lemma 12.2. Let ε > 0 be less than a small enough controlled constant,
and let B(x0, r) be an open ball with radius

(†1) r ≤ ε−1.

Suppose that

(†2) 0 < η < ε2 e−1/ε.

Let

(†3) S ⊂ B(x0, (1 − η)r),

and assume that

(†4) |y − y′| > 2ηe1/εr for any two distinct points, y, y′ ∈ S.

Let M ≥ 0, and let

(†5) F ∈ Cm(B(x0, r)), with ‖ F ‖Cm(B(x0,r))≤ M.

Then there exists F# ∈ Cm+1(B(x0, (1 − η)r)), with the following properties.

(A) ‖ F# ‖Cm(B(x0,(1−η)r))≤ (1 + Cε)M.

(B) Jy(F#) = Jy(F) for all y ∈ S.

(C) |∂αF#(x)| ≤ Cη−m r−1M for |α| = m + 1, x ∈ B(x0, (1 − η)r).

Proof. Without loss of generality, we may suppose M = 1. We apply
Lemma 12.1, with

(12) η̄ = ηmr.

Let us check the hypotheses of Lemma 12.1. From our present hypotheses
(with M = 1), we know that:

ε > 0 is less than a small enough controlled constant; 0 < r ≤ ε−1; F ∈
Cm(B(x0, r)); and ‖ F ‖Cm(B(x0,r))≤ 1.

Also, since η < 1, we have η̄ = ηm r < r; moreover, since r ≤ ε−1,
we have η̄ = ηm r < ηmε−1 ≤ ε2m−1 e−m/ε ≤ εm+1, because ε is less than
a small enough controlled constant, and thanks to (†2). Thus 0 < η̄ <

min(r, εm+1), completing our verification of the hypotheses of Lemma 12.1.
Applying that result, we obtain a function

(13) F̃ ∈ Cm+1(B(x0, (1 − ηm)r)),

with the following properties.

(14) ‖ F̃ ‖Cm(B(x0,(1−ηm)r))≤ 1 + Cε.

(15) |∂α(F̃ − F)(x)| ≤ Cηm rm−|α| for |α| ≤ m − 1, x ∈ B(x0, (1 − ηm)r).

(16) |∂αF̃(x)| ≤ Cη−m r−1 for |α| = m + 1, x ∈ B(x0, (1 − ηm)r).

330 C. Fefferman

The function F̃ needn’t satisfy (B). We prepare to correct it, using
Lemma GPU. We set

(17) Ω = Ũ = B(x0, (1 − ηm)r).

For each y ∈ S, we define

(18) Py = Jy(F) ∈ P, and

(19) Uy = B(y, ηe1/ε r).

(20) The Uy(y ∈ S) are pairwise disjoint, thanks to (†4).

We estimate the Cm norm of Py on Uy, and we compare F̃ with Py on
Ũ ∩ Uy. To do so, we first note that

(21) |Py|y ≤ 1 for y ∈ S,

thanks to (18) and (†5) (with M = 1).
We have also

(22) ηe1/εr < (ε2e−1/ε) · e1/ε · (ε−1) = ε < 1, by (†1) and (†2).

From (19), (21), (22), and Lemma 1 in Section 3, we obtain the estimate

(23) |Py|x ≤ 1 + Cε for x ∈ Uy, y ∈ S.

Next, fix y ∈ S and x ∈ Uy∩ Ũ (see (17), (19)). From (14), the Bounded
Distortion Property, and Taylor’s theorem, we have

(24) |∂α(F̃ − Jy(F̃))(x)| ≤ C|x − y|m−|α| for |α| ≤ m.

(In the degenerate case x = y, |α| = m, we define the right-hand side of (24)
to be zero.)

We will check that

(25) |∂α(F̃ − F)(y)| ≤ C · (ηr)m−|α| for |α| ≤ m.

In fact, for |α| ≤ m−1, estimate (25) is immediate from (15), since η < 1.
For |α| = m, estimate (25) follows from (†5) (with M = 1) and (14), thanks
to the Bounded Distortion Property (and the fact that y ∈ B(x0, (1 − ηm)r)
by (†3)). Thus, (25) holds in all cases.

From (25), we deduce the weaker estimate

|∂α(Jy(F̃) − Jy(F))(y)| ≤ C · [ηr + |x − y|]m−|α| for |α| ≤ m,

which in turn yields

(26) |∂α(Jy(F̃) − Jy(F))(x)| ≤ C · [ηr + |x − y|]m−|α| for |α| ≤ m, since
Jy(F̃) − Jy(F) ∈ P.

The Cm
Norm of a Function with Prescribed Jets II 331

Combining (24) and (26), and recalling (18), we find that

(27) |∂α(F̃ − Py)(x)| ≤ C · [ηr + |x − y|]m−|α| for |α| ≤ m, x ∈ Uy ∩ Ũ,
y ∈ S.

Estimates (23) and (27) are our main results on the Py and F̃ − Py.
Next, given y ∈ S, we define χy to be the function θ0, computed by ap-

plying Algorithm 10.6, with y0 = y, and with δ = ηr. We are not concerned
here with computing the function χy, but we recall the properties (a)...(d)
in Algorithm 10.6. Thus,

(28) χy ∈ Cm+1(Rn),

(29) 0 ≤ χy ≤ 1 on R
n,

(30) χy(x) = 1 for |x − y| ≤ e1/(16ε) ηr,

(31) supp χy ⊂ B(y, e1/(8ε) ηr) ⊂ Uy (see (19)), and

(32) |∂αχy(x)| ≤ Cε|x − y|−|α| for 0 < |α| ≤ m + 1, x ∈ R
n

� {y}.

Properties (28)...(32) hold for each y ∈ S.
From (30) and (32), we obtain the estimate

(33) |∂αχy(x)| ≤ Cε · [ηr+ |x−y|]−|α| for 0 < |α| ≤ m+1, x ∈ R
n, y ∈ S.

In addition to the functions χy(y ∈ S), we define a function χ̃, by setting

(34) χ̃ = 1 −
∑
y∈S

χy on R
n.

(Recall that S is finite; see (†3) and (†4).)
Thanks to (20) and (28)...(33), the function χ̃ has the following proper-

ties.

(35) χ̃ ∈ Cm+1(Rn).

(36) 0 ≤ χ̃ ≤ 1 on R
n.

(37) χ̃(x) = 0 for |x − y| ≤ e1/(16ε) ηr, y ∈ S.

(38) χ̃ = 1 in a neighborhood of x, for x /∈ ∪
y∈S

Uy.

(39) |∂αχ̃(x)| ≤ Cε · [ηr + |x − y|]−|α| for 0 < |α| ≤ m + 1, x ∈ Uy, y ∈ S.

We now define

(40) δ(x) = ηr + dist(x, S) > 0 for x ∈ R
n.

332 C. Fefferman

We now check the hypotheses of Lemma GPU from Section 5, for the
following data:

• The open cover {Uy (all y ∈ S), Ũ} of the open set Ω, as in (17), (19);

• The function δ(x) > 0, as in (40);

• The functions Py (all y ∈ S) and F̃, as in (18), (13)...(16);

• The functions χy (all y ∈ S) and χ̃, as in (28)...(34);

• The constants A0 = A1 = A2 = C for a large enough controlled
constant C.

• The constant called M in Lemma GPU will be taken here to be 1+Cε

for a large enough controlled constant C.

The verification of the hypotheses of Lemma GPU for the above data
proceeds as follows.

First of all, {Uy(all y ∈ S), Ũ} is an open cover of an open set Ω ⊂ R
n.

Also, δ(x) > 0 for all x ∈ Ω, thanks to (40). For each y ∈ S, we have
Py ∈ Cm(Uy), since Py ∈ P. Moreover, F̃ ∈ Cm(Ũ), as we see from (13)
and (17). We have χy ∈ Cm(Ω) for y ∈ S, and χ̃ ∈ Cm(Ω); see (28)
and (35). We have ε, A0, A1, A2 > 0 and M ≥ 0.

We now check hypotheses (GPU1...7).

(GPU1) asserts here that any given point of Ω can belong to at most C of
the sets suppΩχy (y ∈ S), and suppΩχ̃. That assertion holds, thanks
to (20) and (31); note that suppΩϕ ⊆ suppϕ for any function ϕ

on R
n.

(GPU2) asserts here that
∑
y∈S

χy+χ̃ = 1 on Ω, which is immediate from (34).

(GPU3) asserts here that χy ≥ 0 on Ω for each y ∈ S, and that χ̃ ≥ 0

on Ω. These assertions are immediate from (29), (36).

(GPU4) asserts here that suppΩχy ⊂ Uy for y ∈ S, and that

(41) suppΩχ̃ ⊂ Ũ.

The assertion regarding the χy is immediate from (31), since suppΩχy ⊆
suppχy. Assertion (41) holds trivially, since Ũ = Ω (see (17)), and suppΩχ̃

is defined to be a subset of Ω.

(GPU5) asserts here that

(42) |∂αχy(x)| ≤ Cε · [ηr + dist(x, S)]−|α| for 0 < |α| ≤ m, x ∈ Ω, y ∈ S,
and that

(43) |∂αχ̃(x)| ≤ Cε · [ηr + dist(x, S)]−|α| for 0 < |α| ≤ m, x ∈ Ω.

The Cm
Norm of a Function with Prescribed Jets II 333

We establish (42) and (43) by cases. If x /∈ ∪y∈SU
y, then the left-hand

sides of (42), (43) are both zero, thanks to (31) and (38). Thus, we may
assume that x ∈ Uȳ for some ȳ ∈ S.

In this case, we have dist(x, S) = |x−ȳ|, by (19), (20). Consequently, (43)
now follows from (39), and (42) for y = ȳ follows from (33).

For y ∈ S � {ȳ}, (42) holds thanks to (20) and (31), since here x ∈ Uȳ.
Thus, (42), (43) hold in all cases, proving (GPU5).

(GPU6) asserts here that

(44) |Jx(P
y)|x ≤ 1 + Cε for x ∈ suppΩχy, y ∈ S, and that

(45) |Jx(F̃)|x ≤ 1 + Cε for x ∈ suppΩχ̃.

Estimate (45) is immediate from (14) and (17). To check (44), we recall that
Py ∈ P, hence Jx(P

y) = Py for y ∈ S, x ∈ Uy. Consequently, (44) follows
from (23) and (31), since suppΩχy ⊆ suppχy. Thus, (GPU6) holds.

(GPU7) here asserts that

(46) |∂α(F̃ − Py)(x)| ≤ C[ηr + dist(x, S)]m−|α| for |α| ≤ m − 1, x ∈
suppΩχy ∩ suppΩχ̃, y ∈ S.

(See (20), (31), (40).)
To check (46), we recall that x ∈ suppΩχy ∩ suppΩχ̃, y ∈ S imply x ∈

Uy ∩ Ũ by (17), (31); hence dist(x, S) = |x − y| thanks to (20). Thus, (46)
follows from (27), proving (GPU7).

This completes the verification of the hypotheses of Lemma GPU for the
above data. Applying that lemma, we learn the following.

Define a function F# on B(x0, (1 − ηm)r), by setting

(47) F#(x) =
∑
y∈S

χy(x) · Py(x) + χ̃(x) · F̃(x) for x ∈ B(x0, (1 − ηm)r).

Then

(48) F# ∈ Cm(B(x0, (1 − ηm)r)), and ‖ F# ‖Cm(B(x0,(1−ηm)r))≤ 1 + Cε.

We investigate Jy(F
#) for y ∈ S. From (18), (20), (30), (31), we learn

that, for each y ∈ S, we have

(49) Jy(Py) = Py = Jy(F), Jy(χy) = 1, and Jy(χȳ) = 0 for ȳ ∈ S � {y}.

Also, (37) yields

(50) Jy(χ̃) = 0 for y ∈ S.

Substituting (49), (50) into (47), we learn that

(51) Jy(F#) = Jy(F) for y ∈ S.

334 C. Fefferman

Next, we study the (m + 1)rst derivatives of F#. We recall that each Py

belongs to P, and that χy(y ∈ S), χ̃, and F̃ all belong to Cm+1(B(x0, (1 −
ηm)r)). (See (13), (18), (28), (35).)

Since S is finite (see (†3), (†4)), it follows that

(52) F# ∈ Cm+1(B(x0, (1 − ηm)r)) (see (47)).

Let |α| = m + 1, and let x ∈ Ω = B(x0, (1 − ηm)r).
We estimate |∂αF#(x)|. We proceed by cases.

Case 1: Suppose x ∈ Ω � ∪
y∈S

Uy. Then (31), (38), (47) show that F# = F̃ in

a neighborhood of x. Therefore, (16) gives

(53) |∂αF#(x)| ≤ Cη−m r−1 in Case 1.

Case 2: Suppose x ∈ Uȳ for some ȳ ∈ S. From (20), (31), (34), we see that
χy = 0 on Uȳ for y ∈ S � {ȳ}, and χ̃ = 1 − χȳ on Uȳ. Hence, (47) gives

(54) F# = χȳ · Pȳ + (1 − χȳ) · F̃ on Uȳ.

Since |α| = m + 1 and Pȳ ∈ P, we have ∂αPȳ = 0. Hence, from (54), we
obtain

(55) ∂αF#(x) = (1−χȳ(x)) · ∂αF̃(x)−
∑

β+γ=α
|β| �=0

α!

β!γ!
∂β χȳ(x) · ∂γ(F̃−Pȳ)(x).

We estimate the terms on the right in (55). Recalling (16) and (29), we see
that

(56) |(1 − χȳ(x)) · ∂αF̃(x)| ≤ Cη−m r−1.

Also, for β + γ = α, |β|
= 0, estimates (27) and (33) yield

(57) |∂βχȳ(x)| · |∂γ(F̃−Py)(x)| ≤ Cε · [ηr + |x−y|]−|β| ·C · [ηr + |x−y|]m−|γ|

= C′ε · [ηr + |x − y|]−1 ≤ Cη−mr−1,

since |β| + |γ| = |α| = m + 1, and ε, η < 1.
Putting (56) and (57) into (55), we learn that

(58) |∂αF#(x)| ≤ Cη−m r−1 in Case 2.

In view of (53) and (58), we now have

(59) |∂αF#(x)| ≤ Cη−m r−1 for |α| = m + 1, x ∈ B(x0, (1 − ηm)r).

The conclusions of Lemma 12.2 are immediate from (52), (48), (51)
and (59), since here M = 1. The proof of Lemma 12.2 is complete. �

The Cm
Norm of a Function with Prescribed Jets II 335

13. Extending a Whitney Field from a Fine Net

The next several sections give algorithms that will allow us to compute
functions F�

ν as in (13)...(16) in Section 6. The algorithm of this section is
as follows.

Algorithm 13.1. Suppose we are given the following data.

• A real number ε > 0, assumed to be less than a small enough controlled
constant.

• A real number 0 < η < ε2.

• A real number A, assumed to be greater than a large enough controlled
constant.

• An open ball B(x0, r), with r ≤ ε−1.

• A Whitney field �P = (Py)y∈S+ , where S+ is assumed to satisfy:

(†0) S+ ⊂ B(x0, r);

(†1) |y − y′| ≥ A−1ηr for any two distinct points y, y′ ∈ S+; and

(†2) dist(x, S+) ≤ ηr for all x ∈ B(x0, r).

Given the above data, we compute a function F ∈ Cm(Rn), with the following
properties.

(A) F agrees with �P.

(B) Suppose M ≥ 0 is a real number, and suppose that

(†3) |Py|y ≤ M for all y ∈ S+, and

(†4) |∂α(Py−Py′
)(y)| ≤ εM · (ηr)−1 · |y−y′|m+1−|α| for |α| ≤ m, y, y′ ∈ S+.

Then
‖ F ‖Cm(B(x0,r))≤ (1 + CAmε) · M .

The computation of F uses one-time work at most C · (Aη−1)2n, storage at
most C · (Aη−1)n, and query work at most C.

Explanation: Our plan is as follows. We start by discussing the geometry
of the ball B(x0, r) and the set S+. Next, we recall a relevant partition of
unity from Section 10. We then define a function F on R

n, and prove that it
satisfies (A) and (B). Finally, we show how to compute F, and we estimate
the work and storage of the computation.

336 C. Fefferman

We begin with some trivial geometry. It is convenient to regard B(x0, r)
as a subset of a cube Q̄, which we will partition into dyadic cubes. To do
so, we proceed as follows. First, we fix an integer s, satisfying

(1) 1
100

A−1ηr ≤ √
n · 2s ≤ 1

10
A−1ηr,

and then fix an integer L > 0, satisfying

(2) 100r ≤ 2s · L ≤ 1000r.

Note that

(3) cAη−1 ≤ L ≤ CAη−1.

Next, let (x0
1, . . . , x

0
n) be the coordinates of x0. For each j(1 ≤ j ≤ n),

we produce an integer mj, such that

(4) [x0
j − 2r, x0

j + 2r) ⊂ [2s · mj, 2s · (mj + L)) for each j.

We can find such mj, thanks to (2). From (4), we have

B(x0, r) ⊂
n∏

j=1

[x0
j − r, x0

j + r) ⊂
n∏

j=1

[2s · mj, 2
s · (mj + L)).

Thus, setting

(5) Q̄ =

n∏
j=1

[2s · mj, 2s · (mj + L)),

we note that Q̄ is a cube, and that

(6) B(x0, r) ⊂ Q̄, and

(7) δQ̄ = 2s · L ≤ 1000r,

thanks to (2).
From Section 10, we recall the dyadic cubes

(8) Q
〈s〉
ν =

n∏
j=1

[2s · νj, 2s · (νj + 1)) for ν = (ν1, . . . , νn) ∈ Z
n.

Comparing (5) with (8), we see that

(9) Q̄ is partitioned into dyadic cubes Q
〈s〉
ν (ν ∈ G), where

(10) G = {ν = (ν1, . . . , νn) ∈ Z
n : mj ≤ νj < mj + L for j = 1, . . . , n}.

We check the following property of the cubes Q
〈s〉
ν .

(11) Let ν ∈ Z
n. If (Q

〈s〉
ν)∗ ∩ B(x0, r)
= φ, then ν ∈ G.

The Cm
Norm of a Function with Prescribed Jets II 337

In fact, let ν = (ν1, . . . , νn) ∈ Z
n, and suppose

(x1, . . . , xn) ∈ (Q〈s〉
ν)∗ ∩ B(x0, r).

From (8), we have

(Q〈s〉
ν)∗ =

n∏
j=1

[2s · (νj − 1), 2s · (νj + 2)),

and therefore xj ∈ [2s · (νj − 1), 2s · (νj + 2)) ∩ [x0
j − r, x0

j + r) for each j.

In particular, 2s·νj lies within distance 2·2s of the interval [x0
j −r, x0

j +r).

Since 2 · 2s < r by (1), it follows that 2s · νj ∈ [x0
j − 2r , x0

j + 2r) for
each j, and consequently 2s ·νj ∈ [2s ·mj , 2s(mj + L)), thanks to (4). Thus,
mj ≤ νj < mj+L for each j, i.e., ν = (ν1, . . . , νn) ∈ G, completing the proof
of (11).

Let us now bring in the set S+. For each ν ∈ G, let

(12) xν = center of Q
〈s〉
ν ,

and let

(13) yν = a point of S+ as close as possible to xν.

Note that (13) makes sense, since S+ is finite. In fact, our assump-
tions (†0), (†1) show that

(14) #(S+) ≤ C · (Aη−1)n.

We next establish the following properties of the points yν.

(15) Let x ∈ B(x0, r) ∩ (Q
〈s〉
ν)∗. Then ν ∈ G and |x − yν| ≤ Cηr.

(16) Let ν ∈ G. If (Q
〈s〉
ν)∗ ∩ S+
= φ, then (Q

〈s〉
ν)∗ ∩ S+ = {yν}.

To see (15), let x ∈ B(x0, r)∩(Q
〈s〉
ν)∗. Then ν ∈ G, by (11). Since x, xν ∈

(Q
〈s〉
ν)∗, and since (Q

〈s〉
ν)∗ has diameter 3

√
n · 2s ≤ 1

3
A−1 ηr (see (1)), we

have |x−xν| ≤ 1
3
A−1 ηr ≤ ηr. Also, by assumption (†2), there exists y ∈ S+

with |x−y| ≤ ηr. Moreover, by definition (13), we have |xν−yν| ≤ |xν−y|.
In view of the above remarks, we have

|x − yν| ≤ |x − xν| + |xν − yν| ≤ |x − xν| + |xν − y|

≤ |x − xν| + |x − xν| + |x − y| ≤ 3ηr ,

proving (15).

To see (16), let y ∈ (Q
〈s〉
ν)∗ ∩ S+. Since xν and y belong to (Q

〈s〉
ν)∗, a

cube with diameter ≤ 1
3
A−1ηr, we have |xν − y| ≤ 1

3
A−1ηr. Hence, by

definition (13), we have also |xν − yν| ≤ 1
3
A−1ηr. Consequently, |y − yν|

≤ 2
3
A−1ηr. Since also y, yν ∈ S+, it now follows from assumption (†1)

that y = yν.

338 C. Fefferman

This proves that yν is the one and only point belonging to (Q
〈s〉
ν)∗ ∩ S+,

which is our desired conclusion (16).

Next, from Section 10, we recall the partition of unity

(17) 1 =
∑

ν∈Zn

θ
〈s〉
ν on R

n,

where

(18) θ
〈s〉
ν ∈ Cm(Rn) for ν ∈ Z

n,

(19) supp θ
〈s〉
ν ⊂ (Q

〈s〉
ν)∗ for each ν ∈ Z

n,

and

(20) |∂αθ
〈s〉
ν (x)| ≤ C · 2−s|α| for |α| ≤ m, x ∈ R

n, ν ∈ Z
n.

Thanks to (1), our estimate (20) is equivalent to

(21) |∂αθ
〈s〉
ν (x)| ≤ C · (A−1ηr)−|α| ≤ CAm · (ηr)−|α| for |α| ≤ m, x ∈ R

n,
ν ∈ Z

n.

We want to restrict the sum in (17) to ν ∈ G. In view of (11) and (19), we

have ν ∈ G for every ν ∈ Z
n such that suppθ

〈s〉
ν ∩ B(x0, r)
= φ. Hence, (17)

yields

(22)
∑
ν∈G

θ
〈s〉
ν = 1 on B(x0, r).

We are now ready to define our function F. We set

(23) F =
∑
ν∈G

θ
〈s〉
ν · Pyν on R

n.

Note that

(24) F ∈ Cm(Rn),

and F is of compact support. (See (18), (19), and recall that G is finite and
each Pyν is a polynomial.)

Next, we show that F satisfies (A) and (B). We first establish (A):

Fix y ∈ S+. If ν ∈ G and y ∈ supp θ
〈s〉
ν , then y ∈ S+ ∩ (Q

〈s〉
ν)∗ by (19),

and therefore yν = y, by (16). Consequently, (23) gives

Jy(F) =
∑
ν∈G

Jy(θ〈s〉
ν · Py) = Py,

thanks to (22) and (†0).

Thus, F agrees with �P, proving (A).

The Cm
Norm of a Function with Prescribed Jets II 339

We pass to (B). Suppose M ≥ 0 is a real number, and suppose the
Py(y ∈ S+) satisfy (†3) and (†4). Fix x ∈ B(x0, r), and then fix ν̄ ∈ G such

that x ∈ (Q
〈s〉
ν̄)∗. (Such a ν̄ exists, by (19), (22).) From (22) and (23), we

have

(25) F = Pyν̄ +
∑
ν∈G

θ
〈s〉
ν · (Pyν − Pyν̄) on B(x0, r).

We estimate the terms on the right in (25).

To do so, we note first that any ν ∈ G such that x ∈ (Q
〈s〉
ν)∗ satisfies

|x − yν| ≤ Cηr, thanks to (15). In particular,

(26) |x − yν̄| ≤ Cηr,

and

(27) |x − yν| ≤ Cηr for any ν ∈ G such that x ∈ supp θ
〈s〉
ν . (See (19).)

From (26), (27), we obtain at once |yν −yν̄| ≤ Cηr for any ν ∈ G such that

x ∈ supp θ
〈s〉
ν . Therefore, (†4) yields

|∂α(Pyν − Pyν̄)(yν̄)| ≤ CεM · (ηr)m−|α|

for |α| ≤ m, ν ∈ G such that x ∈ supp θ
〈s〉
ν .

Together with (26), this gives

|∂α(Pyν − Pyν̄)(x)| ≤ C′εM · (ηr)m−|α|

for |α| ≤ m, ν ∈ G such that x ∈ supp θ
〈s〉
ν .

Recalling (21), we deduce that

(28) |∂α{θ
〈s〉
ν · (Pyν − Pyν̄)}(x)| ≤ AmCεM · (ηr)m−|α| for |α| ≤ m, ν ∈ G

s.t. x ∈ supp θ
〈s〉
ν .

Moreover, there are at most C distinct ν ∈ G such that x ∈ supp θ
〈s〉
ν , as

we see from (19). Consequently, (28) yields

(29)
∣∣∣∂α

{ ∑
ν∈G

θ
〈s〉
ν · (Pyν −Pyν̄)

}
(x)

∣∣∣ ≤ CAmεM · (ηr)m−|α| for |α| ≤ m.

We are assuming here that η ≤ ε2, r ≤ ε−1, and therefore

(30) ηr < ε.

From (29), (30), and the Bounded Distortion Property, we conclude that

(31)
∣∣∣Jx

(∑
ν∈G

θ
〈s〉
ν · (Pyν − Pyν̄)

)∣∣∣
x
≤ CAmεM.

340 C. Fefferman

Thus, we have estimated the sum in (25). Regarding the term Pyν̄ in (25),
we recall from (†3) that

(32) |Pyν̄ |yν̄ ≤ M.

Also, from (26), (30), we have |x − yν̄| ≤ Cηr < Cε < 1. Hence, (32) and
Lemma 1 in Section 3 yield the estimate |Pyν̄ |x ≤ (1 + Cε)M.

Substituting this estimate and (31) into (25), and recalling that A > 1,
we obtain the estimate |Jx(F)|x ≤ (1 + CAmε)M.

Since x is an arbitrary point in B(x0, r), it follows that

‖ F ‖Cm(B(x0,r))≤ (1 + CAmε)M.

This completes the proof of (B).

It remains to compute the function F in (23), and to estimate the work
and storage needed for the computation. We begin with the one-time work.
We compute the integers s, L, m1, . . . , mn in (1)...(4), with work at most C.
Note that the set G in (10) is then an n-dimensional box in an integer lattice;
hence, any quantity indexed by G may be stored as an n-dimensional array,
consisting of Ln entries. Recall from (3) that Ln ≤ C · (Aη−1)n.

Next, for each ν ∈ G, we compute crudely the point yν in (13), by exam-
ining each y ∈ S+. We then store the polynomial Pyν in an n-dimensional
array indexed by ν ∈ G. The work to compute a single Pyν is at most
C · #(S+) ≤ C′ · (Aη−1)n; see (14).

The memory consumed in storing the Pyν (all ν ∈ G) is at most C ·
(Aη−1)n. This completes the one-time work. Note that the total one-time
work is at most C′ · (Aη−1)n · #(G) ≤ C′′ · (Aη−1)2n.

We pass to the query algorithm, which computes Jx(F) for a given query
point x ∈ R

n. We assume we have done the above one-time work.

Let x ∈ R
n be given, and let G(x) = {ν ∈ G : x ∈ (Q

〈s〉
ν)∗}. Note

that #(G(x)) ≤ C, and that G(x) can be computed with work at most C.
From (19) and (23), we have

(33) Jx(F) =
∑

ν∈G(x)

Jx(θ
〈s〉
ν) 	x Pyν .

For each ν ∈ G(x), we compute Jx(θ
〈s〉
ν) by Algorithm 10.3, look up

Pyν from the array created by our one-time work, and then compute the
product Jx(θ

〈s〉
ν) 	x Pyν .

Summing on ν ∈ G(x), we obtain Jx(F) from formula (33). Since Algo-
rithm 10.3 takes work at most C, and since #(G(x)) ≤ C, it follows that
Jx(F) is computed using work at most C.

Thus, F is computed using one-time work at most C · (Aη−1)2n and
storage at most C · (Aη−1)n; and the query work is at most C.

This completes our explanation of Algorithm 13.1.

The Cm
Norm of a Function with Prescribed Jets II 341

14. Local Extension of a Whitney Field from a Testing
Set

In this section, we continue preparing to compute functions F�
ν as in (13)...(16)

of Section 6. We will use Algorithm 3.1 (“Find-Unit-Ball”), and the Special
Ellipsoid Algorithm for linear programming.

Algorithm 14.1. Given a real number ε > 0, assumed to be less than a
small enough controlled constant; and given a dyadic cube Q, whose side-
length δQ is assumed to satisfy

(1) δQ ≤ c̃ε−1 for a small enough controlled constant c̃;

and given a Whitney field �P = (Py)y∈S, where the set S is assumed to satisfy

(2) S ⊂ Q∗∗, and

(3) |y − y′| > e−3/ε δQ for any two distinct points y, y′ ∈ S;

we compute a ball B(x0, r), a real number Nε(�P, Q) ≥ 0, and a function
F ∈ Cm(Rn), with the following properties.

(A) Q∗∗ ⊂ B(x0, r), and r ≤ CδQ.

(B) F agrees with �P.

(C) ‖ F ‖Cm(B(x0,r))≤ (1 + Cε) · Nε(�P, Q).

(D) Nε(�P, Q) ≤ (1 + Cε) · ‖ �P ‖Cm(B(x0,2r)).

The storage and the one-time work needed for the computation are at most
exp(C/ε), and the work to answer a query is at most C.

Explanation: Our algorithm consists of seven steps.

First, we present Steps 1...4. Then we introduce a family of linear con-
straints in a finite-dimensional vector space, and prove several lemmas on the
feasible region. Next, we present Steps 5, 6, 7, in which we solve a linear pro-
gramming problem and use the result to compute Nε(�P, Q) and F. Finally,
we prove (A)...(D), and analyze the work and storage of our algorithm.

The first four steps of our algorithm are as follows.

Step 1: We compute a ball B(x0, r) such that

(4) Q∗∗ ⊂ B(x0, r) and r ≤ CδQ.

From (1) and (4), we obtain

(5) 2r < ε−1.

342 C. Fefferman

Note that

(6) S ⊂ B(x0, r), and

(7) |y − y′| ≥ c · e−3/εr for any two distinct points y, y′ ∈ S,

thanks to (2), (3), (4).

Step 2: We apply Algorithm 11.3 (“Produce-Fine-Net”) to the set S, the
ball B(x0, r), and the number

(8) η = e−6m/ε.

Thanks to (6), (7), (8), the data S, B(x0, r), η satisfy the assumptions of
Algorithm 11.3. Thus, that algorithm computes a set S+, with the following
properties.

(9) S ⊆ S+ ⊂ B(x0, r)

(10) dist(x, S+) < ηr for any x ∈ B(x0, r).

(11) |y − y′| ≥ ηr
100n

for any two distinct points y, y′ ∈ S+.

Note that (9) and (11) yield

(12) #(S) ≤ #(S+) ≤ C · η−n.

Step 3: For each y ∈ S+, we apply Algorithm 3.1 (“Find-Unit-Ball”), to
compute a family O(ε, y) of linear functionals on P, such that

(13) (1 + ε)−1 · |P|y ≤ max{λ(P) : λ ∈ O(ε, y)} ≤ (1 + ε) · |P|y for all
P ∈ P and y ∈ S+; and

(14) #(O(ε, y)) ≤ exp(C/ε) for each y ∈ S+.

Step 4: We compute the smallest real number M̂ ≥ 0 such that

(15) |∂αPy(y)| ≤ M̂ for |α| ≤ m, y ∈ S; and

(16) |∂α(Py − Py′
)(y)| ≤ M̂ · |y − y′|m−|α| for |α| ≤ m, y, y′ ∈ S, y
= y′.

Before passing to Steps 5, 6, 7, we study the feasible region for a family of
linear constraints, which we now introduce.

Let Â be a constant, to be picked later. Assume that

(17) Â exceeds a large enough controlled constant, and

(18) ε < Â−100.

Later, we will take Â to be a controlled constant large enough to satisfy (17).
Our assumption (18) will then hold, since we assume that ε is less than a
small enough controlled constant. For the moment, however, we do not
fix Â; we simply assume (17) and (18).

The Cm
Norm of a Function with Prescribed Jets II 343

Now let X denote the vector space of all

(19) ξ = [M, (Py)y∈S+], with M ∈ R and each Py ∈ P.

Note that Py in (19) is indexed by a subscript y ∈ S+, while our given

Whitney field �P is equal to (Py)y∈S, with Py indexed by a superscript y ∈ S.

We will study the following family of constraints on a vector ξ ∈ X as
in (19).

The Basic Constraints

(20) 0 ≤ M ≤ Â · M̂.

(21) λ(Py) ≤ (1 + Âε) · M for each λ ∈ O(ε, y) and each y ∈ S+.

(22) |∂α(Py − Py′)(y)| ≤ Â · e4m/ε r−1|y − y′|m+1−|α| · M for |α| ≤ m and
y, y′ ∈ S+.

(23) Py = Py for each y ∈ S.

We write X(ε, Q, �P) to denote the set of all ξ ∈ X that satisfy the above
constraints. We will prove the following results about this feasible region.

Lemma 14.1. For any [M, (Py)y∈S+] ∈ X(ε, Q, �P), we have

(24) cM̂ ≤ M ≤ Â · M̂,

with M̂ as in Step 4.

Lemma 14.2. Fix y0 ∈ S. Then every [M, (Py)y∈S+] ∈ X(ε, Q, �P) satisfies

(25) |∂α(Py − Py0)(y)| ≤ CÂe4m/εrm−|α|M, for |α| ≤ m, y ∈ S+.

Lemma 14.3. There exists ξ# = [M#, (P#
y)y∈S+] ∈ X, with the following

properties.

(26) M# ≤ (1 + Cε) · ‖ �P ‖Cm(B(x0,2r)).

(27) Let ξ′ = [M′, (P′
y)y∈S+] ∈ X, with

(a) |M′| ≤ exp(−Â/ε)M#;

(b) |∂αP′
y(y)| ≤ exp(−Â/ε)rm−|α|M# for |α| ≤ m, y ∈ S+; and

(c) P′
y = 0 for all y ∈ S.

Then

(d) ξ# + ξ′ ∈ X(ε, Q, �P).

344 C. Fefferman

Proof of Lemma 14.1. Let [M, (Py)y∈S+] satisfy (20) ...(23). Immediately
from (20), we have M ≤ ÂM̂. Our desired result (24) thus amounts to
saying that

(28) M̂ ≤ CM.

Let us prove (28).
From (21) and the defining property (13) of O(ε, y), we obtain the esti-

mate |Py|y ≤ (1 + Cε) · (1 + Âε)M for each y ∈ S+. Hence, by (17), (18),
and the Bounded Distortion Property, we have

(29) |∂αPy(y)| ≤ CM for |α| ≤ m, y ∈ S+.

Since r ≤ c̃ε−1, we know that Â · e4m/ε r−1 > 1. Hence, (22), (29) and the
classical Whitney extension theorem for finite sets tell us that there exists

(30) F ∈ Cm+1(Rn),

such that

(31) Jy(F) = Py for each y ∈ S+,

and

(32) |∂αF(x)| ≤ CÂ · e4m/ε r−1M for |α| ≤ m + 1, x ∈ R
n.

Here, Jy(F) denotes an mth order Taylor polynomial as usual, even though
F ∈ Cm+1(Rn).

Let x ∈ B(x0, r) be given. By (8) and (10), there exists y ∈ S+, such
that

(33) |x − y| < e−6m/ε r.

Note that y ∈ B(x0, r) as well; see (9). For |α| ≤ m, we have

|∂αF(x) − ∂αF(y)| ≤ |x − y| · max
B(x0,r)

|� ∂αF| ≤ (e−6m/ε r) · (CÂe4m/ε r−1M)

by (32) and (33). Thus,

(34) |∂αF(x) − ∂αF(y)| ≤ CÂe−2m/εM ≤ M for |α| ≤ m,

thanks to (17) and (18).
On the other hand, (29) and (31) give

(35) |∂αF(y)| ≤ CM for |α| ≤ m,

since y ∈ S+.
From (34) and (35), we see that |∂αF(x)| ≤ CM for |α| ≤ m, x ∈ B(x0, r).

Hence, Taylor’s theorem gives

(36) |∂α(Jy(F)−Jy′(F))(y)| ≤ CM|y−y′|m−|α| for |α| ≤ m, y, y′ ∈ B(x0, r),
y
= y′.

The Cm
Norm of a Function with Prescribed Jets II 345

From (31), (36) and (9), we conclude that

(37) |∂α(Py−Py′)(y)| ≤ CM · |y−y′|m−|α| for |α| ≤ m, y, y′ ∈ S+, y
= y′.

Now, recalling (23), and comparing (29) and (37) with the definition
of M̂ in Step 4, we see that

M̂ ≤ CM.

This is precisely our desired inequality (28). The proof of Lemma 14.1 is
complete. �
Proof of Lemma 14.2. Note that Py0

= Py0 by (23), and that |y−y0| ≤ 2r,
by (9). Hence, for |α| ≤ m, (22) gives

|∂α(Py − Py0)(y)| ≤ Â e4m/ε r−1|y − y0|
m+1−|α| M

≤ 2Â e4m/ε|y − y0|
m−|α| M ,

which immediately implies the desired conclusion (25). �
Proof of Lemma 14.3. We start by relating ‖ �P ‖Cm(B(x0,2r)) to M̂ (as

in Step 4). By definition of M̂, and by the classical Whitney extension
theorem, there exists a function

(38) F̌ ∈ Cm(Rn),

such that

(39) Jy(F̌) = Py for all y ∈ S,

and

(40) |∂αF̌(x)| ≤ CM̂ for |α| ≤ m, x ∈ R
n.

By (40) and the Bounded Distortion Property, we have ‖ F̌ ‖Cm(Rn)≤ C′M̂.

Together with (39) and the definition of the Cm-norm of a Whitney field,
this yields

(41) ‖ �P ‖Cm(B(x0,2r))≤‖ �P ‖Cm(Rn)≤ C′M̂.

Next, again using the definition of the Cm-norm of the Whitney field
�P = (Py)y∈S, we see that there exists

(42) F̂ ∈ Cm(B(x0, 2r))

with

(43) Jy(F̂) = Py for y ∈ S,

and

(44) ‖ F̂ ‖Cm(B(x0,2r))≤ (1 + ε) · ‖ �P ‖Cm(B(x0,2r)).

346 C. Fefferman

We now apply Lemma 12.2 to the following data.

(45) • Our ε > 0.

• The ball B(x0, 2r).

• The number η̂ = ĉ e−4/ε for a small enough controlled con-
stant ĉ.

• The set S.

• The number M = (1 + ε) · ‖ �P ‖Cm(B(x0,2r)).

• The function F̂.

Here, η̂ in (45) plays the rôle of η in Lemma 12.2.

Let us check the hypotheses of that Lemma for the data (45).
We are assuming that ε > 0 is less than a small enough controlled

constant. We must check (†1)...(†5) from Lemma 12.2, for the data (45).

(†1) here asserts that 2r ≤ ε−1, which we know from (5).

(†2) here asserts that 0 < ĉ e−4/ε < ε2e−1/ε, which holds since ĉ < 1 and
ε < 1.

(†3) here asserts that S ⊂ B(x0, (1− ĉ e−4/ε) · 2r), which follows from (6),
since ĉ < 1 and ε < 1.

(†4) here asserts that |y − y′| > 2 · (ĉ e−4/ε) · e1/ε · (2r) for any two
distinct points y, y′ ∈ S; this holds (for ĉ a small enough controlled
constant), thanks to (7).

(†5) here asserts that F̂ ∈ Cm(B(x0, 2r)), and that

‖ F̂ ‖Cm(B(x0,2r))≤ (1 + ε) · ‖ �P ‖Cm(B(x0,2r)) .

These assertions are precisely our results (42) and (44).

Thus, the hypotheses of Lemma 12.2 hold for the data (45). Applying
that result, we learn that there exists

(46) F# ∈ Cm+1(B(x0, r)),

with the following properties.

(47) ‖ F# ‖Cm(B(x0,r))≤ (1 + Cε) · ‖ �P ‖Cm(B(x0,2r)).

(48) Jy(F#) = Jy(F̂) for all y ∈ S.

(49) |∂αF#(x)| ≤ C e4m/ε r−1 ‖ �P ‖Cm(B(x0,2r)) for |α| = m+1, x ∈ B(x0, r).

Let us now define

(50) M# = ‖ �P ‖Cm(B(x0,2r))

and also

(51) P#
y = Jy(F#) for each y ∈ S+.

The Cm
Norm of a Function with Prescribed Jets II 347

Thus,

(52) ξ# = [M#, (P#
y)y∈S+] belongs to X.

We derive some basic properties of ξ#.
First of all, (47), (51) and (13) yield the inequalities

(53) λ(P#
y) = λ(Jy(F#)) ≤ (1 + Cε) · ‖ �P ‖Cm(B(x0,2r)) for λ ∈ O(ε, y)

and y ∈ S+.

Secondly, (49) and (51) yield the estimate

(54) |∂α(P#
y − P

#
y′)(y)| ≤ C e4m/ε r−1|y − y′|m+1−|α| ‖ �P ‖Cm(B(x0,2r)) for

|α| ≤ m, y, y′ ∈ S+,

by Taylor’s theorem.

Thirdly, (43), (48) and (51) show that

(55) P#
y = Py for y ∈ S.

Finally, (41) and (50) give

(56) 0 ≤ M# ≤ CM̂.

The basic properties of ξ# are (53)...(56).

Now let us show that the conclusions (26), (27) hold for ξ#. First of
all, (26) is immediate from (50). To prove (27), let

ξ′ = [M′, (P′
y)y∈S+] ∈ X

satisfy (27)(a), (b), (c). We must show that

ξ# + ξ′ = [M# + M′, (P#
y + P′

y)y∈S+]

satisfies (27)(d), i.e., ξ# + ξ′ satisfies the Basic Constraints (20)...(23).

From (27)(a) and (17), we have

(57) (1 − ε)M# ≤ M# + M′ ≤ (1 + ε)M#,

since exp(−Â/ε) ≤ exp(−1/ε) < ε. Immediately from (56) and (57), we
have

0 ≤ M# + M′ ≤ C′M̂ ≤ ÂM̂,

since Â exceeds a large enough controlled constant.
Thus, constraint (20) is satisfied by the point ξ# + ξ′.

348 C. Fefferman

Next, note that (27)(b) and the Bounded Distortion Property show that

|P′
y|y ≤ C exp(−Â/ε) · ε−mM#, for y ∈ S+,

since r ≤ ε−1 (see (5)). By property (13) of the O(ε, y), it follows that

λ(P′
y) ≤ C′ exp(−Â/ε) ε−mM# for λ ∈ O(ε, y), y ∈ S+.

Together with (53) and (50), this implies that

(58) λ(P#
y + P′

y) ≤ (1 + C′′ε)M# for λ ∈ O(ε, y), y ∈ S+,

since exp(−Â/ε) ε−m ≤ exp(−1/ε) · ε−m < ε.
From (57) and (58), we obtain the estimate

(59) λ(P#
y + P′

y) ≤ (1 + C′′′ε) · [M# + M′] ≤ (1 + Âε) · [M# + M′] for
λ ∈ O(ε, y), y ∈ S+,

since Â exceeds a large enough controlled constant.
In view of (59), the constraint (21) is satisfied by the vector ξ# + ξ′.

We pass to constraint (22). Let y, y′ ∈ S+ be distinct points. Then
by (9), we have

(60) |y − y′| ≤ 2r.

From (27)(b), we have

(61) |∂αP′
y(y)| ≤ exp(−Â/ε)rm−|α|M# for |α| ≤ m, and

(62) |∂αP′
y′(y′)| ≤ exp(−Â/ε) rm−|α|M# for |α| ≤ m.

From (60) and (62), we obtain |∂αP′
y′(y)| ≤ C exp(−Â/ε) rm−|α|M# for

|α| ≤ m.
Together with (61), this yields

(63) |∂α(P′
y − P′

y′)(y)| ≤ C exp(−Â/ε) rm−|α|M# for |α| ≤ m.

We have also
|y − y′| ≥ c e−6m/εr,

thanks to (8) and (11); consequently,

(64) rm−|α| = r−1 · rm+1−|α| ≤ Cr−1 · e
6m(m+1)

ε |y − y′|m+1−|α| for |α| ≤ m.

We substitute (64) into (63), and recall that Â > 6m(m + 1) by (17). This
tells us that

(65) |∂α(P′
y − P′

y′)(y)| ≤ C r−1|y − y′|m+1−|α|M# for |α| ≤ m.

The Cm
Norm of a Function with Prescribed Jets II 349

From (50), (54) and (65) we now learn that

|∂α([P#
y + P′

y]−[P#
y′ +P′

y′])(y)| ≤ C e4m/ε r−1|y−y′|m+1−|α|M# for |α| ≤ m.

Together with (57), this yields

(66) |∂α([P#
y + P′

y] − [P#
y′ + P′

y′])(y)| ≤ C e4m/ε r−1|y − y′|m+1−|α| · [M# +
M′] ≤

≤ Â · e4m/ε r−1|y − y′|m+1−|α| · [M# + M′] for |α| ≤ m,

by (17).

In view of (66), the constraints (22) hold for the vector ξ# + ξ′.
Finally, from (55) and (27)(c), we have

[P#
y + P′

y] = P#
y = Py for y ∈ S.

Thus, the constraints (23) are satisfied by ξ# + ξ′.
We have shown that all the constraints (20)...(23) are satisfied by the

vector ξ# + ξ′. Thus, by definition, ξ# + ξ′ ∈ X(ε, Q, �P).

This is precisely conclusion (27)(d). Thus, (27)(a), (b), (c) imply (27)(d).
This proves (27), and completes the proof of Lemma 14.3. �

We now pick Â to be a controlled constant, large enough to satisfy (17).
As mentioned before, it follows that ε satisfies (18), since we are assuming
that ε is less than a small enough controlled constant.

We note a simple consequence of Lemmas 14.1 and 14.3. Let ξ# be
as in Lemma 15.3. Then the point ξ′ = 0 satisfies (27)(a), (b), (c), and

therefore we learn from (27)(d) that ξ# belongs to X(ε, Q, �P). Consequently,
Lemma 14.1 tells us that

(67) cM̂ ≤ M# ≤ CM̂,

with M# as in Lemma 14.1. Here, we have used the fact that we have
picked Â to be a controlled constant.

We prepare to use the Special Ellipsoid Algorithm from Section 4, to
compute a point [M0, (P0

y)y∈S+] ∈ X(ε, Q, �P), with M0 nearly as small as
possible. We have to check that the assumptions of that algorithm are
satisfied. For this verification, we introduce rescaled (affine) coordinates as
follows. We suppose for the moment that M̂
= 0. (See Step 5 below.)

Fix y0 ∈ S. Given ξ = [M, (Py)y∈S+] ∈ X, we define

(68) γ(ξ) = [v0, (vy,α)y∈S+�S
|α| ≤m

] ∈ R
D, where

(69) v0 = M/M̂,

(70) vy,α = (∂α(Py − Py0)(y))
/
(M̂ rm−|α|) for y ∈ S+

� S, |α| ≤ m, and

(71) D = 1 + #{α : |α| ≤ m} · #(S+
� S).

350 C. Fefferman

Note that the restriction of γ to the affine space of all [M, (Py)y∈S+] ∈ X

satisfying (23) is an isomorphism; moreover, the inverse of this isomorphism
is trivial to compute. We denote this inverse γ−1.

The image γ(X(ε, Q, �P)) ⊂ R
D is the feasible region for a list of con-

straints that may be read off trivially from (20)...(23).
The number of constraints is

(72) L = 1 +
∑

y∈S+

#O(ε, y) + 2[#(S+)]2 · #{α : |α| ≤ m},

as we see from (20)...(22); the constraints (23) do not contribute to L.

Recall that Â is a controlled constant, and recall the estimate (67),
with M# as in Lemma 14.3. By comparing Lemmas 14.1, 14.2 and 14.3
with definitions (68), (69), (70), we see that the set γ(X(ε, Q, �P)) has the
following properties.

(73) For any [v0, (vy,α)y ∈S+�S
|α| ≤m

] ∈ γ(X(ε, Q, �P)), we have c < v0 < C and

|vy,α| ≤ C e4m/ε for y ∈ S+
� S, |α| ≤ m.

(74) Some translate of the set{[
v0, (vy,α)y∈S+�S

|α|≤m

] ∈ R
D : |v0|, |vy,α| ≤ exp(−C/ε) (all y ∈ S+

�S,

|α|≤m)
}

is contained in γ(X(ε, Q, �P)).

Consequently, the feasible region γ(X(ε, Q, �P)) ⊂ R
D satisfies the assump-

tions (a) and (b) of the Special Ellipsoid Algorithm, with

(75) ∧ = C e4m/ε and λ = e−C/ε.

(See Section 4.) Thus, the Special Ellipsoid Algorithm applies here.

We are now ready to describe the remaining steps in Algorithm 14.1.

Step 5: Using the Special Ellipsoid Algorithm, we compute a point

[v0
0, (v

0
y,α)y∈S+�S

|α|≤m

] ∈ γ(X(ε, Q, �P)),

with
v0

0 ≤ inf
{
v0 :

[
v0, (vy,α)y∈S+�S

|α|≤m

] ∈ γ(X(ε, Q, �P))
}

+ ε .

Applying γ−1 to
[
v0

0, (v
0
y,α)y∈S+�S

|α| ≤m

]
, we obtain a point

(76) ξ0 = [M0, (P0
y)y∈S+] ∈ X(ε, Q, �P),

such that

(77) M0 ≤ inf{M : [M, (Py)y∈S+] ∈ X(ε, Q, �P)} + εM̂.

(See (69).)

The Cm
Norm of a Function with Prescribed Jets II 351

In the degenerate case M̂ = 0, we can check easily that (76), (77) hold
for ξ0 = 0. Thus, (76) and (77) hold in all cases.

Step 6: With ξ0 and M0 as in (76), we set

(78) Nε(�P, Q) = M0.

Step 7: We apply Algorithm 13.1 (extending a Whitney field from a fine
net) to the following data.

(79) • Our given ε > 0.

• The number η from (8).

• A = a large enough controlled constant.

• The open ball B(x0, r) from (4).

• The Whitney field �P0 = (P0
y)y∈S+ from (76).

Let us check that the data (79) satisfy the assumptions of Algorithm 13.1.
We know that ε > 0 is less than a small enough controlled constant, and that
0 < η < ε2 (see (8)). Also, A exceeds a large enough controlled constant,
as assumed in Algorithm 13.1, since in (79) we make take A to be an even
larger controlled constant. Recall from (5) that r ≤ ε−1.

We now verify conditions (†0), (†1), (†2) of Algorithm 13.1, for the
data (79). In fact, (†0) is immediate from (9); (†1) follows from (11), since
we may take A > 100n in (79); and (†2) is immediate from (10).

Thus, as claimed, all the assumptions of Algorithm 13.1 hold for the
data(79). Applying that algorithm, we compute a function

(80) F ∈ Cm(Rn),

with the following properties.

(81) F agrees with �P0.

(82) Let M ≥ 0 be a real number, such that

(a) |P0
y|y ≤ M for all y ∈ S+, and

(b) |∂α(P0
y − P0

y′)(y)| ≤ εM · (ηr)−1 · |y − y′|m+1−|α| for |α| ≤ m,
y, y′ ∈ S+.

Then

(c) ‖ F ‖Cm(B(x0,r))≤ (1 + Cε) · M.

Thus, we have computed a ball B(x0, r) (see Step 1), a number Nε(�P, Q)
(see Step 6), and a function F ∈ Cm(Rn) (see Step 7).

This completes our description of Algorithm 14.1.

352 C. Fefferman

Next, we prove (A)...(D) for the ball B(x0, r), the number Nε(�P, Q), and
the function F computed above. First of all, (A) is simply (4). To check (B),
note first that [M0, (P0

y)y∈S+] satisfies constraints (20)...(23), thanks to (76).
In particular, we have P0

y = Py for y ∈ S. Therefore, (B) follows from (81).

To establish (C), we again note that constraints (20)...(23) are satisfied by
ξ0 = [M0, (P0

y)y∈S+], thanks to (76). Applying (21) and (13), and recalling

that Â is a controlled constant, we learn that

(83) |P0
y|y ≤ (1 + ε) · (1 + Âε)M0 ≤ (1 + Cε)M0 for y ∈ S+.

Also, applying (22) for ξ0 and recalling (8), we find that

|∂α(P0
y − P0

y′)(y)| ≤ Â e4m/ε r−1|y − y′|m+1−|α| · M0

= Â · e−2m/ε · (ηr)−1 · |y − y′|m+1−|α| · M0 for |α| ≤ m, y, y′ ∈ S+.

Since Â is a controlled constant, and since ε is less than a small enough
controlled constant, we have Â e−2m/ε < ε, and thus

(84) |∂(P0
y − P0

y′)(y)| ≤ εM0 · (ηr)−1 · |y − y′|m+1−|α| for |α| ≤ m and
y, y′ ∈ S+.

Estimates (83) and (84) show that conditions (82)(a) and (b) hold for M =
(1 + Cε)M0. Consequently, (82) tells us that

(85) ‖ F ‖Cm(B(x0,r))≤ (1 + C′ε)M0.

Since we set Nε(�P, Q) = M0 in Step 6, the estimate (85) is precisely our
desired conclusion (C).

To prove (D), let ξ# = [M#, (P#
y)y∈S+] be as in Lemma 14.3. Thus, (26)

and (27) hold. Taking ξ′ = 0 in (27), we conclude (as before) that ξ# ∈
X(ε, Q, �P). Consequently, (26) implies that

inf
{
M : [M, (Py)y∈S+] ∈ X(ε, Q, �P)

} ≤ (1 + Cε) · ‖ �P ‖Cm(B(x0,2r))

and therefore (77) yields

(86) M0 ≤ (1 + Cε) · ‖ �P ‖Cm(B(x0,2r)) + εM̂.

Also, (76) and Lemma 14.1 show that

(87) M̂ ≤ CM0.

Substituting (87) into (86), we find that

M0 ≤ (1 + Cε) · ‖ �P ‖Cm(B(x0,2r)) + CεM0 ,

and therefore

(88) M0 ≤ (1 + C′ε) · ‖ �P ‖Cm(B(x0,2r)).

Again recalling that Nε(�P, Q) = M0 by Step 6, we see that (88) is precisely
our desired conclusion (D).

The Cm
Norm of a Function with Prescribed Jets II 353

Thus, (A)...(D) hold for the ball B(x0, r), the number Nε(�P, Q), and the
function F computed by Algorithm 14.1.

It remains to estimate the work and storage needed for Algorithm 14.1.
Let us go over each of our seven steps.

Obviously, Step 1 requires work and storage at most C.

Step 2 requires work at most Cη−2n and storage at most Cη−n. (See our
description of Algorithm 11.3.) Since η is given by (8), the work and storage
for Step 2 are at most exp(C/ε).

Step 3 requires work and storage at most exp(C/ε) for each y ∈ S+. (See
our description of Algorithm 3.1.) Thanks to (8) and (12), it follows that
the work and storage for Step 3 are at most exp(C′/ε).

Step 4 requires storage at most C (aside from the space used to hold our

input �P). The work required for Step 4 is at most C · (#(S))2, which is at
most exp(C/ε), thanks to (8) and (12).

Step 5 entails setting up and solving a linear programming problem. To
set up and store the constraints (20)...(23) requires work and storage at
most exp(C/ε), as we see from (8), (12), (14) and from (20)...(23). To pass

from (20)...(23) to the constraints defining γ(X(ε, Q, �P)) as in (68)...(70)
also requires work at most exp(C/ε).

From (71), (72) and (8), (12), (14), we see that the dimension D, and
the number of constraints L for our linear programming problem are both at
most exp(C/ε). Also, the numbers ∧ and λ appearing in the assumptions
(a), (b) of the Special Ellipsoid Algorithm are given by (75). Thus, ∧ ≤
exp(C/ε) and λ ≥ exp(−C/ε).

Moreover, the quantity that plays the rôle of the “ε” in the Special
Ellipsoid Algorithm is equal to ε′ = ε∧−1 ≥ exp(−C′/ε).

Consequently, the work and storage needed to apply the Ellipsoid Algo-
rithm here are at most CD4 L log

(
D∧
λ

)
log

(
D
ε′

)
(see Section 4), which is at

most exp(C/ε), thanks to the above estimates for D, L, ∧, λ, ε′.
Finally, it takes work at most exp(C/ε) to apply γ−1 to the vector[

v0
0, (v

0
y,α)y∈S+�S

|α|≤m

]
to obtain ξ0 = [M0, (P0

y)y∈S+].

Thus, the work and storage needed for Step 5 are at most exp(C/ε).

Obviously, Step 6 requires work and storage at most C.

Finally, Step 7 entails one-time work at most C · η−2n, storage at most
C · η−n, and query work at most C; this follows from our description of
Algorithm 13.1, since we took A to be a controlled constant in (79). Since η

is given by (8), we see that Step 7 requires storage and one-time work at
most exp(C/ε), and query work at most C.

354 C. Fefferman

Note that all the work of Steps 1...6 is one-time work. The only query
work performed by Algorithm 14.1 occurs in Step 7. Consequently, the
above estimates for the work and storage requirements of Steps 1...7 tell us
the following:

Algorithm 14.1 requires storage and one-time work at most exp(C/ε),
and its query work is at most C.

Thus, Algorithm 14.1 performs as claimed. This completes our explana-
tion of that algorithm.

For future reference, we record the following simple observations on the
internal workings of Algorithm 14.1.

Proposition 14.1. Let ε, Q, �P = (Py)y∈S be as assumed in Algorithm 14.1.
Then Algorithm 14.1 performs the following actions.

(a) Using only Q (not ε or �P), it computes x0, r such that Q∗∗ ⊂ B(x0, r),
and r ≤ CδQ.

(b) Using only ε, Q, S (not the Py), it computes a set S+, such that S ⊆
S+ ⊂ B(x0, r) and #(S) ≤ exp(C/ε).

(c) Using only ε and S+, it computes for each y ∈ S+ a finite family
O(ε, y) of (real) linear functionals on P, symmetric about the origin,
with #(O(ε, y)) ≤ exp(C/ε).

(d) It computes ξ0 = [M0, (P0
y)y∈S+] ∈ R ⊕ ∑

y∈S+

⊕P, with the following

properties.

• The vector ξ0 satisfies the constraints

(†)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

P0
y = Py for y ∈ S ;

λ(P0
y) ≤ (1 + Âε) · M0 for each λ ∈ O(ε, y), y ∈ S+ ;

|∂α(P0
y − P0

y′)(y)| ≤ Â · e4m/ε r−1| y − y′|m+1−|α| · M0

for |α| ≤ m and y, y′ ∈ S+ .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Here Â denotes a particular controlled constant.

• Suppose ξ+ = [M+, (P+
y)y∈S+] is another vector satisfying the

constraints (†). Then M0 ≤ (1 + Cε)M+.

(e) It returns the number Nε(�P, Q) = M0, with M0 as in (d).

(f) The work and storage used to compute x0, r, S
+ and all the O(ε, y) are

at most exp(C/ε).

The Cm
Norm of a Function with Prescribed Jets II 355

Proof. Assertions (a), (b), (c) are obvious from inspection of Steps 1,2,3 in
Algorithm 14.1, together with property (O0) of the sets O(ε, y) (see Sect. 3).

To check (d), we first note that the constraints (†) in (d) differ from the
Basic Constraints (20)...(23), only in that (20) is missing from (†). How-
ever, omitting (20) has no effect on the infimum of all M+ such that some
[M+, (P+

y)y∈S+] satisfies (20)...(23).

(To see this, note that the ξ0 = [M0, (P0
y)y∈S+] in (76) satisfies (20)...(23),

with M0 ≤ ÂM̂. If ξ+ = [M+, (P+
y)y∈S+] satisfies (21)...(23) but not (20),

then we have M+ > ÂM̂ ≥ M0. Consequently, omitting such ξ+ leaves the
infimum in question unchanged.)

Thus, (d) follows, once we show that the ξ0 computed in (Step 5) belongs

to X(ε, Q, �P) and satisfies

(††) M0 ≤ (1 + Cε) · inf {M+ : [M+, (P+
y)y∈S+] ∈ X(ε, Q, �P)}.

Let Ω = inf {M+ : [M+, (P+
y)y∈S+] ∈ X(ε, Q, �P)}. From (76), (77), we

learn that ξ0 ∈ X(ε, Q, �P), and that Ω ≤ M0 ≤ Ω + εM̂. Moreover, (76)
and Lemma 14.1 yield M̂ ≤ CM0. Consequently,

Ω ≤ M0 and M0 ≤ Ω + CεM0,

from which (††) follows trivially. This completes the proof of (d).
Next, note that (e) holds, by inspection of Step 6. Finally, (f) holds, since

all the computations referred to in (f) are part of the one-time work of
Algorithm 14.1, which is at most exp(C/ε). The proof of Proposition 14.1
is complete. �

15. Singletons

In this section, we give the algorithm that will be used later to compute the
functions Fx in (15), (16) of Section 6.

Algorithm 15.1. (“Singleton”) Given ε > 0, assumed to be less than a

small enough controlled constant; and given a Whitney field �P = (Py)y∈S

on a singleton S = {y0}, we compute a number Nε(�P) ≥ 0, and a function
F ∈ Cm(Rn), such that:

(A) F agrees with �P;

(B) ‖ F ‖Cm(Rn)≤ (1 + Cε) · Nε(�P); and

(C) Nε(�P) ≤ (1 + Cε) · ‖ �P ‖Cm(Rn).

The storage and the one-time work needed for the computation are at most
exp(C/ε); and the work to answer a query is at most C.

356 C. Fefferman

Explanation: First we define F and Nε(�P) and check (A), (B), (C). Then we

explain how to compute our F and Nε(�P). We compute a dyadic cube Q

containing y0, such that

(1) 1
8
c̃ε−1 ≤ δQ ≤ c̃ε−1, with c̃ as in Algorithm 14.1.

(The work and storage needed to compute Q are at most C.)

Then ε, Q, �P satisfy conditions (1), (2), (3) in Section 14, and therefore
Algorithm 14.1 applies. That algorithm computes a ball B(x0, r), a number

Nε(�P, Q) ≥ 0, and a function F0 ∈ Cm(Rn), with the following properties.

(2) Q∗∗ ⊂ B(x0, r) and r ≤ CδQ.

(3) F0 agrees with �P.

(4) ‖ F0 ‖Cm(B(x0,r))≤ (1 + Cε) · Nε(�P, Q).

(5) Nε(�P, Q) ≤ (1 + Cε) · ‖ �P ‖Cm(B(x0,2r)).

Moreover, the storage and one-time work used by Algorithm 14.1 are at
most exp(C/ε), and the work at query time is at most C.

We now take θ0 ∈ Cm(Rn) to be a cutoff function, such that

(6) 0 ≤ θ0 ≤ 1 on R
n; θ0 = 1 on Q; supp θ0 ⊂ (Q∗∗)int; |∂αθ0(x)| ≤ Cε|α|

for 0 < |α| ≤ m, x ∈ R
n.

This is possible thanks to (1). Moreover, we may take θ0 to be an appropriate
spline, so that we can answer queries as follows.

(7) Given a query point x ∈ R
n, we can compute Jx(θ0) with work and

storage at most C.

There is no one-time work involved in computing θ0.
We also take ε0 = Cε, so that (6) yields

(8) |∂αθ0(x)| ≤ ε0 for 0 < |α| ≤ m, x ∈ R
n.

Since ε is assumed to be less than a small enough controlled constant, we
have

(9) 0 < ε0 < 1.

We take Q0 = Q∗∗ and M = (1 + Cε) · Nε(�P, Q), with C as in (4).
Thus (2), (4) and (6) yield

(10) supp θ0 ⊂ (Q0)
int, and

(11) F0 ∈ Cm(Qint
0), ‖ F0 ‖Cm(Qint

0)≤ M.

The Cm
Norm of a Function with Prescribed Jets II 357

Thanks to (6), (8), (9), (10), (11), the hypotheses of Corollary 2 in
Section 5 hold for ε0, θ0, F0, Q0. Applying that corollary, we see that the
function

(12) F = θ0 · F0 on R
n

satisfies

(13) F ∈ Cm(Rn), and

(14) ‖ F ‖Cm(Rn)≤ (1 + Cε)Nε(�P, Q).

We define

(15) Nε(�P) = Nε(�P, Q) ≥ 0,

and we check that Nε(�P), F satisfy (A), (B), (C). In fact, since θ0 = 1 on Q

and S = {y0} with y0 ∈ Q, we have Jy0
(F) = Jy0

(θ0 · F0) = Jy0
(F0) = Py0 ,

thanks to (3). Thus, (A) holds. Also, (B) is immediate from (14), (15);
and (C) follows from (5), since

‖ �P ‖Cm(B(x0,2r))≤‖ �P ‖Cm(Rn) .

It remains to show how to compute the above Nε(�P) and F, and to
estimate the work and storage of the computation.

This is easy. The one-time work is as follows.

• Compute Q.

• Perform the one-time work of Algorithm 14.1.

• Set Nε(�P) = Nε(�P, Q). (The right-hand side has been computed as
part of the one-time work of Algorithm 14.1)

After we have done the one-time work, we can answer queries as follows.
Given a query point x ∈ R

n,

• We compute Jx(F0) by the query algorithm in Algorithm 14.1.

• We compute Jx(θ0) as in (7).

• We return the polynomial Jx(F) = Jx(θ0) 	x Jx(F0).

One checks easily that the storage and one-time work here are at most
exp(C/ε), and the query work is at most C.

This completes our explanation of Algorithm 15.1.

For future reference, we record a few remarks on the inner workings of
Algorithm 15.1.

358 C. Fefferman

Proposition 15.1. Let ε, �P = (Py)y∈S, S = {y0} be as assumed in Algo-
rithm 15.1. Then Algorithm 15.1 performs as follows.

(a) It computes a dyadic cube Q containing y0. The cube Q is computed
from ε and y0, without using the polynomial Py0 . The work and stor-
age used to compute Q are at most C.

(b) The number Nε(�P) returned by Algorithm 15.1 is equal to the number

Nε(�P, Q) returned by Algorithm 14.1 for the input data ε, Q, �P. (In

particular, ε, Q, �P are as assumed in Algorithm 14.1).

Proof. Assertion (a) is immediate from the first paragraph of our explana-
tion of Algorithm 15.1.

Regarding (b), we recall from the second paragraph of our explanation of

Algorithm 15.1 that ε, Q, �P are as assumed in Algorithm 14.1. The assertion
in (b) regarding Nε(�P) is simply equation (15). �

16. Extending a Whitney Field from a Testing Set I

The next few sections provide the algorithms that compute the functions F�
ν

in (13)...(16) of Section 6. We treat Whitney fields �P = (Py)y∈S, with
S ⊂ Q∗∗ for a dyadic cube Q. We distinguish several cases, depending on
the size of Q. This section deals with the case in which Q is quite small.

Algorithm 16.1. Given ε > 0, assumed to be less than a small enough
controlled constant; and given a dyadic cube Q whose sidelength satisfies

(1) δQ ≤ e−1/(4ε);

and given a Whitney field �P = (Py)y∈S, where the set S is assumed to satisfy

(2) S ⊂ Q∗∗, and

(3) |y − y′| > ε2 e−2/ε δQ for any two distinct points y, y′ ∈ S;

we compute a number Nε(�P) and a function F ∈ Cm(Rn), such that

(A) F agrees with �P;

(B) ‖ F ‖Cm(Rn)≤ (1 + Cε) · Nε(�P); and

(C) Nε(�P) ≤ (1 + Cε) · ‖ �P ‖Cm(Rn).

The storage and the one-time work needed for the computation are at
most exp(C/ε), and the work to answer a query is at most C.

The Cm
Norm of a Function with Prescribed Jets II 359

Explanation: We first define Nε(�P), F and prove (A), (B), (C); then, we

explain how to compute our Nε(�P), F. Fix a point

(4) y0 ∈ S.

Applying Algorithm 10.6, we obtain a function

(5) θ0 ∈ Cm+1(Rn),

with the following properties.

(6) 0 ≤ θ0 ≤ 1 on R
n.

(7) supp θ0 ⊂ B(y0, e
1/(8ε)δQ), and θ0 = 1 on B(y0, e

1/(16ε)δQ).

(8) |∂αθ0(x)| ≤ Cε · |x − y0|
−|α| for 0 < |α| ≤ m + 1, x ∈ R

n
� {y0}.

Moreover, we can answer queries as follows.

(9) Given x ∈ R
n, we can compute Jx(θ0) with work and storage at

most C.

We fix a dyadic cube Q00, such that

(10) B(y0, 2 · e1/(8ε)δQ) ⊂ Q∗
00,

and

(11) e1/(8ε)δQ ≤ δQ00
≤ C · e1/(8ε)δQ.

Note that (1) and (11) yield

(12) δQ00
≤ Ce−1/(8ε) < 1.

Note also that, since y0 ∈ Q∗∗ by (2) and (4), we have

(13) S⊂Q∗∗⊂ B(y0, CδQ) ⊂ B(y0, e
1/(16ε)δQ) ⊂ B(y0, 2 · e1/(8ε)δQ)⊂ Q∗

00,

thanks to (2) and (10).

Moreover, if y and y′ are distinct points of S, then (3) and (11) yield

(14) |y − y′| > ε2 e−2/εδQ ≥ ε2 · e−2/ε · c e−1/(8ε)δQ00
> e−3/ε δQ00

.

We apply Algorithm 14.1 to the data ε, Q00, �P. (Note that the assump-
tions (1), (2), (3) of Algorithm 14.1 follow at once from our present re-

sults (12), (13), (14).) Thus, we obtain a ball B(x0, r), a number Nε(�P, Q00)
≥ 0, and a function F0 ∈ Cm(Rn), with the following properties.

(15) Q∗∗
00 ⊂ B(x0, r) and r ≤ CδQ00

.

(16) F0 agrees with �P.

(17) ‖ F0 ‖Cm(B(x0,r))≤ (1 + C′ε) · Nε(�P, Q00).

(18) Nε(�P, Q00) ≤ (1 + Cε) · ‖ �P ‖Cm(B(x0,2r)).

(19) Moreover, we can compute Nε(�P, Q00) and F0, with storage and one-
time work at most exp(C/ε) and with query work at most C.

360 C. Fefferman

Also, by applying Algorithm 15.1 (“Singleton”), we compute a number

Nε(�P, y0) ≥ 0, and a function F1 ∈ Cm(Rn), with the following properties.

(20) F1 agrees with �P at y0.

(21) ‖ F1 ‖Cm(Rn)≤ (1 + C′′ε) · Nε(�P, y0).

(22) Nε(�P, y0) ≤ (1 + Cε) · ‖ (�P|{y0}) ‖Cm(Rn).

(23) Moreover, we can compute Nε(�P, y0) and F1, with storage and one-
time work at most exp(C/ε), and with query work at most C.

We prepare to apply Corollary 1 in Section 5 to the above y0, F0, F1, θ0, δQ,
taking Ã to be a large enough controlled constant, and taking

(24) M = (1 + Cε) max(Nε(�P, Q00), Nε(�P, y0)), with C = max(C′, C′′);

here, C′ and C′′ are as in (17) and (21).

The hypotheses of that corollary regarding θ0 hold here, thanks to our
present results (5)...(8). Also, (10) and (15) yield B(y0, 2 · e1/(8ε)δQ) ⊂
B(x0, r), and therefore (17) and (24) give

‖ F0 ‖Cm(B(y0,e1/(8ε)δQ))≤ M .

Since furthermore
‖ F1 ‖Cm(Rn)≤ M

by (21) and (24), the hypotheses of Corollary 1 in Section 5 concerning the
Cm-norms of F0 and F1 are satisfied here.

Finally, (16) and (20) show that

Jy0
(F0) = Jy0

(F1) ,

completing our verification of the hypotheses of Corollary 1 in Section 5.
Applying that Corollary, we now learn that the function

(25) F = θ0 · F0 + (1 − θ0) · F1 on R
n

satisfies

(26) F ∈ Cm(Rn),

and
‖ F ‖Cm(Rn)≤ (1 + Cε) · M ;

hence

(27) ‖ F ‖Cm(Rn)≤ (1 + Cε) · max[Nε(�P, Q00), Nε(�P, y0)].

The Cm
Norm of a Function with Prescribed Jets II 361

We take F as in (25), and set

(28) Nε(�P) = max[Nε(�P, Q00), Nε(�P, y0)].

We check that (A), (B), (C) hold for the above F and Nε(�P). From (7)
and (13), we have Jy(θ0) = 1 for y ∈ S, and therefore (25), (16) yield

Jy(F) = Jy(F0) = Py for y ∈ S ,

proving (A). Also, (B) is immediate from (27) and (28). Finally, (C) follows
from (18), (22) and (28), since

‖ �P ‖Cm(B(x0,2r))≤‖ �P ‖Cm(Rn), and ‖ (�P|{y0}) ‖Cm(Rn)≤‖ �P ‖Cm(Rn) .

Thus, (A), (B), (C) hold for our F and Nε(�P).

It remains to compute F and Nε(�P), and to estimate the work and storage
needed for the computation. This is straightforward. The one-time work is
as follows.

• Find a point y0 in S.

• Compute a dyadic cube Q00 satisfying (10) and (11).

• Perform the one-time work associated with Algorithm 14.1 for the
input data (ε, Q00, �P).

• Perform the one-time work associated with Algorithm 15.1 for the
input data (ε, �P|{y0}).

• Compute Nε(�P) from (28).

Thanks to (19) and (23), one-time work and storage consumed in carrying
out the above steps are at most exp(C/ε)

The query algorithm proceeds as follows.

Given a query point x ∈ R
n, we compute Jx(θ0), Jx(F0), Jx(F1) from (9),

(19), (23), respectively. We then return the polynomial

Jx(F) = Jx(θ0) 	x Jx(F0) + (1 − Jx(θ0)) 	x Jx(F1)

(See (25)). The work involved here is at most C, as we see from (9), (19), (23).

Thus, the storage and one-time work to compute Nε(�P) and F are at
most exp(C/ε), and the work to answer a query is at most C.

This concludes our explanation of Algorithm 16.1.

For future reference, we record a few remarks on the inner workings of
Algorithm 16.1.

362 C. Fefferman

Proposition 16.1. Let ε, Q, �P = (Py)y∈S be as assumed in Algorithm 16.1.
Then Algorithm 16.1 performs as follows.

(a) It computes a point y0 ∈ S and a dyadic cube Q00. The point y0 and
the cube Q00 are computed from ε, Q, S, without using the polynomials
Py(y ∈ S). The work and storage used to compute y0 and Q00 are at
most C.

(b) It applies Algorithm 14.1 to the input data ε, Q00, �P, to compute a

number Nε(�P, Q00). (In particular, the input data ε, Q00, �P are as
assumed for Algorithm 14.1.)

(c) It applies Algorithm 15.1 to the input data ε, �P|{y0}, to compute a num-

ber Nε(�P, y0). (In particular, the input data ε, �P|{y0} are as assumed
for Algorithm 15.1.)

(d) It returns the number Nε(�P) = max[Nε(�P, Q00), Nε(�P, y0)].

Proof. Immediate from our explanation of Algorithm 16.1. �

17. Extending a Whitney Field from a Testing Set II

In this section, we present the analogue of Algorithm 16.1 in the case of a
cube Q that is neither very big nor very small.

Algorithm 17.1. Given ε > 0, assumed to be less than a small enough
controlled constant; and given a dyadic cube Q whose sidelength satisfies

(1) e−1/(2ε) ≤ δQ ≤ c#ε−1 for a small enough controlled constant c#;

and given a Whitney field �P = (Py)y∈S, where the set S is assumed to satisfy

(2) S ⊂ Q∗∗, and

(3) |y − y′| ≥ ε2 e−2/εδQ for any two distinct points y, y′ ∈ S;

we compute a number Nε(�P) and a function F ∈ Cm(Rn), such that

(A) F agrees with �P;

(B) ‖ F ‖Cm(Rn)≤ (1 + Cε) · Nε(�P); and

(C) Nε(�P) ≤ (1 + Cε) · ‖ �P ‖Cm(Rn).

The storage and the one-time work needed for the computation are at
most exp(C/ε), and the work to answer a query is at most C.

The Cm
Norm of a Function with Prescribed Jets II 363

Explanation: First, we define Nε(�P) and F and prove that they satisfy (A), (B)

and (C); then we discuss the computation of our Nε(�P) and F.

We fix a dyadic cube Q00, such that

(4) Q∗∗ ⊂ Q∗
00, and

(5) 1
80

c̃ ε−1 ≤ δQ00
≤ 1

20
c̃ ε−1, with c̃ as in equation (1) in Section 14.

Such a cube Q00 exists, thanks to our assumption (1).

Next, we fix a cutoff function θ0 ∈ Cm(Rn), with the following properties:

(6) 0 ≤ θ0 ≤ 1 on R
n; θ0 = 1 on Q∗

00; supp θ0 ⊂ (Q∗∗
00)

int; and

(7) |∂αθ0(x)| ≤ C δ
−|α|
Q00

for |α| ≤ m, x ∈ R
n.

By taking θ0 to be an appropriate spline, we can answer queries as fol-
lows.

(8) Given a point x ∈ R
n, we compute Jx(θ0) with work and storage at

most C.

In view of (5) and (7), we have

(9) |∂αθ0(x)| ≤ Cε for 0 < |α| ≤ m, x ∈ R
n, since ε < 1.

We prepare to apply Algorithm 14.1 to the data ε, Q00, �P. Let us check
that these data satisfy the assumptions of that algorithm. We are assuming
here that ε is less than a small enough controlled constant. Also, Q00 is
a dyadic cube, whose sidelength δQ00

satisfies equation (1) in Section 14,

thanks to our present equation (5). Also, our Whitney field �P = (Py)y∈S

satisfies

(10) S ⊂ Q∗∗ ⊂ Q∗
00 ⊂ Q∗∗

00

thanks to (2) and (4). Consequently, inclusion (2) in Section 14 holds for

the data ε, Q00, �P.

Next, note that

δQ ≥ e−1/(2ε) ≥ c ε e−1/(2ε) δQ00
,

by (1) and (5). Therefore, (3) yields

|y − y′| ≥ ε2 e−2/ε δQ ≥ c ε3e−2.5/ε δQ00
> e−3/ε δQ00

for any two distinct points y, y′ ∈ S, since ε is less than a small enough
controlled constant.

Thus, equation (3) in Section 14 holds for the data ε, Q00, �P. This com-
pletes the verification of the assumptions of Algorithm 14.1 for the data
ε, Q00, �P.

364 C. Fefferman

Applying Algorithm 14.1 to ε, Q00, �P, we compute a ball B(x0, r), a num-

ber Nε(�P, Q00), and a function F0 ∈ Cm(Rn), with the following properties.

(11) (Q00)
∗∗ ⊂ B(x0, r).

(12) F0 agrees with �P.

(13) ‖ F0 ‖Cm(B(x0,r))≤ (1 + Cε) · Nε(�P, Q00).

(14) Nε(�P, Q00) ≤ (1 + Cε) · ‖ �P ‖Cm(B(x0,2r)).

Moreover,

(15) The storage and one-time work to compute B(x0, r), Nε(�P, Q00), F0

are at most exp(C/ε); and the work to answer a query is at most C.

We now define

(16) Nε(�P) = Nε(�P, Q00), and

(17) F = θ0 · F0 ∈ Cm(Rn).

Let us check that (A), (B), (C) hold for Nε(�P) and F as in (16), (17).
First of all, let y ∈ S. Then y ∈ Q∗

00 by (10), hence Jy(θ0) = 1 by (6).
Consequently, Jy(F) = Jy(F0) by (17), and therefore Jy(F) = Py by (12).
Thus, our F satisfies (A).

Next, we estimate the norm of F in Cm(Rn), in order to check (B).
We will apply Corollary 2 in Section 5 to the following data:

(18) • The number ε0 = Cε for a large enough controlled constant C.

• The number M = ‖ F0 ‖Cm(B(x0,r)).

• The cube Q0 = Q∗∗
00.

• The cutoff function θ0 from (6)...(9).

• The function F0 from (11)...(15).

Let us check that the hypotheses of that corollary are satisfied by the
data (18). In fact, we have 0 < ε0 < 1, since ε is less than a small enough
controlled constant. Also, M ≥ 0, Q0 is a cube, θ0 ∈ Cm(Rn), and F0 ∈
Cm(Qint

0). We have 0 ≤ θ0 ≤ 1 on R
n; suppθ0 ⊂ Qint

0 ; and |∂αθ0(x)| ≤ ε0

for 0 < |α| ≤ m, x ∈ R
n; all thanks to (6), (9) and (18). Also,

‖ F0 ‖Cm(Qint
0) = ‖ F0 ‖Cm((Q∗∗

00)int)≤‖ F0 ‖Cm(B(x0,r)) = M ,

thanks to (11) and (18). This completes the verification of the hypotheses
of Corollary 2 in Section 5 for the data (18).

The Cm
Norm of a Function with Prescribed Jets II 365

Applying that corollary, and recalling (17), we learn that

‖ F ‖Cm(Rn)≤ (1 + Cε) · ‖ F0 ‖Cm(B(x0,r)) .

Together with (13), this yields

‖ F ‖Cm(Rn)≤ (1 + Cε) · Nε(�P, Q00),

which is our desired conclusion (B), in view of definition (16).
Next, note that conclusion (C) follows at once from (14) and (16). Thus,

conclusions (A), (B), (C) hold for Nε(�P), F as in (16), (17).

We turn to the computation of Nε(�P) and �F. The one-time work is as
follows.

Step 1: We compute a dyadic cube Q00 satisfying (4) and (5).

Step 2: We perform the one-time work of Algorithm 14.1 for the data

ε, Q00, �P.

Step 3: We set Nε(�P) = Nε(�P, Q00), where the right-hand side has been
computed in Step 2.

Given a query point x ∈ R
n, the query algorithm proceeds as

follows.

Step Q1: We compute Jx(F0) by the query algorithm of Algorithm 14.1,

applied to the data ε, Q00, �P.

Step Q2: We compute Jx(θ0) as in (8).

Step Q3: We return the polynomial Jx(F) = Jx(θ0) 	x Jx(F0). (See (17).)

From (8) and (15), one sees trivially that the storage and one-time work
of the above algorithm are at most exp(C/ε), and the work to answer a
query is at most C. This completes our explanation of Algorithm 17.1.

For future reference, we record a few observations on the inner workings
of Algorithm 17.1.

Proposition 17.1. Let ε, Q, �P be as assumed in Algorithm 17.1. Then the
Algorithm 17.1 performs as follows.

(a) It computes a dyadic cube Q00, using only ε and Q (but not using �P).
The work and storage used to compute Q00 are at most C.

(b) It applies Algorithm 14.1 to the input data ε, Q00, �P, to compute a

number Nε(�P, Q00). (In particular, the input data ε, Q00, �P are as
assumed in Algorithm 14.1.)

(c) It returns the number

Nε(�P) = Nε(�P, Q00) .

Proof. Immediate from our explanation of Algorithm 17.1. �

366 C. Fefferman

18. Extending a Whitney Field from a Testing Set III

In this section, we provide the analogue of Algorithms 16.1 and 17.1 in the
case of a rather large cube Q.

Algorithm 18.1. Given ε > 0, assumed to be less than a small enough
controlled constant; and given a dyadic cube Q whose sidelength satisfies

(1) 1
2
c#ε−1 ≤ δQ ≤ e10/ε with c# as in Algorithm 17.1;

and given a Whitney field �P = (Py)y∈S, where the set S is assumed to satisfy

(2) S ⊂ Q∗∗, and

(3) |y − y′| ≥ ε2 e−2/ε δQ for any two distinct points y, y′ ∈ S;

we compute a number Nε(�P) and a function F ∈ Cm(Rn), such that

(A) F agrees with �P;

(B) ‖ F ‖Cm(Rn)≤ (1 + Cε) · Nε(�P); and

(C) Nε(�P) ≤ (1 + Cε) · ‖ �P ‖Cm(Rn).

The storage and the one-time work needed for the computation are at most
exp(C/ε), and the work to answer a query is at most C.

Explanation: We will reduce matters to Algorithm 17.1 by a partition of unity.

We begin by introducing that partition of unity. Next, we define Nε(�P)

and F, and check (A), (B), (C). Then we show how to compute our Nε(�P)
and F, and estimate the work and storage needed.

Recall the cubes Q
〈s〉
ν and cutoff functions θ

〈s〉
ν , ν = (ν1, . . . , νn) ∈ Z

n,
defined in Section 10. We fix s ∈ Z, such that

(4) 1
1000

c# ε−1 ≤ 2s ≤ 1
100

c# ε−1.

Thanks to (1) and (4), the cube Q∗∗∗ is partitioned into dyadic subcubes Q
〈s〉
ν ,

for ν = (ν1, . . . , νn) ∈ Z
n varying over the set

(5) G = {(ν1, . . . , νn) ∈ Z
n: νmin

i ≤ νi ≤ νmax
i for each i}, for suitable

νmax
i , νmin

i (i = 1, . . . , n).

Also from (1) and (4), we see that

(6) #(G) ≤ eC/ε.

Note that, for any ν ∈ Z
n, we have θ

〈s〉
ν = 0 on a neighborhood of Q∗∗,

unless ν ∈ G. (To see this, we recall that supp θ
〈s〉
ν ⊂ (Q

〈s〉
ν)∗; see Section 10.)

The Cm
Norm of a Function with Prescribed Jets II 367

Consequently, the θ
〈s〉
ν , ν ∈ G, have the following properties.

(7) θ
〈s〉
ν ∈ Cm(Rn), θ

〈s〉
ν ≥ 0 on R

n, supp θ
〈s〉
ν ⊂ [(Q

〈s〉
ν)∗]int, |∂αθ

〈s〉
ν | ≤

C ε|α| on R
n for |α| ≤ m; and also

(8)
∑
ν∈G

θ
〈s〉
ν ≤ 1 on R

n, and
∑
ν∈G

θ
〈s〉
ν = 1 on Q∗∗.

Moreover, we can answer queries as follows.

(9) Given x ∈ R
n and ν ∈ G, we can compute Jx(θ

〈s〉
ν) with work and

storage at most C.

Note also that

(10) Given x ∈ R
n, we can compute the set of ν ∈ G such that x ∈ (Q

〈s〉
ν)∗.

This computation takes work and storage at most C. There are at
most C such ν.

For each ν ∈ G, we define

(11) Sν = S ∩ (Q
〈s〉
ν)∗∗.

We will show that the data

(12) (ε, Q
〈s〉
ν , �P|Sν)

satisfy the assumptions of Algorithm 17.1, for each ν ∈ G.
To see this, fix ν ∈ G. We know that ε is less than a small enough

controlled constant. Also, thanks to (4), the sidelength of Q
〈s〉
ν satisfies

e−1/(2ε) ≤ δ
Q

〈s〉
ν

≤ c#ε−1. (Recall that δ
Q

〈s〉
ν

= 2s.)

Next, note that Sν ⊂ (Q
〈s〉
ν)∗∗, thanks to (11).

Finally, for any two distinct points y, y′ ∈ Sν, we learn from (1), (3), (4)
that

|y − y′| ≥ ε2 e−2/ε δQ > ε2 e−2/ε δ
Q

〈s〉
ν

.

This completes our verification of the assumptions of Algorithm 17.1 for the
data (12).

For each ν ∈ G, let Nε(�P|Sν) and Fν ∈ Cm(Rn) be the number and
function computed by applying Algorithm 17.1 to the data (12). Then the
following hold.

(13) Fν agrees with �P|Sν for each ν ∈ G.

(14) ‖ Fν ‖Cm(Rn)≤ (1 + Cε) · Nε(�P|Sν) for each ν ∈ G.

368 C. Fefferman

(15) Nε(�P|Sν) ≤ (1 + Cε) · ‖ (�P|Sν) ‖Cm(Rn) for each ν ∈ G.

(16) For each ν ∈ G, the storage and the one-time work to compute

Nε(�P|Sν) and Fν (given the data (12)) are at most exp(C/ε), and
the work to answer a query is at most C.

We now define Nε(�P) and F. We set

(17) Nε(�P) = max{Nε(�P|Sν) : ν ∈ G}

and we define

(18) F =
∑
ν∈G

θ
〈s〉
ν · Fν ∈ Cm(Rn).

Let us check that (A), (B), (C) hold for our Nε(�P) and F. We begin
with (A). Fix y ∈ S. We have y ∈ Q∗∗ by (2), hence

(19)
∑
ν∈G

Jy(θ
〈s〉
ν) = 1,

by (8). For each ν ∈ G such that y ∈ supp θ
〈s〉
ν , we have y ∈ (Q

〈s〉
ν)∗ by (7),

hence y ∈ Sν by (11), and therefore Jy(Fν) = Py by (13). Thus,

(20) Jy(Fν) = Py for each ν ∈ G such that y ∈ supp (θ
〈s〉
ν).

From (18), (19), (20), we see that

Jy(F) =
∑
ν∈G

Jy(θ
〈s〉
ν) 	y Jy(Fν) =

∑
ν∈G

Jy(θ〈s〉
ν) 	y Py = Py ,

proving (A).
We pass to (B). We apply Lemma LGPU from Section 5, taking

(21) A = Large enough controlled constant,

Q̂ν = Q
〈s〉
ν for each ν ∈ G,

δ̂ = 2s,

M = (1 + Cε) · max{Nε(�P|Sν) : ν ∈ G}.

(The hypotheses of that lemma hold for the data (21), thanks to (4), (7), (8)
and (14).) From Lemma LGPU, we learn that the function F in (18) satisfies

‖ F ‖Cm(Rn)≤ (1 + C′ε) · max{Nε(�P|Sν) : ν ∈ G} .

Together with (17), this proves conclusion (B).
Next, we establish (C). From (15), we have

Nε(�P|Sν) ≤ (1 + Cε) · ‖ �P ‖Cm(Rn) for each ν ∈ G.

Consequently, (C) follows trivially from (17). Thus, (A), (B), (C) hold for

our Nε(�P) and F.

The Cm
Norm of a Function with Prescribed Jets II 369

We turn to the computation of Nε(�P) and F. The one-time work is as follows.

Step 1: Compute s ∈ Z satisfying (4), and then compute the νmin
i and νmax

i

(i = 1, . . . , n) as in (5).

Step 2: For each ν ∈ G, we compute Q
〈s〉
ν , Sν = S ∩ (Q

〈s〉
ν)∗∗, and �P|Sν .

Step 3: For each ν ∈ G, we perform the one-time work of Algorithm 17.1

for the data (ε, Q
〈s〉
ν , �P|Sν). This produces the number Nε(�P|Sν) for

each ν ∈ G, and prepares us to answer queries on Jx(Fν) for any
given x ∈ R

n and ν ∈ G.

Step 4: We set Nε(�P) = max{Nε(�P|Sν) : ν ∈ G}.

Given x ∈ R
n, the query algorithm proceeds as follows

Step Q1: Find G(x) = {ν ∈ G : x ∈ (Q
〈s〉
ν)∗}.

Step Q2: For each ν ∈ G(x), compute Jx(θ
〈s〉
ν) and Jx(Fν).

Step Q3: Return the polynomial Jx(F) =
∑

ν∈G(x)

Jx(θ
〈s〉
ν) 	x Jx(Fν).

Since Jx(θ
〈s〉
ν) = 0 for ν ∈ G�G(x), our query algorithm correctly calculates

Jx(F), with F as in (18).
Also, we note that #(S) ≤ eC/ε, thanks to (2) and (3). Consequently, (6)

and (16) show that the one-time work and storage required for our algorithm
are at most exp(C/ε). From (9), (10), (16), we see that our query algorithm
requires work at most C.

This completes our explanation of Algorithm 18.1.
For future reference, we record a few remarks on the inner working of

Algorithm 18.1.

Proposition 18.1. Let ε, Q, �P = (Py)y∈S be as assumed in Algorithm 18.1.
Then the Algorithm 18.1 performs as follows

(a) It computes an integer s and a finite subset G ⊂ Z
n, using only ε, Q

(and not using �P). The set G satisfies #(G) ≤ exp(C/ε). The work
and storage used to compute s, G are at most exp(C/ε).

(b) For each ν ∈ G, it computes the set Sν = S ∩ (Q
〈s〉
ν)∗∗, with Q

〈s〉
ν as

in Section 10. The work and storage to compute and store all the sets
Sν(ν ∈ G) are at most exp(C/ε).

(c) For each ν ∈ G, it applies Algorithm 17.1 to the input data ε, Q
〈s〉
ν , �P|Sν ,

to compute a number Nε(�P|Sν). (In particular, these input data are as
assumed in Algorithm 17.1.)

(d) It returns the number Nε(�P) = max {Nε(�P|Sν) : ν ∈ G} .

Proof. Obvious from our explanation of Algorithm 18.1. �

370 C. Fefferman

19. Extending a Whitney Field from a Testing Set IV

In this section, we give an analogue of Algorithms 16.1, 17.1 and 18.1 for
the case of a huge cube Q.

Algorithm 19.1. Given ε > 0, assumed to be less than a small enough
controlled constant; and given a dyadic cube Q whose sidelength satisfies

(1) δQ ≥ e5/ε;

and given a Whitney field �P = (Py)y∈S, where the set S is assumed to satisfy

(2) S ⊂ Q∗∗, and

(3) |y − y′| ≥ ε2 e−2/εδQ for any two distinct points y, y′ ∈ S;

we compute a number Nε(�P) and a function F ∈ Cm(Rn), such that

(A) F agrees with �P;

(B) ‖ F ‖Cm(Rn)≤ (1 + Cε) · Nε(�P); and

(C) Nε(�P) ≤ (1 + Cε) · ‖ �P ‖Cm(Rn).

The storage and the one-time work needed for the computation are at
most exp(C/ε), and the work to answer a query is at most C.

Explanation: By a partition of unity, we reduce matters to Algorithm 15.1.
Our discussion is close to that of Section 18. Fix an integer s, such that

(4) 1
10

e−3/ε δQ ≤ 2s ≤ e−3/ε δQ.

Recall from Section 10 the dyadic cubes Q
〈s〉
ν and cutoff functions θ

〈s〉
ν , for

ν = (ν1, . . . , νn) ∈ Z
n.

Thanks to (4), the cube Q∗∗∗ is partitioned into dyadic subcubes Q
〈s〉
ν ,

for ν = (ν1, . . . , νn) ∈ Z
n varying over the set

(5) G = {(ν1, . . . , νn) ∈ Z
n : νmin

i ≤ νi ≤ νmax
i for each i}, for suitable

νmin
i , νmax

i (i = 1, . . . , n).

Also thanks to (4), we have

(6) #(G) ≤ eC/ε.

Note that, for any ν ∈ Z
n, we have θ

〈s〉
ν = 0 on a neighborhood of Q∗∗,

unless ν ∈ G. (To see this, recall that supp θ
〈s〉
ν ⊂ (Q

〈s〉
ν)∗; see Section 10.)

The Cm
Norm of a Function with Prescribed Jets II 371

Consequently, the θ
〈s〉
ν (ν ∈ Z

n) have the following properties.

(7) θ
〈s〉
ν ∈ Cm(Rn), θ

〈s〉
ν ≥ 0 on R

n, supp θ
〈s〉
ν ⊂ [(Q

〈s〉
ν)∗]int;

(8) |∂αθ
〈s〉
ν | ≤ C · (e−3/εδQ)−|α| on R

n, for |α| ≤ m;

(9)
∑

ν∈Zn

θ
〈s〉
ν = 1 on R

n; and

(10)
∑
ν∈G

θ
〈s〉
ν = 1 on Q∗∗.

Moreover, we can answer queries as follows.

(11) Given x ∈ R
n and ν ∈ Z

n, we can compute Jx(θ
〈s〉
ν) with work and

storage at most C.

(12) Given x ∈ R
n, we can compute {ν ∈ G : x ∈ (Q

〈s〉
ν)∗} with work and

storage at most C. In particular, there are at most C such ν ∈ G.

For each ν ∈ G, we define

(13) Sν = S ∩ (Q
〈s〉
ν)∗∗.

We will check that

(14) #(Sν) ≤ 1 for each ν ∈ G.

To see this, we fix ν ∈ G, and suppose that y, y′ are two distinct points
of Sν. We will derive a contradiction. In fact, since y, y′ both belong to
(Q

〈s〉
ν)∗∗, we have

(15) |y − y′| ≤ Cδ
Q

〈s〉
ν

= C · 2s.

On the other hand, (3) and (4) yield

(16) |y−y′| ≥ ε2 e−2/ε · δQ = (ε2 · e1/ε) · (e−3/ε δQ) ≥ (ε2e1/ε) · (c · 2s).

Since (15) contradicts (16), there cannot be two distinct points in Sν, com-
pleting the proof of (14).

For each ν ∈ G, we now define Nε,ν(�P) ≥ 0 and Fν ∈ Cm(Rn), as follows.

Let ν ∈ G. Then Sν is empty or a singleton, by (14). If Sν is empty,

then we set Nε,ν(�P) = 0 and Fν = 0.

If #(Sν) = 1, then we define Nε,ν(�P) and Fν ∈ Cm(Rn) to be the
number and the function computed by Algorithm 15.1 applied to the data
(ε, �P|Sν). (Note that the assumptions of Algorithm 15.1 hold here, since ε

is less than a small enough controlled constant, and �P|Sν is a Whitney field
on a singleton.)

372 C. Fefferman

In either case (#(Sν) = 0 or #(Sν) = 1), the following properties hold.

(17) Fν agrees with �P on Sν, for each ν ∈ G.

(18) ‖ Fν ‖Cm(Rn)≤ (1 + Cε) · Nε,ν(�P), for each ν ∈ G.

(19) Nε,ν(�P) ≤ (1 + Cε) · ‖ �P ‖Cm(Rn) for each ν ∈ G.

(20) Given ν ∈ G, and given the data (ε, �P|Sν), the storage and one-time

work to compute Nε,ν(�P) and Fν are at most exp(C/ε), and the work
to answer a query is at most C.

In fact, if Sν is non-empty, then (17)...(20) are immediate from the basic
assertions of Algorithm 15.1. If Sν is empty, then (17)...(20) hold trivially.

We now define Nε(�P) and F. We set

(21) Nε(�P) = max{Nε,ν(�P) : ν ∈ G},

and we define

(22) F =
∑
ν∈G

θ
〈s〉
ν · Fν ∈ Cm(Rn).

Let us check that (A), (B), (C) hold for the above Nε(�P) and F. We
begin with (A). Fix y ∈ S. We have y ∈ Q∗∗ by (2), hence

(23)
∑
ν∈G

Jy(θ
〈s〉
ν) = 1,

by (10).

For each ν ∈ G such that y ∈ supp θ
〈s〉
ν , we have y ∈ (Q

〈s〉
ν)∗ by (7), hence

y ∈ Sν by (13), and therefore Jy(Fν) = Py by (17). Thus,

(24) Jy(Fν) = Py for each ν ∈ G such that y ∈ supp θ
〈s〉
ν .

From (22), (23), (24), we see that

Jy(F) =
∑
ν∈G

Jy(θ〈s〉
ν) 	y Jy(Fν) =

∑
ν∈G

Jy(θ〈s〉
ν) 	y Py = Py ,

proving (A).
We pass to (B). Our plan is to apply Lemma LGPU to the following

data.

(25)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

δ̂ = 2s

ε̂ = 2−s in place of ε in Lemma LGPU.
A = Large enough controlled constant.

M = (1 + Cε) · max{Nε,ν(�P) : ν ∈ G} .

The functions θ
〈s〉
ν and Fν, ν ∈ G .

The cubes Q
〈s〉
ν , ν ∈ G .

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

The Cm
Norm of a Function with Prescribed Jets II 373

Let us check the hypotheses of Lemma LGPU for the data (25). We
have 0 < ε̂ < 1, by (1) and (4). Also, A ≥ 1 and M ≥ 0. Moreover,
A−1ε̂−1 ≤ δ̂ ≤ ε̂−1; in fact, δ̂ = ε̂−1.

The desired properties of the θ
〈s〉
ν are immediate from (7), (8), (9). Fi-

nally, the desired properties of the Fν are immediate from (18), and from
our definition of M in (25).

Thus, the hypotheses of Lemma LGPU all hold for the data (25).
Applying that lemma, we see that the function F in (22) satisfies

‖ F ‖Cm(Rn)≤ (1 + C′ε) · max{Nε,ν(�P) : ν ∈ G} .

Together with (21), this yields conclusion (B).
Note also that conclusion (C) follows trivially from (19) and (21). Thus,

(A), (B) and (C) hold for our Nε(�P) and F.

We turn to the computation of our Nε(�P) and F. The one-time work is
as follows.

Step 1: We compute s ∈ Z satisfying (4), and then we compute νmin
i , νmax

i

(i = 1, . . . , n) as in (5).

Step 2: For each ν ∈ G, we compute Sν = S ∩ (Q
〈s〉
ν)∗∗ and �P|Sν .

Step 3: For each ν ∈ G, we set ∧(ν) = 1 if Sν is non-empty, ∧(ν) = 0

otherwise.

Step 4: For each ν ∈ G such that ∧(ν) = 1, we perform the one-time work

of Algorithm 15.1 for the data (ε, �P|sν). This produces a number

Nε,ν(�P), and allows us to answer queries regarding a function Fν.

Step 5: We set Nε(�P) = max{Nε,ν(�P): all ν ∈ G such that ∧(ν) = 1}.

Given x ∈ R
n, our query algorithm proceeds as follows.

Step Q1: Find G(x) = {ν ∈ G : x ∈ (Q
〈s〉
ν)∗ and ∧(ν) = 1}.

Step Q2: For each ν ∈ G(x), compute Jx(θ
〈s〉
ν) and Jx(Fν).

Step Q3: Return Jx(F) =
∑

ν∈G(x)

Jx(θ
〈s〉
ν) 	x Jx(Fν).

Since Jx(θ
〈s〉
ν) = 0 for ν ∈ G, x /∈ (Q

〈s〉
ν)∗, and since Fν = 0 for ν ∈ G,

∧(ν) = 0, it follows that our query algorithm correctly computes Jx(F),
with F as in (22).

Also, we note that #(S) ≤ eC/ε, thanks to (2) and (3). Consequently, (6)
and (20) show that the storage and one-time work of our algorithm are at
most exp(C/ε). From (11), (12) and (20), we see that the work to answer a
query is at most C. This completes our explanation of Algorithm 19.1.

374 C. Fefferman

For future reference, we give a simple proposition concerning the output
of Algorithm 19.1.

Proposition 19.1. Let ε, Q, �P = (Py)y∈S be as assumed in Algorithm 19.1.
Then the following hold.

(a) #(S) ≤ exp(C/ε).

(b) For each y0 ∈ S, the input data ε, �P|{y0} are as assumed in Algo-
rithm 15.1.

(c) For each y0 ∈ S, let Nε(�P|{y0}) be the number computed by applying

Algorithm 15.1 to the input data ε, �P|{y0}.

Then the number Nε(�P) returned by Algorithm 15.1 is equal to

max{Nε(�P|{y0}) : y0 ∈ S} .

Proof. Assertion (a) follows trivially from (2) and (3). Assertion (b) holds,
since the only assumptions for Algorithm 15.1. are that ε is less than a small
enough controlled constant, and that the input Whitney field is defined on
a singleton.

We turn to assertion (c). We refer to our explanation of Algorithm 19.1.

For any ν ∈ G such that ∧(ν) = 1, the set Sν is a singleton, and

thus Nε,ν(�P) is among the numbers Nε(�P|{y0}), y0 ∈ S. Consequently,

(26) max{Nε,ν(�P) : ν ∈ G, ∧(ν) = 1} ≤ max{Nε(�P|{y0}) : y0 ∈ S}.

On the other hand, let y0 ∈ S. Then y0 ∈ Q∗∗ ⊂ Q∗∗∗, hence y0 ∈ Q
〈s〉
ν̄

for some ν̄ ∈ G. Fix such a ν̄. Then since y0 ∈ S ∩ (Q
〈s〉
ν̄)∗∗ = Sν̄, we have

∧(ν̄) = 1. Recalling (14), we conclude that Sν̄ = {y0}. Consequently, in

Step 4, we set Nε,ν̄(�P) = Nε(�P|{y0}). Hence,

Nε(�P|{y0}) ≤ max{Nε,ν(�P) : ν ∈ G , ∧(ν) = 1} .

Since y0 ∈ S was arbitrary, it follows that

max{Nε(�P|{y0}) : y0 ∈ S} ≤ max{Nε,ν(�P) : ν ∈ G , ∧(ν) = 1} .

Together with (26), this yields the equality

(27) max{Nε(�P|{y0}) : y0 ∈ S} = max {Nε,ν(�P) : ν ∈ G, ∧(ν) = 1}.

The desired conclusion (c) now follows from (27) and Step 5 above. �

The Cm
Norm of a Function with Prescribed Jets II 375

20. Extending a Whitney Field from a Testing Set V

In this section, we combine the results of the last several sections.

Algorithm 20.1. Given ε > 0, assumed to be less than a small enough
controlled constant; and given a dyadic cube Q; and given a Whitney field
�P = (Py)y∈S, where the set S is assumed to satisfy

(1) S ⊂ Q∗∗, and

(2) |y − y′| > ε2e−2/εδQ for any two distinct points y, y′ ∈ S;

we compute a number Nε(�P) ≥ 0 and a function F ∈ Cm(Rn), such that

(A) F agrees with �P;

(B) ‖ F ‖Cm(Rn)≤ (1 + Cε) · Nε(�P); and

(C) Nε(�P) ≤ (1 + Cε) · ‖ �P ‖Cm(Rn).

The storage and the one-time work needed for the computation are at
most exp(C/ε), and the work to answer a query is at most C.

Explanation: The sidelength δQ must satisfy at least one of the following.

Case 1: δQ ≤ e−1/(4ε).

Case 2: e−1/(2ε) ≤ δQ ≤ c#ε−1, with c# as in Algorithm 17.1.

Case 3: 1
2
c#ε−1 ≤ δQ ≤ e10/ε, with c# as in Algorithm 17.1.

Case 4: δQ ≥ e5/ε.

With work and storage at most C, we can identify one of the above cases that
holds for our given Q. In cases 1,2,3,4, we can find Nε(�P) and F satisfying
(A), (B), (C) by applying Algorithm 16.1, 17.1, 18.1 or 19.1, respectively.
The work and storage of our computation are as asserted above.

This completes our explanation of Algorithm 20.1.

21. The Main Extension Algorithm

In the next several sections, we present the following algorithm.

Algorithm 21.1. (“Main Extension Algorithm”): Given ε > 0, assumed
to be less than a small enough controlled constant; and given a Whitney field
�P = (Px)x∈E, with #(E) = N, 2 ≤ N < ∞; we compute a real number

Nε(�P) ≥ 0 and a function F ∈ Cm(Rn), such that:

376 C. Fefferman

(A) F agrees with �P;

(B) ‖ F ‖Cm(Rn)≤ (1 + Cε) · Nε(�P); and

(C) Nε(�P) ≤ (1 + Cε) · ‖ �P ‖Cm(Rn).

The storage and one-time work of the algorithm are at most exp(C/ε)N
and exp(C/ε) N log N, respectively.

The work to answer a query is at most C · log(N/ε).

Theorem 1 (from the Introduction) is an obvious consequence of Algo-
rithms 21.1 and 15.1.

The explanation of the above algorithm occurs in the next three sections.
In Section 22, we present the one-time work of Algorithm 21.1. This

one-time work computes the number Nε(�P) and allows us to answer queries.
In Section 23, we define a function F ∈ Cm(Rn), and we prove that our

Nε(�P) and F satisfy conditions (A), (B), (C) above. Finally, in Section 24,
we present the query algorithm that computes Jx(F) for any given x ∈ R

n.

22. The One-Time Work

In this section, we carry out the one-time work of Algorithm 21.1. We let
κ > 0 be a small enough controlled constant. Let ε, �P, E, N be as in Sec-
tion 21. We proceed as follows.

Step 1: We perform the one-time work of the BBD Tree, and we carry
out Algorithm WSPD with input (E, κ). (See Section 4.) Let
(x′

ν, x′′
ν) ∈ E × E (ν = 1, . . . , νmax) be the “representatives” pro-

duced by Algorithm WSPD, as explained in Section 4.

This step takes work at most CN log N in space CN, since κ is a
controlled constant. Also, we have νmax ≤ CN.

Step 2: We compute the smallest real number M̂ ≥ 0 such that

(1) |∂αPx| ≤ M̂ for |α| ≤ m, x ∈ E; and

(2) |∂α(Px′
ν − Px′′

ν)(x′
ν)| ≤ M̂ · |x′

ν − x′′
ν|m−|α| for |α| ≤ m − 1, 1 ≤ ν ≤

νmax.

Note that Lemma 8.2 assures us that

(3) |∂α(Px − Py)(x)| ≤ CM̂ · |x − y|m−|α| for |α| ≤ m , x, y ∈ E , x
= y.

The work involved in Step 2 is at most CN, and the storage needed
(once we have already stored the input �P and the representatives x′

ν, x′′
ν

(ν = 1, . . . , νmax)) is at most C.
Thanks to (3), we will be able to prove assumption (1) in Section 6 for

a suitable M to be picked later.

The Cm
Norm of a Function with Prescribed Jets II 377

In addition to (3), we will use the following estimate.

(4) M̂ ≤ C∗ ‖ �P ‖Cm(Rn), for a large enough controlled constant C∗.

To prove (4), let M+ be any real number greater than ‖ �P ‖Cm(Rn). Then,
by definition of the Cm-norm of a Whitney field, there exists F+ ∈ Cm(Rn)

such that F+ agrees with �P, and ‖ F+ ‖Cm(Rn)≤ M+.
The Bounded Distortion Property gives

(5) |∂αF+(x)| ≤ CM+ for |α| ≤ m, x ∈ R
n,

which in turn yields

(6) |∂α(Jx(F
+) − Jy(F+))(x)| ≤ C′M+|x − y|m−|α| for |α| ≤ m, x, y ∈ R

n,
x
= y,

by Taylor’s theorem.

Since F+ agrees with �P, (5) and (6) imply

|∂αPx(x)| ≤ CM+ for |α| ≤ m, x ∈ E,

and

|∂α(Px − Py)(x)| ≤ C′M+|x − y|m−|α| for |α| ≤ m, x, y ∈ E, x
= y.

Comparing these estimates with the definition of M̂, we learn that M̂ ≤
C∗M+. Since M+ is any real number greater than ‖ �P ‖Cm(Rn), the proof
of (4) is complete.

For this section and the next, we fix C∗ as in (4).

Step 3: We perform the one-time work of Algorithm 9.2 (“Compute-Reg-
ularized-Distance”).

This requires work at most CN log N in space CN. After this
step, we can answer queries regarding a certain function δ(·) ∈
Cm

loc(R
n

� E).

The function δ(·) satisfies

(7) c dist (x, E) ≤ δ(x) ≤ C dist(x, E) for x ∈ R
n

� E, and

(8) |∂αδ(x)| ≤ C · (δ(x))1−|α| for |α| ≤ m, x ∈ R
n

� E.

The query algorithm regarding δ(·) performs as follows.

(9) Given x ∈ R
n
�E, we can compute Jx(δ(·)) with work at most C log N,

in space CN.

For (7), (8), (9), see estimates (8), (9) in Section 9, as well as Algorithm 9.2.

378 C. Fefferman

Note that our present estimates (7) and (8) give us assumptions (2)
and (3) in Section 6.

Step 4: We carry out Algorithm 11.2 (“Find-Interesting-Cubes”), to com-

pute a list Q(1), . . . , Q(L) of dyadic cubes, with the following prop-
erties.

(10) The cubes Q(1), . . . , Q(L) are all distinct.

(11) L ≤ (C/ε) · N.

(12) For any given dyadic cube Q, the set S(Q) computed from ε, E, Q by
Algorithm 11.1 has cardinality ≥ 2 if and only if Q is one of the Q(λ),
λ = 1, . . . , L.

The work of Step 4 is at most exp(C/ε) ·N log N, and the storage needed
is at most C

ε
N + exp(C/ε).

Step 5: We introduce any convenient ordering on the set of dyadic cubes.
(Say, we use lexicographic order in terms of the sidelength and
coordinates of the center point of a given cube.) We then sort our
list Q(1), . . . , Q(L) with respect to that order.

This takes work at most CL log L ≤ C′
ε

N · log(C′
ε

N) in space CL ≤
C′
ε
N; see (11). Thus, (10), (11), (12) hold, and we can perform

binary searches as follows.

(13) Given a dyadic cube Q, we can decide whether Q = Q(λ) for some λ,
with work at most C log(N/ε).

If Q = Q(λ) for some λ, then we can compute that λ, again with
work at most C log(N/ε).

Step 6: For each λ = 1, . . . , L, we apply Algorithm 11.1 to ε, E, Q(λ), to

compute a finite set S(λ), with the following properties.

(14) S(λ) ⊂ E ∩ (Q(λ))∗∗.

(15) |y − y′| > cεe−2/εδQ(λ) for any two distinct points y, y′ ∈ S(λ).

(16) dist (y, S(λ)) ≤ Cεe−2/ε δQ(λ) for any y ∈ E ∩ (Q(λ))∗∗.

(17) #(S(λ)) ≥ 2, as we see from (12).

The work to compute a single S(λ) is at most exp(C/ε) · log N, and the
storage needed is at most CN + exp(C/ε).

As we loop over λ, we can re-use the above storage, but we want to store
all the sets S(1), . . . , S(L).

From (14), (15) we see that #(S(λ)) ≤ exp(C/ε) for each λ.
Along with (11), the above remarks show that Step 6 consumes altogether

at most exp(C′/ε)N log N work, and at most exp(C′/ε)N storage.

The Cm
Norm of a Function with Prescribed Jets II 379

The sets S(λ) computed in this step will be used as the sets S�
ν in Section 6,

for certain � and ν. In particular, assumptions (11) and (12) in Section 6
will be proven using (14) and (16) here.

Step 7: For each λ = 1, . . . , L, we perform the one-time work of Algo-

rithm 20.1 for the inputs ε, Q(λ), �P|S(λ) .

Note that these inputs satisfy the assumptions of Algorithm 20.1 since ε > 0

is less than a small enough controlled constant, and thanks to (14) and (15).

From this step, we obtain for each λ a number N
(λ)
ε (�P) ≥ 0, and we are

able to answer queries as follows, regarding a function F(λ) ∈ Cm(Rn).

(18) Given λ(1 ≤ λ ≤ L), and given x ∈ R
n, we can compute Jx(F

(λ)) with
work at most C.

The number N
(λ)
ε (�P) and the function F(λ) satisfy the following conditions.

(19) F(λ) agrees with �P on S(λ).

(20) ‖ F(λ) ‖Cm(Rn)≤ (1 + Cε) · N
(λ)
ε (�P).

(21) N
(λ)
ε (�P) ≤ (1 + Cε) · ‖ (�P|S(λ)) ‖Cm(Rn).

For each λ, Step 7 requires work and storage at most exp(C/ε). Hence,
by (11), the total work and storage of Step 7 are at most exp(C′/ε) · N.

The functions F(λ) computed in this step will be used as the functions
F�

ν in Section 6, for certain � and ν. Compare our present (19), (20) with
assumptions (13), (14) in Section 6.

Step 8: For each y0 ∈ E, we carry out the one-time work of Algorithm 15.1

for the inputs ε, �P|{y0}.

After this step, we have computed numbers N
(y0)
ε (�P) ≥ 0, and we can answer

queries regarding functions F(y0) ∈ Cm(Rn). These numbers and functions
have the following properties, for each y0 ∈ E.

(22) F(y0) agrees with �P at y0.

(23) ‖ F(y0) ‖Cm(Rn)≤ (1 + Cε) · N
(y0)
ε (�P).

(24) N
(y0)
ε (�P) ≤ (1 + Cε) · ‖ (�P|{y0}) ‖Cm(Rn).

The relevant query algorithm is as follows.

(25) Given y0∈E and x∈R
n, we can compute Jx(F

(y0)) with work at most C.

Step 8 requires work and storage at most exp(C/ε) for each y0 ∈ E. Hence,
the total work and storage required for Step 8 are at most exp(C/ε)N.

The functions F(y0)(y0 ∈ E) will be used as the functions Fx(x ∈ E) in
Section 6.

Compare our present (22) with assumption (15) in Section 6.

380 C. Fefferman

Step 9: We compute

(26) Nε(�P) = max{N
(λ)
ε (�P) (all λ = 1, . . . , L), N

(y0)
ε (�P) (all y0 ∈ E), M̂

2C∗ },

where C∗ is the controlled constant in estimate (4).

Here, we are simply computing the maximum of a list of numbers that
were already computed in Steps 1...8 above. The work of this step is thus
at most

C · (N + L + 1) ≤ C′

ε
N (see (11)),

and we need storage at most C (aside from the storage already used to hold

the numbers N
(λ)
ε (�P), N

(y0)
ε (�P), M̂).

This completes our description of the one-time work of Algorithm 21.1.
Thanks to our estimates for the work and storage of each particular

step, we now see that the one-time work of Algorithm 21.1 is at most
exp(C/ε)N log N, and the storage required is at most exp(C/ε)N. These
are as asserted in Section 21.

We have computed the number Nε(�P) in Step 9. In the next section,

we will define a function F ∈ Cm(Rn), and show that Nε(�P), F satisfy con-
ditions (A), (B), (C) from Section 21. In Section 24, we give the query
algorithm to compute Jx(F) for any given x ∈ R

n.

23. The Main Extending Function

In this section, we retain the notation and conventions of Sections 21 and 22.
We recall the convention that (k.�) refers to equation � in Section k. Our

goal here is to define a function F ∈ Cm(Rn), which, together with Nε(�P)
from (22.26), satisfies (A), (B), (C) of Section 21. We apply the Main Patch-
ing Lemma from Section 6, along with the results of our one-time work from
Section 22. We proceed as follows. We define

(1) M = (1 + Čε) · Nε(�P) for a large enough controlled constant Č,

with Nε(�P) as in (22.26).

From (1) and (22.26), we have M̂ ≤ 2C∗M, with M̂ as in (22.1) and (22.2).
Therefore, estimate (22.3) shows that assumption (6.1) holds here, where we
may take A0 to be a controlled constant.

Let δ(·) ∈ Cm
loc(R

n
� E) be as in Step 3 in Section 22. Then (22.7)

and (22.8) tell us that assumptions (6.2) and (6.3) hold here, where we may
take A1 and A2 to be controlled constants.

The Cm
Norm of a Function with Prescribed Jets II 381

For � ∈ Z, let χ� ∈ Cm(R) be as in (10.1), (10.2), (10.3). From those
equations and estmates, we learn that assumptions (6.4) and (6.5) hold here,
where we may take A3 to be a controlled constant.

For each � ∈ Z and ν ∈ Z
n, let θ�

ν and Q�
ν be as in (10.5)...(10.11). Those

results show that assumptions (6.6)...(6.10) hold here, where we may take
A4, A5, A6 to be controlled constants.

We recall from (10.4) and the remarks just after it, that

(2) Q�
ν = (Q

〈s〉
ν)∗ for a suitable dyadic cube Q

〈s〉
ν , where

(3) sidelength (Q
〈s〉
ν) = 2s, and 1

32
ε−1 ·exp((�+1)/ε) ≤ 2s ≤ ε−1

8
exp((�+

1)/ε). Thus,

(4) c exp((� − 1)/ε) ≤ ε e−2/εδ
Q

〈s〉
ν

≤ C exp((� − 1)/ε).

Let � ∈ Z, ν ∈ Z
n be given; and let Q

〈s〉
ν be as in (2), (3). We define

S�
ν = S(Q〈s〉

ν)

to be the set obtained by applying Algorithm 11.1 to the input ε, E, Q
〈s〉
ν .

The following are among the defining properties of Algorithm 11.1.

(5) S�
ν ⊂ E ∩ (Q

〈s〉
ν)∗∗ = E ∩ (Q�

ν)∗ (see (2)).

(6) |y − y′| ≥ cεe−2/ε δ
Q

〈s〉
ν

≥ c′ exp((� − 1)/ε) for any two distinct

y, y′ ∈ S�
ν (see (4)).

(7) dist (y, S�
ν) ≤ Cεe−2/ε δ

Q
〈s〉
ν

≤ C′ exp((� − 1)/ε) for any y ∈ E ∩
(Q�

ν)∗ (see (2) and (4)).

Thus, assumptions (6.11) and (6.12) hold here, where we may take A7

to be a controlled constant.
Comparing our present definition of S�

ν with that of S(λ) in Step 6 of
Section 22, we learn the following.

(8) Let � ∈ Z, ν ∈ Z
n, 1 ≤ λ ≤ L. If the cube Q

〈s〉
ν in (2) satisfies

Q
〈s〉
ν = Q(λ), then S�

ν = S(λ).

Also, comparing our present definition of S�
ν with (22.12), we learn the

following.

(9) Let � ∈ Z, ν ∈ Z
n, and let Q

〈s〉
ν be as in (2). If the cube Q

〈s〉
ν does

not appear in the list Q(1), . . . , Q(L), then #(S�
ν) ≤ 1.

382 C. Fefferman

Next, let � ∈ Z, ν ∈ Z
n, and let Q

〈s〉
ν be as in (2). We will define a

function F�
ν ∈ Cm(Rn), proceeding by cases as follows.

Case 1: Suppose Q
〈s〉
ν appears in the list Q(1), . . . , Q(L). Say, Q

〈s〉
ν = Q(λ).

Then we define
F�

ν = F(λ),

with F(λ) as in (22.19)...(22.21). From (22.19) and (8), we learn
that

(10) F�
ν agrees with �P on S�

ν;

moreover, (22.20), (22.26) and (1) show that

(11) ‖ F�
ν ‖Cm(Rn)≤ (1 + Cε)N

(λ)
ε (�P) ≤ (1 + Cε) Nε(�P) ≤ M,

provided we take Č in (1) to be larger than C in (11).

Case 2: Suppose Q
〈s〉
ν does not appear in the list Q(1), . . . , Q(L).

Then #(S�
ν) ≤ 1, by (9). Thus, either S�

ν = φ, or else S�
ν = {y0}

for some y0 ∈ E. (See (5).)

Subcase 2a: If S�
ν = φ, then we set F�

ν = 0. Trivially,

(12) F�
ν agrees with �P on S�

ν, and

(13) ‖ F�
ν ‖Cm(Rn)≤ M.

Subcase 2b: If S�
ν = {y0} with y0 ∈ E, then we set F�

ν = F(y0), with F(y0) as
in (22.22)...(22.24). From (22.22), we see that

(14) F�
ν agrees with �P on S�

ν.

Moreover, (22.23), (22.26) and (1) show that

(15) ‖ F�
ν ‖Cm(Rn)≤ (1 + Cε) · N

(y0)
ε (�P) ≤ (1 + Cε) · Nε(�P) ≤ M,

provided we take Č in (1) to be larger than C in (15).
We now pick Č to be a controlled constant, large enough to guaran-

tee (11) and (15). Thus, F�
ν ∈ Cm(Rn) is defined for all � ∈ Z, ν ∈ Z

n.
From (10)...(15), we see that assumptions (6.13) and (6.14) hold here in all
cases.

Next, for each y0 ∈ E, let F(y0) ∈ Cm(Rn) be as in (22.22)...(22.24).
From (22.22), we see that assumption (6.15) holds here. Moreover, let � ∈ Z,
ν ∈ Z

n, and assume that S�
ν = {y0} for some y0 ∈ E. Then we cannot be in

The Cm
Norm of a Function with Prescribed Jets II 383

Case 1 above, since we would then have #(S�
ν) = #(S(λ)) ≥ 2 for some λ,

by (8) and (22.17). Evidently, we cannot be in Subcase 2a either. Thus, we
are in Subcase 2b, and consequently F�

ν = F(y0) by definition. This shows
that assumption (6.16) holds here.

We have now shown that (6.1)...(6.16) hold for the ε, M, �P, δ(·), χ�(·),
θ�

ν, Q�
ν, S�

ν, F�
ν and F(y0) given above, where we may take A0, . . . , A7 to be

controlled constants. Consequently, the Main Patching Lemma from Section 6
applies, and it tells us the following.

We define a function F on R
n, by setting

(16) F(x) = (Px)(x) for x ∈ E, and

(17) F(x) =
∑
�,ν

χ�(ε log δ(x)) · θ�
ν(x) · F�

ν(x) for x ∈ R
n

� E.

Then

(18) F ∈ Cm(Rn),

(19) F agrees with �P, and

(20) ‖ F ‖Cm(Rn)≤ (1 + Cε) · Nε(�P). (See (1).)

Thus, the number Nε(�P) in (22.26) and the function F in (16), (17),
together satisfy (A) and (B) in Section 21. We now show that (C) holds
as well.

Estimates (22.21) and (22.24) show at once that

(21) N
(λ)
ε (�P) ≤ (1 + Cε) · ‖ �P ‖Cm(Rn) for all λ,

and that

(22) N
(y0)
ε (�P) ≤ (1 + Cε) · ‖ �P ‖Cm(Rn) for all y0 ∈ E.

Also, from estimate (22.4), we have

(23) M̂
C∗ ≤‖ �P ‖Cm(Rn).

(Recall that the constant C∗ has been fixed as in (22.4); it does not vary
from one occurrence to the next.)

From estimates (21), (22), (23) and the definition (22.26) of Nε(�P), we
see that

Nε(�P) ≤ (1 + Cε) · ‖ �P ‖Cm(Rn) ,

which is the desired conclusion (C).

Thus, we have shown that our Nε(�P) and F satisfy conditions (A), (B)
and (C) from Section 21.

In the next section, we give the query algorithm to compute Jx(F) for a
given query point x ∈ R

n.

384 C. Fefferman

24. The Query Algorithm

In this section, we adopt the notation and assumptions of Sections 21, 22,
and 23. Our goal is to give the query algorithm within Algorithm 21.1.
We assume here that we have already carried out the one-time work in
Section 22. We begin with the following query algorithm.

Algorithm 24.1. (“Compute F�
ν”): Given � ∈ Z, ν ∈ Z

n and x ∈ R
n, we

compute Jx(F
�
ν), using work at most C log(N/ε).

Explanation: We first compute Q
〈s〉
ν from (23.2). Recall that Q

〈s〉
ν is a dyadic

cube, and Q�
ν = (Q

〈s〉
ν)∗. We then perform a binary search as in (22.13), to

determine whether Q
〈s〉
ν appears in the list Q(1), . . . , Q(L).

If Q
〈s〉
ν does appear in the list Q(1), . . . , Q(L), then the binary search (22.13)

returns a λ such that Q
〈s〉
ν = Q(λ). We find ourselves in Case 1 from Sec-

tion 23, and therefore, we have F�
ν = F(λ). We compute Jx(F

(λ)) by apply-
ing (22.18), and we return Jx(F

�
ν) = Jx(F

(λ)).

If Q
〈s〉
ν does not appear in the list Q(1), . . . , Q(L), then we find ourselves

in Case 2 from Section 23. We defined S�
ν by applying Algorithm 11.1 to

the inputs ε, E, Q
〈s〉
ν (as explained in Section 23, just after (23.4)). We are

guaranteed that S�
ν is empty or a singleton. (See (23.9)). Consequently, we

may compute the set S�
ν by applying Algorithm 11.4.

• If S�
ν = φ, then we are in Subcase 2a from Section 23.

In that subcase, we defined F�
ν = 0. We return Jx(F

�
ν) = 0.

• If S�
ν = {y0}, then we are in Subcase 2b from Section 23.

In that subcase, we defined F�
ν = F(y0). We compute Jx(F

(y0)) by
applying (22.25), and we return Jx(F) = Jx(F

(y0)).

Thus, in all cases, we have succeeded in computing Jx(F
�
ν).

Let us estimate the work of the above computation.
The computation of Q

〈s〉
ν takes work at most C.

The binary search using (22.13) takes work at most C log(N/ε).
The computation of Jx(F

(λ)) using (22.18) takes work at most C.
The computation of S�

ν using Algorithm 11.4 (not Algorithm 11.1) takes
work at most C log N.
The computation of Jx(F

(y0)) using (22.25) requires work at most C.
Consequently, the total work to compute Jx(F

�
ν) is at most C log(N/ε).

This completes our explanation of Algorithm 24.1.
We are almost ready to present the query algorithm within Algorithm 21.1.

We prepare the way by making a few remarks.

The Cm
Norm of a Function with Prescribed Jets II 385

We recall that F is given by (23.16), (23.17), and that the cutoff functions
appearing there satisfy

supp χ� ⊂ (� − 1, � + 1), and supp θ�
ν ⊂ Q�

ν ; see (10.2) and (10.7) .

Consequently, for x ∈ R
n

� E it is natural to define

(1) Λ(x) = {� ∈ Z : ε log δ(x) ∈ (� − 1, � + 1)}.

Also, for x ∈ R
n

� E and for � ∈ Λ(x), we define

(2) V(x, �) = {ν ∈ Z
n : Q�

ν � x}.

We then have

(3) Jx(F) =
∑

�∈Λ(x)

∑
ν∈V(x,�)

Jx(χ�(ε log δ(·))) 	x Jx(θ
�
ν) 	x Jx(F

�
ν), for x ∈

R
n

� E.

On the other hand, for x ∈ E, we have

(4) Jx(F) = Px,

since F agrees with �P (as shown in Section 23).
Our query algorithm for Jx(F) makes straightforward use of formulas (3)

and (4).

Algorithm 24.2 (Query Algorithm within Algorithm 21.1): Given x ∈ R
n,

we compute Jx(F), using work at most C log(N/ε).

Explanation: First, we perform a binary search to decide whether x ∈ E.

If x ∈ E, then we return the polynomial Px, which is the correct answer,
thanks to (4).

If x /∈ E, then we proceed as follows.
We compute Jx(δ(·)), using (22.9). In particular, this gives us the value

δ(x), from which we can compute the set Λ(x) in (1). Note that #(Λ(x)) = 1

or 2. For each � ∈ Λ(x), we compute
(

d
dt

)k
χ�(t) at t = ε log δ(x), for

k = 0, . . . , m, by Algorithm 10.1. From the data already computed, we can
now compute Jx(χ�(ε log δ(·))) for each � ∈ Λ(x).

Next, for each � ∈ Λ(x), we compute the set V(x, �) in (2), using Algo-
rithm 10.5 (“Find-Relevant-Cubes”). Note that #(V(x, �)) ≤ C, as men-
tioned in our statement of Algorithm 10.5.

For each � ∈ Λ(x), and for each ν ∈ V(x, �), we now compute Jx(θ
�
ν) by

Algorithm 10.4, and Jx(F
�
ν) by Algorithm 24.1.

We then return the polynomial Jx(F), which we compute from (3).
Thus, we have succeeded in computing Jx(F).

386 C. Fefferman

Let us estimate the work required for the above computation.
The binary search requires work at most C log N.
The application of (22.9) to compute Jx(δ(·)) also takes work at most C log N.
The computation of Λ(x) from δ(x) takes work at most C.

The computation of
(

d
dt

)k
χ�(t) at t = ε log δ(x) for k = 0, . . . , m and all

� ∈ Λ(x) takes work at most C.
The computation of Jx(χ�(ε log δ(·))) for all � ∈ Λ(x) then takes work at
most C.
The applications of Algorithm 10.5 take total work at most C.

For each � ∈ Λ(x) and ν ∈ V(x, �), the application of Algorithm 10.4
takes work at most C, and the application of Algorithm 24.1 takes work at
most C log(N/ε).
Since there are at most C such (�, ν), the total work of all the applications
of Algorithms 10.4 and 24.1 is at most C log(N/ε).
The evaluation of the right-hand side of (3) then requires work at most C.
Altogether, the work of Algorithm 24.2 is at most C log(N/ε).
This agrees with what we claimed for the work at query time in Section 21.

Our explanations of Algorithms 24.2 and 21.1 are complete.

25. Remarks on the One-Time Work

In this section, we return to the setting of Section 22. For future reference, we
set down several remarks on the one-time work of that section, and we show
that the one-time work can be simplified a bit. We then prove Theorem 7
(from the Introduction), one of our main results.

Proposition 25.1. Let ε, �P = (Px)x∈E, N = #(E) be as in Section 22. Then
the algorithm given in Section 22 performs as follows.

(a) It computes the representatives x′
ν, x′′

ν (ν = 1, . . . , νmax) from the WSPD
for E, with κ a small enough controlled constant.

The x′
ν, x′′

ν depend only on E, and not on ε or on the polynomials Px(x ∈
E). We have νmax ≤ CN.

(b) It computes the least M̂ ≥ 0 such that

|∂αPx(x)| ≤ M̂ for |α| ≤ m, x ∈ E and

|∂α(Px′
ν − Px′′

ν)(x′
ν)| ≤ |x′

ν − x′′
ν|m−|α| · M̂ for |α| ≤ m − 1, 1 ≤ ν ≤ νmax.

(c) It computes a list of cubes Q(λ) and sets S(λ) ⊆ E (λ = 1, . . . , L), with L ≤
C
ε
· N. This list is computed from ε and E, without using the polynomials

Px(x ∈ E). For each λ, the set S(λ) arises by applying Algorithm 11.1 to
the input data ε, Q(λ), E.

The Cm
Norm of a Function with Prescribed Jets II 387

(d) For each λ(1 ≤ λ ≤ L), it applies Algorithm 20.1 to the input data

ε, Q(λ), �P|S(λ) , to compute a number N
(λ)
ε (�P). (In particular, these input

data are as assumed in Algorithm 20.1.) We have

N(λ)
ε (�P) ≤ (1 + Cε) · ‖ (�P|S(λ)) ‖Cm(Rn) for each λ.

(e) For each y0 ∈ E, it applies Algorithm 15.1 to the input data ε, �P|{y0},

to compute a number Nε(�P, y0). (In particular, these input data are as
assumed in Algorithm 15.1.) We have

Nε(�P, y0) ≤ (1 + Cε) · ‖ (�P|{y0}) ‖Cm(Rn), for each y0 ∈ E.

(f) It returns the number

Nε(�P) = max
{ M̂

2C∗ , N(λ)
ε (�P) (1 ≤ λ ≤ L) , Nε(�P, y0) (y0 ∈ E)

}
,

where C∗ is the controlled constant fixed in Section 22.

(g) The work and storage to compute all the Q(λ), S(λ) for λ = 1, . . . , L, are
at most exp(C/ε)N log N, and exp(C/ε)N, respectively.

Proof. Everything asserted in the above Proposition was shown in Sec-
tion 22. �

Let Nε(�P) be as above. In Section 23, we exhibited a function F ∈
Cm(Rn), and proved the following properties of Nε(�P) and F.

(A) F agrees with �P.

(B) ‖ F ‖Cm(Rn)≤ (1 + Cε)Nε(�P).

(C) Nε(�P) ≤ (1 + Cε) · ‖ �P ‖Cm(Rn).

From (A) and (B), we conclude that

(1) ‖ �P ‖Cm(Rn)≤ (1 + Cε)Nε(�P),

by definition of the Cm-norm of a Whitney field. On the other hand,
from (22.4), we recall that

(2) M̂
2C∗ ≤ 1

2
‖ �P ‖Cm(Rn).

Combining (1) and (2), we see that

(3) M̂
2C∗ ≤ 1+Cε

2
· Nε(�P).

Since ε is less than a small enough controlled constant, we have 1+Cε
2

< 1.

388 C. Fefferman

Hence, comparing (3) with conclusion (f) of Proposition 25.1, we find
that

(f′) Nε(�P) = max{N
(λ)
ε (�P) (1 ≤ λ ≤ L), Nε(�P, y0) (y0 ∈ E)}.

In other words, we can delete the term M̂
2C∗ from the maximum in (f). Conse-

quently, we needn’t bother to compute M̂ at all; we may simply omit Step 2
from the algorithm described in Section 22.

From Proposition 25.1 (d) and (e), we recall that

N(λ)
ε (�P) ≤ (1 + Cε) ‖ (�P|S(λ)) ‖Cm(Rn) for each λ, and

Nε(�P, y0) ≤ (1 + Cε) · ‖ (�P|{y0}) ‖Cm(Rn) , for each y0 ∈ E.

Consequently, (f′) implies the estimate

Nε(�P) ≤
≤ (1 + Cε) · max{‖ (�P|S(λ)) ‖Cm(Rn) (1≤λ≤L), ‖ (�P|{y0}) ‖Cm(Rn) (y0 ∈ E)}.

Together with (1), this yields

(4) ‖ �P ‖Cm(Rn)≤ (1 + Cε) · max
{ ‖ (�P|S(λ)) ‖Cm(Rn) (1 ≤ λ ≤ L),

‖ (�P|{y0}) ‖Cm(Rn) (y0 ∈ E)
}

.

We recall that each S(λ) arises from the input ε, E, Q(λ) by Algorithm 11.1.
By the defining properties of that algorithm, we have, for 1 ≤ λ ≤ L, that

(5) S(λ) ⊂ (Q(λ))∗∗ ∩ E, and

(6) |y − y′| > cεe−2/εδQ(λ) for any two distinct points y, y′ ∈ S(λ).

Recall that the Q(λ) and S(λ) are defined for 1 ≤ λ ≤ L, with

(7) L ≤ CN
ε

, N = #(E).

It is convenient to define Q(λ) and S(λ) for L + 1 ≤ λ ≤ L + N, as
follows. Let {y1, . . . , yN} be an enumeration of E. For i = 1, 2, . . . , N, we
define S(L+i) = {yi}, and we take Q(L+i) to be a dyadic cube of side 1 (say),
containing yi.
Then (5), (6) hold also for L + 1 ≤ λ ≤ L + N. Our estimate (4) may be
restated as follows.

(8) ‖ �P ‖Cm(Rn)≤ (1 + Cε) · max{‖ (�P|S(λ)) ‖Cm(Rn): 1 ≤ λ ≤ L + N}.

Let us estimate the work and storage needed to compute (and store) all
the Q(λ) and S(λ), λ = 1, . . . , L + N.

The Cm
Norm of a Function with Prescribed Jets II 389

Trivially, we can compute and store all the Q(λ) and S(λ) for L + 1 ≤
λ ≤ L + N with work and storage at most CN. Hence, Proposition 25.1(g)
implies the following.

(9) The cubes Q(λ) and the sets S(λ), for all λ = 1, . . . , L + N, can be
computed and stored, with at most exp(C/ε)N log N operations, in
space at most exp(C/ε)N.

Theorem 7 from the introduction now follows at once from (5)...(9).

26. Minimax Functions

Let V, W be (real) finite-dimensional vector spaces, and let λi : V ⊕W → R

(i = 1, . . . , I) be linear functionals.
Then we can define a function Λ : V → R, by setting

(1) Λ(v) = min
w∈W

max
i=1,...,I

|λi(v, w)| for v ∈ V.

(It is an elementary exercise to check that the minimum over all w ∈ W is
attained.)

We call

(2) η = (V, W, λ1, . . . , λI)

a “V-descriptor”, with V as in (1), (2). Also, we call Λ(v) the “minimax
function arising from η”, and we write this function as Λ(v, η). For brevity,
we may say that η is a “descriptor” (omitting the V), or that Λ is a “minimax
function” (omitting the η).

Here, we allow degenerate cases. If I = 0, then (1) simply means that
Λ(v) = 0 for all v ∈ V. If W is a single point {0}, then (1) reduces to

Λ(v) = max
i=1,...,I

|λi(v)| , for linear functionals λ1, . . . , λI : V → R .

We define the “dimension” of the descriptor η in (2) to be the dimension of
the vector space W. Also, we define the “length” of the descriptor (2) to be
the number of linear functionals appearing in (2), i.e., the integer I.

Given a vector v ∈ V, we would like to compute a vector w ∈ W that
nearly achieves the minimum in (1). Therefore, we make the following defi-
nition.

Let v ∈ V, w0 ∈ W, let Γ ≥ 1 be a real number, and let Λ, η be given
by (1) and (2). We say that w0 is a “Γ -optimal” vector for v, η, provided

max
i=1,...,I

|λi(v, w
0)| ≤ Γ · min

w∈W
max

i=1,...,I
|λi(v, w)| .

(Compare with Algorithm 26.3 below.)

390 C. Fefferman

Suppose that V and W in (1), (2) are identified with Euclidean spaces R
D

and R
d, respectively. Then, for i = 1, . . . , I, the functional λi is specified by

(D + d) coordinates (λ1
i , . . . , λ

D+d
i).

Thus, the descriptor η can be stored in memory, and it occupies storage
at most

(3) C · (dim V + dim η) · length(η) + C.

In this section, we perform a few elementary operations involving de-
scriptors and minimax functions. For our algorithms involving descriptors,
we suppose that V and W are identified with R

D and R
d (respectively), and

that any given descriptor η is specified by its coordinates as above.

Proposition 26.1. Let T : V1 → V2 be a linear map, and let

(4) η = (V2, W, λ1, . . . , λI) be a V2-descriptor.

Define the V1-descriptor

η ◦ T = (V1, W, λ1 ◦ (T ⊕ Id), . . . , λI ◦ (T ⊕ Id)) ,

where Id denotes the identity map on W.
Then we have

(5) Λ(v1, η ◦ T) = Λ(Tv1, η) for all v1 ∈ V1.

Moreover,

(6) dim(η ◦ T) = dim(η) and length(η ◦ T) = length (η).

Finally, if w is a Γ -optimal vector for T v, η, then w is also a Γ -optimal
vector for v, η ◦ T .

Proof. Trivial. �
Thus, if T : V1 → V2 is linear, and if Λ is a minimax function on V2,

then Λ ◦ T is a minimax function on V1.

Proposition 26.2. For a = 1, . . . , A, let

(7) ηa = (V, Wa, λa
1, . . . , λa

I(a)) be a V-descriptor.

Let

(8) W = W1 ⊕ · · · ⊕ WA,

and, for a = 1, . . . , A, let

(9) πa : V ⊕ W → V ⊕ Wa

be the natural projection.

Let λ̃1, . . . , λ̃I be an enumeration of the family of linear functionals

(10) λa
i ◦ πa : V ⊕ W → R (1 ≤ a ≤ A, 1 ≤ i ≤ I(a)).

The Cm
Norm of a Function with Prescribed Jets II 391

Define a V-descriptor η1 v · · · v ηA, by setting

(11) η1 v · · · v ηA = (V, W, λ̃1, . . . , λ̃I),

with W and λ̃i as in (8) and (10).

Then, for all v ∈ V, we have

(12) Λ(v, η1 v · · · v ηA) = max
a=1,...,A

Λ(v, ηa).

Moreover,

(13) length (η1 v · · · v ηA) = length (η1) + · · · + length (ηA),

and

(14) dim(η1 v · · · v ηA) = dim(η1) + · · ·+ dim(ηA).

Finally, let v ∈ V, and suppose that wa ∈ W is Γ -optimal for v, ηa

(a = 1, . . . , A).
Then (w1, . . . , wA) ∈ W1 ⊕ · · · ⊕ WA is Γ -optimal for v, η1 v · · · v ηA.

Thus, if Λ1, . . . , ΛA are minimax functions on V, then the function

Λ(v) = max{Λ1(v), . . . , ΛA(v)} (v ∈ V)

is again a minimax function.
If {ηα, α ∈ A} is a finite collection of V-descriptors indexed by α ∈ A,

then we sometimes write
∨

α∈A

ηα to denote ηα1
v · · · v ηαA

, where (α1, . . . , αA)

is an enumeration of A.

Proof of Proposition 26.2. Fix v ∈ V. For each a = 1, . . . , A, let w̃a be
a minimizer for the function

w �→ max
i=1,...,I(a)

|λa
i (v, w)| (w ∈ Wa) .

Then, for any w = (w1, . . . , wA) ∈ W = W1 ⊕ · · · ⊕ WA, and for any a

(1 ≤ a ≤ A), we have

max
1≤i≤I(a)

|λa
i ◦ πa(v, w)| = max

1≤i≤I(a)
|λa

i (v, wa)| ≥ Λ(v, ηa) ,

with equality in case wa = w̃a.
Consequently, for any w = (w1, . . . , wA) ∈ W, we have

max
1≤a≤A

max
1≤i≤I(a)

|λa
i ◦ πa(v, w)| ≥ max

1≤a≤A
Λ(v, ηa)

with equality in case w = (w̃1, . . . , w̃A). Thus,

392 C. Fefferman

(15) min
w∈W

max{|λa
i ◦ πa(v, w)| : 1 ≤ a ≤ A , 1 ≤ i ≤ I(a)}

= max{Λ(v, ηa) : 1 ≤ a ≤ A} .

In view of the definition (11) of η1 v · · · v ηA, the equality (15) tells us that

Λ(v, η1 v · · · v ηA) = max{Λ(v, η1), . . . , Λ(v, ηA)} ,

completing the proof of (12). Conclusions (13) and (14) are obvious.

Finally, suppose wa is Γ -optimal for v, ηa for each a = 1, . . . , A. Then

max
i,a

|λa
i ◦ πa(v, (w1, . . . , wA))| = max

a
max

i
| λa

i (v, wa)|

≤ max
a

Γ · Λ(v, ηa) = Γ · Λ(v, η1 v · · · v ηA) by (12).

Thus, (w1, . . . , wA) is Γ -optimal for v, η1 v · · · v ηA. �
To implement the above propositions, we set down the following algo-

rithms.

Algorithm 26.1. Given T : R
D1 → R

D2 (specified as a matrix), and given
an R

D2 -descriptor η, we compute the R
D1 -descriptor η ◦ T .

We recall that dim(η ◦ T) = dim(η) and length (η ◦ T) = length (η).
The work required for the computation is at most

C + C · length (η) · [dim V1 · dim V2 + dim(η)].

The storage required for the computation (aside from that required to hold
the inputs η, T) is at most

C + C · (dim V1 + dim(η)) · length(η) .

Algorithm 26.2. Given a list η1, . . . , ηA of R
D-descriptors, we compute

the R
D-descriptor η1 v · · · v ηA. Recall that

dim(η1 v · · · v ηA) = dim(η1) + · · ·+ dim(ηA), and

length (η1 v · · · v ηA) = length (η1) + · · ·+ length (ηA) .

The work and storage required for the computation are at most

C + C · [D +

A∑
a=1

dim(ηa)] · [

A∑
a=1

length (ηa)] .

We omit the straightforward explanation of Algorithms 26.1 and 26.2.
Given a minimax function Λ(·) in the form (1), and given a vector v ∈ V,

we would like to find a vector w that nearly achieves the minimum in (1).
Under favorable circumstances, we can find such a w, thanks to the following
application of the Ellipsoid Algorithm.

The Cm
Norm of a Function with Prescribed Jets II 393

Algorithm 26.3. Given a list λi(·) − bi (i = 1, . . . , I) of affine functions
on R

D (with λi ∈ (RD)∗ and bi ∈ R); given a real number Γ ≥ 1 and a
vector w0 ∈ R

D such that

(†) max
i=1,...,I

|λi(w0) − bi| ≤ Γ · min
w∈RD

max
i=1,...,I

| λi(w) − bi|;

and given ε > 0; we compute a vector w1 ∈ R
D, such that

(††) max
i=1,...,I

| λi(w1) − bi| ≤ (1 + ε) · min
w∈RD

max
i=1,...,I

| λi(w) − bi|.

The work of the computation is at most C(D + I)5 (log I) (log IDΓ
ε

) and the
storage is at most C · (D + I)2.

Explanation: Let W be a vector subspace of R
D, complementary to W0 :=

nullspace (λ1) ∩ · · · ∩ nullspace (λI), and let π : R
D → W be the natural

projection arising from the direct sum decomposition R
D = W ⊕ W0.

Note that λi(πw) = λi(w) for any w ∈ R
D and i = 1, . . . , I. Hence,

in (†), we may replace w0 by πw0; and then, in the statement of our problem,
we may pass from R

D to the subspace W. Consequently, we may assume
without loss of generality that nullspace (λ1) ∩ · · · ∩ nullspace (λI) = {0}.

Thus, the quadratic form
∑I

i=1 (λi(w))2 on R
D may be assumed to be

strictly positive-definite.

Now let

(16) M̂ = max
i=1,...,I

|λi(w0) − bi|,

and let

(17) K = {(M, w) ∈ R⊕R
D : |λi(w)−bi| ≤ M for i = 1, . . . , I , Γ−1 M̂ ≤

M ≤ 10M̂}.

Note that

{(M, w) ∈ R ⊕ R
D : |λi(w) − bi| ≤ M for i = 1, . . . , I , M < Γ−1M̂}

is empty, by hypothesis (†). Note also that on

{(M, w) ∈ R ⊕ R
D : |λi(w) − bi| ≤ M for i = 1, . . . , I, M > 10M̂}

we evidently have M > 10M̂, whereas the point (M̂, w0) belongs to K. The
above remarks show that

(18) min
w∈RD

max
i=1,...,I

|λi(w) − bi| = min{M : (M, w) ∈ K}.

394 C. Fefferman

For any (M, w) ∈ K, we have 0 ≤ M ≤ 10M̂, and

|λi(w − w0)| ≤ |λi(w) − bi| + |λi(w0) − bi| ≤ M + M̂ ≤ 11M̂

for i = 1, . . . , I; and therefore

(19) K ⊂ {(M, w) ∈ R ⊕ R
D : M2 +

I∑
i=1

(λi(w − w0))
2 ≤ (100 +

121 I) M̂2} ≡ E.

On the other hand, suppose (M, w) ∈ R ⊕ R
D, with

(M − 3M̂)2 +

I∑
i=1

(λi(w − w0))
2 ≤ M̂2.

Then |M − 3M̂| ≤ M̂; and for i = 1, . . . , I, we have |λi(w − w0)| ≤ M̂,
hence

|λi(w) − bi| ≤ |λi(w0) − bi| + M̂ ≤ 2M̂ ≤ M (since |M − 3M̂| ≤ M̂) .

Consequently,

(20) {(M, w) ∈ R ⊕ R
D : (M − 3M̂)2 +

I∑
i=1

(λi(w − w0))
2 ≤ M̂2} ⊂ K.

Trivially, we have

(21) Γ−1M̂ ≤ M ≤ 10 M̂ for (M, w) ∈ K, and

(22) |M| ≤ (100 + 121I)1/2 M̂ for (M, w) ∈ E (see (19)).

Thanks to (19), (20), (22), the Ellipsoid Algorithm produces a point

(23) (M1, w1) ∈ K,

such that

(24) M1 ≤ min
(M,w)∈K

M + εΓ−1 M̂.

From (17) we obtain trivially

(25) M̂ ≤ Γ min
(M,w)∈K

M.

The Cm
Norm of a Function with Prescribed Jets II 395

Combining (24) and (25), we find that

M1 ≤ (1 + ε) · min{M : (M, w) ∈ K} .

We have also |λi(w1)−bi| ≤ M1 for i = 1, . . . , I, thanks to (23). Therefore,

max
i=1,...,I

|λi(w1) − bi| ≤ (1 + ε) min{M : (M, w) ∈ K}

= (1 + ε) min
w∈RD

max
i=1,...,I

|λi(w) − bi| ,

thanks to (18). Thus, w1 satisfies (††).
Let us review how we computed w1.

• By linear algebra, we reduced matters to the case
I⋂

i=1

nullspace (λi) = {0}.

• We computed M̂ from formula (16).

• We defined the convex set K in (17).

• Using the ellipsoid method, starting with (17), (19), (20), (22), we com-
puted the point (M1, w1) ∈ K.

This gives w1.

We can easily estimate the work and storage used in the above computa-
tion. We may assume that D, I ≥ 1, since our problem is trivial otherwise.

• The linear algebra in our computation takes space at most CDI and work
at most CDI · (D + I).

• The computation of M̂ from (16) requires work at most CDI and space
at most C (aside from the space used to hold the input data).

• Exhibiting the constraints defining K in (17) requires work and space at
most CDI.

• Exhibiting the ellipsoids in (19), (20) requires work at most CD2I in space
at most CD2.

• The quantities playing the rôles of ε, λ, D, L in the Ellipsoid Algorithm
here are ε′ = cεΓ−1(100 + 121 I)−1/2, λ′ = (100 + 121 I)−1/2, D + 1, and
2I+1, respectively. Consequently, our application of the ellipsoid method
uses work at most CD4I log(100 + 121 I) log (Γ

ε
· D · (100 + 121 I)) in

space at most CDI.

Altogether, the work and storage used by Algorithm 26.3 are at most

C · (D + I)5 (log I)
(

log
Γ D I

ε

)
and C · (D + I)2, respectively.

The explanation of Algorithm 26.3 is complete.

396 C. Fefferman

27. Minimax Functions of Whitney Fields

In this section, we study the quantities Nε(�P), Nε(�P, Q), computed by Al-

gorithms 14.1...20.1, as functions of the Whitney field �P. We shall see that
these functions are all well-approximated by minimax functions, and we will
provide algorithms to compute the descriptors η of those minimax functions.
Moreover, given a Whitney field �P, we compute a (1 + Cε)-optimal vector

for �P, η, with η as above.

We begin with some notation, definitions and remarks.

Recall that, for E ⊂ R
n, Wh(E) denotes the vector space of Whitney

fields on E. If E is the disjoint union of two sets E1 and E2, then we identify
Wh(E) with Wh(E1) ⊕ Wh(E2) in the obvious way, and we write

(1) πE
E1

: Wh(E) → Wh(E1)

to denote the obvious projection.
We identify Wh(E) with R

D, D = dim[Wh(E)], by identifying �P =
(Px)x∈E with the coordinates ∂αPx(x) (|α| ≤ m, x ∈ E). In all our algorithms
involving Wh(E)-descriptors, we assume that this identification has been
made.

We recall from the preceding section that �P �→ Λ(�P, η) (�P ∈ Wh(S)) is
the minimax function arising from a given Wh(S)-descriptor η.

As usual, given two real numbers X, Y ≥ 0 and a real number Γ ≥ 1, we
say that X and Y “differ by at most a factor of Γ” provided Γ−1X ≤ Y ≤ ΓX.

The following algorithms accomplish the goals of this section.

Algorithm 27.1. Given ε > 0, assumed to be less than a small enough
controlled constant; and given a dyadic cube Q, assumed to satisfy

(2) δQ ≤ c̃ε−1, with c̃ as in Algorithm 14.1;

and given a set

(3) S ⊂ Q∗∗,

assumed to satisfy

(4) |y − y′| > e−3/ε δQ for any two distinct points y, y′ ∈ S;

we compute a Wh(S)-descriptor η, with the following properties.

(5) For any �P ∈ Wh(S), the number Nε(�P, Q) computed from ε, Q, �P by

Algorithm 14.1 differs by at most a factor (1 + Cε) from Λ(�P, η).

(6) The length and dimension of η are at most exp(C/ε).

The work and storage used to compute η are at most exp(C/ε).

The Cm
Norm of a Function with Prescribed Jets II 397

Explanation: We recall Proposition 14.1. Let B(x0, r), S+, O(ε, y) (y ∈ S+)
be as in that proposition. We can compute these objects with work and
storage at most exp(C/ε), by Proposition 14.1 (f). We set

(7) η = (Wh(S), Wh(S+
� S), λ1, . . . , λI),

where (λ1, . . . , λI) is an enumeration of the following family of linear func-
tionals on Wh(S) ⊕ Wh(S+

� S) = Wh(S+).

(8) The functionals �P = (Px)x∈S+ �→ (1 + Âε)−1 · λ(Py) for y ∈ S+,
λ ∈ O(ε, y);

together with

(9) The functionals �P = (Px)x∈S+ �→ [Â e4m/ε r−1|y − y′|m+1−|α|]−1 ·
∂α(Py − Py′

)(y) for |α| ≤ m, y, y′ ∈ S+, y
= y′.

Here, Â is as in Proposition 14.1; recall that Â is a controlled constant.
We will check that the descriptor η satisfies (5) and (6), and that it

is computed from ε, Q, S using work and storage at most exp(C/ε). In
fact, both (6) and the desired estimate for work and storage are obvious
by inspection of (7), (8), (9), since #(S+) ≤ exp(C/ε) and #(O(ε, y)) ≤
exp(C/ε) for each y ∈ S+. (See Proposition 14.1 (b), (c).)

It remains only to check (5). Let �P = (Py)y∈S ∈ Wh(S) be given. We
recall that each O(ε, y) (y ∈ S+) is symmetric about the origin. (See Propo-
sition 14.1 (c).) Let ξ0 = [M0, (P0

y)y∈S+] be in Proposition 14.1 (d), (e); and

let �P′ = (P0
y)y∈S+�S ∈ Wh(S+

� S).

Comparing (7), (8), (9) with Proposition 14.1 (d), we learn that

(10) max
i=1,...,I

|λi(�P, �P′)| ≤ M0,

and that

(11) M0 ≤ (1 + Cε) · max
i=1,...,I

|λi(�P, �P′′)| for any �P′′ ∈ Wh(S+
� S).

Comparing (10), (11) with the definition of Λ(�P, η), we see that

(12) M0 differs from Λ(�P, η) by at most a factor of (1 + Cε),

and also

(13) �P′ is a (1 + Cε)-optimal vector for �P, η.

Conclusion (5) is now immediate from (12), together with Proposition 14.1(e).
This completes our explanation of Algorithm 27.1.

398 C. Fefferman

Algorithm 27.2. Given ε, Q, S as in Algorithm 27.1; and given �P ∈ Wh(S);

we compute a (1 + Cε)-optimal vector w0 for �P, η, where η is the Wh(S)-
descriptor computed from ε, Q, S by Algorithm 27.1.

The work and storage used to compute w0 are at most exp(C/ε).

Explanation: We compute ξ0 = [M0, (P0
y)y∈S+] as in Proposition 14.1 (d),

and we set

w0 = �P′′ = (P0
y)y∈S+�S ∈ Wh(S+

� S) .

According to (13), the vector w0 is (1 + Cε)-optimal for �P, η.

Thanks to Proposition 14.1 (f), the work and storage used to compute w0

are at most exp(C/ε).

This completes our explanation of Algorithm 27.2.

Algorithm 27.3. Given ε > 0, assumed to be less than a small enough
controlled constant; and given a point y0 ∈ R

n; we compute a Wh({y0})-
descriptor η, such that:

(a) For any �P ∈ Wh({y0}), the number Nε(�P) computed from ε, �P by Al-

gorithm 15.1 differs by at most a factor of (1 + Cε) from Λ(�P, η);

and

(b) The length and dimension of η are at most exp(C/ε).

The work and storage used to compute η are at most exp(C/ε).

Explanation Let Q be the cube computed as in Proposition 15.1, and let η

be the descriptor computed from ε, Q, {y0} by Algorithm 27.1. For any
�P ∈ Wh({y0}), Proposition 15.1 shows that the number Nε(�P) computed by

Algorithm 15.1 is equal to the number Nε(�P, Q) computed from ε, Q, �P by
Algorithm 14.1. Hence (a) follows from (5). Evidently, (b) follows from (6).

The work and storage used to compute Q are at most C, by Proposi-
tion 15.1; and the work and storage used to compute η from ε, Q, {y0} are
at most exp(C/ε), as we see from Algorithm 27.1.

This completes our explanation of Algorithm 27.3.

Algorithm 27.4. Given ε, y0 as in Algorithm 27.3, and given �P ∈ Wh({y0}),

we compute a (1+Cε)-optimal vector w0 for �P, η, where η is the descriptor
computed from ε, y0 by Algorithm 27.3.

The work and storage used to compute w0 are at most exp(C/ε).

The Cm
Norm of a Function with Prescribed Jets II 399

Explanation: Let Q be the cube computed from ε, y0 as in Proposition 15.1,
let η be the Wh({y0})-descriptor computed from ε, Q, {y0} by Algorithm 27.1,

and let w0 be the vector computed from ε, Q, {y0}, �P by Algorithm 27.2.

Thus, w0 is a (1 + Cε)-optimal vector for �P, η, by the defining property
of w0 in Algorithm 27.2. Recall from our explanation of Algorithm 27.3
that our present η is precisely the descriptor computed from ε, y0 by Algo-
rithm 27.3. Thus, w0 has the required property. Moreover, the estimates for
work and storage given in Proposition 15.1 and Algorithm 27.2 show that
our present computation of w0 from ε, y0, �P uses work and storage at most
exp(C/ε).

This completes our explanation of Algorithm 27.4.

Algorithm 27.5. Given ε > 0, assumed to be less than a small enough
controlled constant; and given a dyadic cube, assumed to satisfy

(14) δQ ≤ e−1/(4ε);

and given a set

(15) S ⊂ Q∗∗,

assumed to satisfy

(16) |y − y′| > ε2 e−2/ε δQ for any two distinct points y, y′ ∈ S;

we compute a Wh(S)-descriptor η, with the following properties.

(17) For any �P ∈ Wh(S), the number Nε(�P) computed from ε, Q, �P by

Algorithm 16.1 differs by at most a factor of (1 + Cε) from Λ(�P, η).

(18) The length and dimension of η are at most exp(C/ε).

The work and storage used to compute η are at most exp(C/ε).

Explanation: We recall Proposition 16.1. Let y0, Q00 be as in that propo-
sition. In particular, we can compute y0, Q00 with work and storage at
most C. For any �P ∈ Wh(S), the number Nε(�P) computed from ε, Q, �P by
Algorithm 16.1 is given by

(19) Nε(�P) = max(Nε(�P, Q00), Nε(�P|{y0}, y0)),

where Nε(�P, Q00) is the number computed from ε, Q00, �P by Algorithm 14.1,

and Nε(�P
′, y0) is the number computed from ε, �P′ by Algorithm 15.1 (with

�P′ = �P|{y0} here).
By applying Algorithm 27.1 to ε, Q00, S, we obtain a Wh(S)-descriptor η1,

such that:

(20) Nε(�P, Q00) differs from Λ(�P, η1) by at most a factor (1+Cε), for any
�P ∈ Wh(S);

400 C. Fefferman

and

(21) length (η1), dim(η1) ≤ exp(C/ε).

The work and storage used to compute η1 are at most exp(C/ε).
Also, by applying Algorithm 27.3 to ε, y0, we obtain a Wh({y0})-descrip-

tor η̄2, such that:

(22) Nε(�P
′, y0) differs from Λ(�P′, η̄2) by at most a factor (1+Cε), for any

�P′ ∈ Wh({y0}); and

(23) length (η̄2), dim(η̄2) ≤ exp(C/ε).

The work and storage used to compute η2 are at most exp(C/ε). In (22),

Nε(�P
′, y0) denotes the number computed from ε, �P′ by Algorithm 15.1.

Note that

(24) #(S) ≤ exp(C/ε),

thanks to (15), (16).
By applying Algorithm 26.1 to the Wh({y0})-descriptor η̄2 and the lin-

ear map πS
{y0} : Wh(S) → Wh({y0}), we compute a Wh(S)-descriptor η2,

given by

(25) η2 = η̄2 ◦ πS
{y0}.

The work and storage used to apply Algorithm 26.1 are at most exp(C/ε),
thanks to (23), (24). Moreover, we have

(26) length (η2) = length (η̄2) ≤ exp(C/ε) and dim(η2) = dim(η̄2) ≤
exp(C/ε),

as we see from Algorithm 26.1 and (23).
Proposition 26.1 and (22) yield

(27) Nε(�P|{y0}, y0) differs from Λ(�P, η2) by at most a factor (1 + Cε), for

any �P ∈ Wh(S).

From (19), (20), (27), we obtain the following result.

(28) Nε(�P) differs from max(Λ(�P, η1), Λ(�P, η2)) by at most a factor (1 +

Cε), for any �P ∈ Wh(S).

In (28), Nε(�P) denotes the number computed from ε, Q, �P by Algorithm 16.1.
We now compute the Wh(S)-descriptor

(29) η = η1 ∨ η2,

by applying Algorithm 26.2.

The Cm
Norm of a Function with Prescribed Jets II 401

We have

(30) length (η) = length (η1) + length (η2) ≤ exp(C/ε)

and

(31) dim(η) = dim(η1) + dim(η2) ≤ exp(C/ε),

thanks to (21), (26) and Algorithm 26.2.

Moreover, Proposition 26.2 gives

(32) Λ(�P, η1 ∨ η2) = max(Λ(�P, η1), Λ(�P, η2)), for any �P ∈ Wh(S).

The work and storage used by Algorithm 26.2 are at most exp(C/ε),
thanks to (21), (26) and (24).

Comparing (28) with (32), we see that (17) holds for the descriptor η

in (29). Moreover, (18) holds for that descriptor, as we see in (30), (31).
Thus, η has the desired properties. Finally, the total work and storage used
in all the above steps are at most exp(C/ε).

This completes our explanation of Algorithm 27.5.

Algorithm 27.6. Given ε, Q, S as in Algorithm 27.5, and given �P ∈ Wh(S),

we compute a (1+Cε)-optimal vector w0 for �P, η, where η is the descriptor
computed from ε, Q, S by Algorithm 27.5.

The work and storage used to compute w0 are at most exp(C/ε).

Explanation: We repeat the explanation of Algorithm 27.5, and then continue
as follows.

Applying Algorithm 27.2 to ε, Q, S, �P, we compute a (1 + Cε)-optimal

vector w1 for �P, η1.
The work and storage used to compute w1 are at most exp(C/ε).

Next, applying Algorithm 27.4 to ε, y0, �P|{y0}, we compute a (1 + Cε)-

optimal vector w2 for �P|{y0}, η̄2.
The work and storage used to compute w2 are at most exp(C/ε).

By Proposition 26.1, w2 is also a (1 + Cε)-optimal vector for �P, η2,
thanks to (25). Now Proposition 26.2 shows that w0 = (w1, w2) is a

(1 + Cε)-optimal vector for �P, η1 ∨ η2. In view of (29), our vector w0 is

a (1 + Cε)-optimal vector for �P, η, where η is the descriptor computed from
ε, Q, S by Algorithm 27.5. We have seen that the work and storage used to
compute w0 are at most exp(C/ε).

This concludes our explanation of Algorithm 27.6.

402 C. Fefferman

Algorithm 27.7. Given ε > 0, assumed to be less than a small enough
controlled constant; and given a cube Q, assumed to satisfy

(33) e−1/(2ε) ≤ δQ ≤ c#ε−1 with c# as in Algorithm 17.1;

and given a set

(34) S ⊂ Q∗∗,

assumed to satisfy

(35) |y − y′| > ε2 e−2/ε δQ for any two distinct points y, y′ ∈ S;

we compute a Wh(S)-descriptor η, such that:

(36) For any �P ∈ Wh(S), the number Nε(�P) computed from ε, Q, �P by

Algorithm 17.1 differs by at most a factor of (1 + Cε) from Λ(�P, η);
and

(37) length (η), dim(η) ≤ exp(C/ε).

The work and storage used to compute η are at most exp(C/ε).

Explanation: Obvious from Proposition 17.1 and Algorithm 27.1.

Algorithm 27.8. Given ε, Q, S as in Algorithm 27.7, and given a Whitney
field �P ∈ Wh(S), we compute a (1+Cε)-optimal vector w0 for �P, η, where η

is the descriptor computed from ε, Q, S by Algorithm 27.7.
The work and storage used to compute w0 are at most exp(C/ε).

Explanation: Obvious from Proposition 17.1 and Algorithm 27.2.

Algorithm 27.9. Given ε > 0, assumed to be less than a small enough
controlled constant; and given a dyadic cube Q, assumed to satisfy

(38) 1
2
c# ε−1 ≤ δQ ≤ e10/ε with c# as in Algorithm 17.1;

and given a set

(39) S ⊂ Q∗∗,

assumed to satisfy

(40) |y − y′| > ε2 e−2/ε δQ for any two distinct points y, y′ ∈ S;

we compute a Wh(S)-descriptor η, with the following properties.

(41) For any �P ∈ Wh(S), the number Nε(�P) computed from ε, Q, �P by

Algorithm 18.1 differs by at most a factor of (1 + Cε) from Λ(�P, η).

(42) The length and dimension of η are at most exp(C/ε).

The work and storage used to compute η are at most exp(C/ε).

The Cm
Norm of a Function with Prescribed Jets II 403

Explanation: From (39), (40), we have

(43) #(S) ≤ exp(C/ε).

We recall Proposition 18.1. Let s, G, Q
〈s〉
ν (all ν ∈ G) and Sν (all ν ∈ G) be

as in that proposition. In particular, we can compute these objects using
work and storage at most exp(C/ε), using only ε, Q, S (not �P).

According to Proposition 18.1, for any �P ∈ Wh(S), the number Nε(�P)

computed from ε, Q, �P by Algorithm 18.1 is given by

(44) Nε(�P) = max
ν∈G

Nε(�P|Sν),

where Nε(�P|Sν) denotes the number computed from ε, Q
〈s〉
ν , �P|Sν by Algo-

rithm 17.1.
For each ν ∈ G, we apply Algorithm 27.7 to ε, Q

〈s〉
ν , Sν, to compute a

Wh(Sν)-descriptor η̄ν, with the following properties.

(45) For any �P′ ∈ Wh(Sν), the number Nε(�P
′) computed from ε, Q

〈s〉
ν , �P′

by Algorithm 17.1 differs by at most a factor (1+Cε) from Λ(�P′, η̄ν).

(46) The length and dimension of η̄ν are at most exp(C/ε).

The work and storage used to compute a single η̄ν are at most exp(C/ε).
Since #(G) ≤ exp(C/ε) by Proposition 18.1, we conclude that the total
work and storage used to compute all the η̄ν(ν ∈ G) are at most exp(C/ε).

Next, for each ν ∈ G, we apply Algorithm 26.1 to the Wh(Sν)-descriptor
η̄ν and the linear map πS

Sν
: Wh(S) → Wh(Sν), to compute a Wh(S)-

descriptor ην, with the following properties.

(47) Λ(�P, ην) = Λ(�P|Sν , η̄ν) for any �P ∈ Wh(S).

(48) The length and dimension of ην are at most exp(C/ε).

(To derive (48), we use (46) and refer to Algorithm 26.1.)

For each ν ∈ G, the application of Algorithm 26.1 uses work and storage at
most exp(C/ε), thanks to (43) and (46). Since #(G) ≤ exp(C/ε), it follows
that the total work and storage used to compute all the ην (ν ∈ G) from the
corresponding η̄ν are at most exp(C/ε).

From (44), (45), (47), we conclude that

(49) Nε(�P) differs by at most a factor (1+Cε) from max
ν∈G

Λ(�P, ην), for any

�P ∈ Wh(S);

where again Nε(�P) denotes the number computed from ε, Q, �P by Algo-
rithm 18.1.

404 C. Fefferman

We now apply Algorithm 26.2 to the family of Wh(S)-descriptors ην

(ν ∈ G). Thus, we compute the Wh(S) descriptor

(50) η =
∨

ν∈G

ην,

using work and storage at most exp(C/ε), as we see from (43), (48) and the
fact that #(G) ≤ exp(C/ε).

By Proposition 26.2, the descriptor η in (50) has the following properties.

(51) Λ(�P, η) = max
ν∈G

Λ(�P, ην) for any �P ∈ Wh(S).

(52) length (η) =
∑
ν∈G

length (ην) ≤ exp(C/ε).

(53) dim(η) =
∑
ν∈G

dim(ην) ≤ exp(C/ε).

(Here again, we use (48) and the fact that #(G) ≤ exp(C/ε).)

Comparing (49) with (51), we learn that

(54) Nε(�P) differs by at most a factor (1 + Cε) from Λ(�P, η), for any
�P ∈ Wh(S).

Again in (54), Nε(�P) denotes the number computed from ε, Q, �P by Algo-
rithm 18.1.

The desired properties (41), (42) of our descriptor η are equivalent to
our results (52), (53), (54). Moreover, we have seen that the total work and
storage used to compute η from ε, Q, S are at most exp(C/ε).

This concludes our explanation of Algorithm 27.9.

Algorithm 27.10. Given ε, Q, S as in Algorithm 27.9, and given a Whitney
field �P ∈ Wh(S), we compute a (1+Cε)-optimal vector w0 for �P, η, where η

is the descriptor computed from ε, Q, S by Algorithm 27.9.
The work and storage used to compute w0 are at most exp(C/ε).

Explanation: We repeat the explanation of Algorithm 27.9, and then continue
as follows.

Applying Algorithm 27.8 to ε, Q
〈s〉
ν , Sν, �P|Sν , we obtain, for each ν ∈ G,

a (1 + Cε)-optimal vector wν for �P|Sν , η̄ν, with η̄ν as in the explanation of
Algorithm 27.9.

The work and storage used to compute a single wν are at most exp(C/ε)

(see Algorithm 27.8), and we know that #(G) ≤ exp(C/ε). Hence, the total
work and storage used to compute all the wν(ν ∈ G) are at most exp(C/ε).

The Cm
Norm of a Function with Prescribed Jets II 405

For each ν ∈ G, Proposition 26.1 and the definition of ην together show
that wν is a (1 + Cε)-optimal vector for �P, ην. Consequently, Proposi-
tion 26.2 shows that the vector

w0 = (wν)ν∈G

is a (1 + Cε)-optimal vector for η =
∨

ν∈G

ην. (See (50).)

The work and storage used to compute w0 are at most exp(C/ε).
This completes our explanation of Algorithm 27.10.

Algorithm 27.11. Given ε > 0, assumed to be less than a small enough
controlled constant; and given a dyadic cube Q, assumed to satisfy

(55) δQ ≥ e5/ε;

and given a set

(56) S ⊂ Q∗∗,

assumed to satisfy

(57) |y − y′| > ε2 e−2/ε δQ for any two distinct points y, y′ ∈ S;

we compute a Wh(S)-descriptor η, with the following properties.

(58) For any �P ∈ Wh(S), the number Nε(�P) computed from ε, Q, �P by

Algorithm 19.1 differs by at most a factor of (1 + Cε) from Λ(�P, η).

(59) The length and dimension of η are at most exp(C/ε).

The work and storage used to compute η are at most exp(C/ε).

Explanation: By (56) and (57), we have

(60) #(S) ≤ exp(C/ε).

Recall Proposition 19.1. Thus,

(61) For any �P ∈ Wh(S), the number Nε(�P) computed from ε, Q, �P by

Algorithm 19.1 is equal to max{Nε(�P|{y0}) : y0 ∈ S} ,

where

(62) Nε(�P|{y0}) is the number computed from ε, �P|{y0} by Algorithm 15.1.

For each y0∈S, we apply Algorithm 27.3 to ε, y0, to compute a Wh({y0})-
descriptor η̄y0

, with the following properties.

(63) For any �P′ ∈ Wh({y0}), the number Nε(�P
′) computed from ε, �P′ by

Algorithm 15.1 differs by at most a factor of (1+Cε) from Λ(�P′, η̄y0
).

(64) The length and dimension of η̄y0
are at most exp(C/ε).

406 C. Fefferman

The work and storage used to compute a single η̄y0
are at most exp(C/ε).

Hence, by (60), the total work and storage used to compute all the η̄y0

(y0 ∈ S) are at most exp(C/ε).

Next, for each y0 ∈ S, we apply Algorithm 26.1 to the Wh({y0})-descrip-
tor η̄y0

and the linear map πS
{y0} : Wh(S) → Wh({y0}).

Thus, for each y0 ∈ S, we obtain a Wh(S)-descriptor ηy0
, with the

following properties.

(65) For any �P ∈ Wh(S), we have Λ(�P|{y0}, η̄y0
) = Λ(�P, ηy0

).

(66) The length and dimension of ηy0
are at most exp(C/ε).

The work and storage used to compute a single ηy0
are at most exp(C/ε),

thanks to (60), (64), and our estimate for the work and storage used by
Algorithm 26.1. Hence, by (60), the total work and storage used to compute
all the ηy0

(y0 ∈ S) are at most exp(C/ε).

From (61), (62), (63), (65) we obtain the following result.

(67) For any �P ∈ Wh(S), the number Nε(�P) computed from ε, Q, �P by Al-

gorithm 19.1 differs by at most a factor of (1+Cε) from max{Λ(�P, ηy0
) :

y0 ∈ S}.

We now apply Algorithm 26.2 to the family of Wh(S)-descriptors {ηy0
:

y0 ∈ S}. Thus, we compute the descriptor

(68) η =
∨

y0∈S

ηy0
,

and we know from Proposition 26.2 that

(69) max{Λ(�P, ηy0
) : y0 ∈ S} = Λ(�P, η) for any �P ∈ Wh(S).

Moreover,

(70) η has length and dimension at most exp(C/ε),

thanks to (60), (66) and our formulas for the length and dimension of
η1 v · · · v ηA in Algorithm 26.2. From (60), (66) and Algorithm 26.2, we learn
also that the work and storage used to compute η are at most exp(C/ε).

The desired properties (58), (59) of η are immediate from (67), (69)
and (70). We have seen that the above computation uses work and storage
at most exp(C/ε).

This completes our explanation of Algorithm 27.11.

The Cm
Norm of a Function with Prescribed Jets II 407

Algorithm 27.12. Given ε, Q, S as in Algorithm 27.11, and given a Whit-
ney field �P ∈ Wh(S), we compute a (1 + Cε)- optimal vector w0 for �P, η,
where η is the Wh(S)-descriptor computed from ε, Q, S by Algorithm 27.11.

The work and storage used to compute w0 are at most exp(C/ε).

Explanation: We repeat the explanation of Algorithm 27.11, and then add
the following.

For each y0 ∈ S, we apply Algorithm 27.4 to ε, y0, �P|{y0}, to compute a

(1 + Cε)-optimal vector wy0 for �P|{y0}, η̄y0
(with η̄y0

as in the explanation
of Algorithm 27.11).

According to our estimate for the work and storage of Algorithm 27.4, we
can compute a single wy0 using work and storage at most exp(C/ε). Hence,
by (60), the total work and storage used to compute all the wy0 (y0 ∈ S)
are at most exp(C/ε).

Recall from our explanation of Algorithm 27.11 that ηy0
= η̄y0

◦ πS
{y0} for

each y0 ∈ S. Hence, Proposition 26.1 shows that wy0 is a (1 + Cε)-optimal

vector for �P, ηy0
, for any y0 ∈ S.

Also, recall from our explanation of Algorithm 27.11 that η =
∨

y0∈S

ηy0
,

where η is the descriptor computed from ε, Q, S by that algorithm. Propo-
sition 26.2 therefore shows that

w0 = (wy0)y0∈S

is a (1+Cε)-optimal vector for �P, η. We have computed w0 using work and
storage at most exp(C/ε).

This completes our explanation of Algorithm 27.12.

Algorithm 27.13. Given ε > 0, assumed to be less than a small enough
controlled constant; and given a dyadic cube Q; and given a set

(71) S ⊂ Q∗∗,

assumed to satisfy

(72) |y − y′| > ε2 e−2/ε δQ for any two distinct points y, y′ ∈ Q;

we compute a Wh(S)-descriptor η, with the following properties.

(73) For any �P ∈ Wh(S), the number Nε(�P) computed from ε, Q, �P by

Algorithm 20.1 differs by at most a factor of (1 + Cε) from Λ(�P, η).

(74) The length and dimension of η are at most exp(C/ε).

The work and storage used to compute η are at most exp(C/ε).

Explanation: We proceed by cases, depending on the size of δQ, as in our
explanation of Algorithm 20.1.

This reduces matters to Algorithms 27.5, 27.7, 27.9, and 27.11.

408 C. Fefferman

Algorithm 27.14. Given ε, Q, S as in Algorithm 27.13, and given a Whit-
ney field �P ∈ Wh(S), we compute a (1 + Cε)-optimal vector w0 for �P, η,
where η is the Wh(S)-descriptor computed from ε, Q, S by Algorithm 27.13.

The work and storage used to compute w0 are at most exp(C/ε).

Explanation: We proceed by cases, depending on the size of δQ, as in our
explanations of Algorithms 20.1. and 27.13.

This reduces matters to Algorithms 27.6, 27.8, 27.10, and 27.12.

28. Minmax Functions and the Main Algorithm

In this section, we will see that the number Nε(�P) computed by the Main
Algorithm (Algorithm 21.1) is well-approximated by a minimax function.

In addition, we compute a (1 + Cε)-optimal vector for �P, η, where η is the
descriptor of that minimax function.

Algorithm 28.1. Given ε > 0, assumed to be less than a small enough
controlled constant, and given a set E ⊂ R

n, with #(E) = N, 2 ≤ N < ∞;
we compute a Wh(E)-descriptor η, with the following properties.

(1) For any �P ∈ Wh(E), the number Nε(�P) computed from ε, �P by Algo-

rithm 21.1 differs by at most a factor of (1 + Cε) from Λ(�P, η).

(2) The length and dimension of η are at most exp(C/ε) · N.

Moreover, the computation of η uses work and storage at most exp(C/ε)N2.

Explanation: We make some preliminary remarks. Recall from Section 26
that a V-descriptor η with length L and dimension D is stored as a matrix,
requiring storage C+C · [dim V + D] · L. In view of (2), it will take storage
exp(C/ε)N2 simply to hold the matrix representing η. Hence, it is natural
to expect that the work and storage of our algorithm will be comparable
to exp(C/ε)N2. In fact, the matrix representing η is sparse, and almost all
the work of Algorithm 28.1 consists of repeatedly writing the number zero.
Unfortunately, it is not clear how to take advantage of this fact, once we
apply Algorithm 28.1 below.

Let us begin our explanation of Algorithm 28.1. We recall Proposi-
tion 25.1, with conclusion (f) there replaced by the sharper conclusion (f′),
as explained in Section 25.

We compute the list of cubes and sets Q(λ), S(λ), λ = 1, . . . , L, as in that
proposition. Thus, the following hold.

(3) L ≤ C
ε
N.

(4) The total work and storage to compute all the Q(λ) and S(λ) (λ =
1, . . . , L) are at most exp(C/ε) N log N and exp(C/ε)N, respectively.

The Cm
Norm of a Function with Prescribed Jets II 409

(5) For each λ = 1, . . . , L, the set S(λ) ⊆ E arises by applying Algorithm 11.1
to the input data ε, Q(λ), E.

(6) For any �P ∈ Wh(E), the number Nε(�P) computed from ε, �P by Algo-
rithm 21.1 is given by

(7) Nε(�P) = max{Nε(�P|S(λ)) (1 ≤ λ ≤ L), Nε(�P|{y0}) (y0 ∈ E)}, where

(8) Nε(�P|S(λ)) is the number computed from ε, Q(λ), �P|S(λ) by Algorithm 20.1,
and

(9) Nε(�P|{y0}) is the number computed from ε, �P|{y0} by Algorithm 15.1.

By (5) and the defining properties of Algorithm 11.1, we know that, for each
λ = 1, . . . , L.

(10) S(λ) ⊆ E ∩ (Q(λ))∗∗, and

(11) |y − y′| ≥ cε e−2/εδQ(λ) for any distinct points y, y′ ∈ S(λ).

Hence, S(λ) and Q(λ) satisfy conditions (71) and (72) in Section 27. Con-
sequently, we may apply Algorithm 27.13 to ε, Q(λ), S(λ), to compute a
Wh(S(λ))-descriptor η̄(λ), with the following properties.

(12) For any �P′ ∈ Wh(S(λ)), the number Nε(�P
′) computed from ε, Q(λ),

�P′ by Algorithm 20.1 differs by at most a factor of (1 + Cε) from

Λ(�P′, η̄(λ)).

(13) The length and dimension of η̄(λ) are at most exp(C/ε).

We compute descriptors η̄(λ) satisfying (12) and (13), for each λ = 1, . . . , L.

The work and storage used to compute a single η̄(λ) are at most exp(C/ε),
as we see from Algorithm 27.13. Hence, the total work and storage used to
compute all the η̄(λ) (λ = 1, . . . , L) (given the S(λ) and Q(λ)) are at most
exp(C/ε)N; see (3).

Next, for each λ = 1, . . . , L, we apply Algorithm 26.1 to Wh(S(λ))-
descriptor η̄(λ) and the linear map πE

S(λ) : Wh(E) → Wh(S(λ)). Thus, for

each λ, we obtain a Wh(E)-descriptor η(λ), with the following properties.

(14) For any �P ∈ Wh(E), Λ(�P|S(λ) , η̄(λ)) = Λ(�P, η(λ)).

(15) The length and dimension of η(λ) are at most exp(C/ε).

Moreover, the work and storage used to compute a single η(λ) from the
corresponding η̄(λ) are at most exp(C/ε) · N. Hence, by (3), the total work
and storage used to compute η(1), . . . , η(L) from η̄(1), . . . , η̄(L) are at most
exp(C/ε) · N2.

410 C. Fefferman

Comparing (7), (8) with (12), (14), we learn that

(16) For any �P ∈ Wh(E), the number Nε(�P|S(λ)) in (7) differs by at most

a factor of (1 + Cε) from Λ(�P, η(λ)).

Property (16) holds for each λ = 1, . . . , L.

Next, for each y0 ∈ E, we apply Algorithm 27.3 (to ε and y0), to compute
a Wh({y0})-descriptor η̄(y0), with the following properties.

(17) For any �P′ ∈ Wh({y0}), the number Nε(�P
′) computed from ε, �P′ by

Algorithm 15.1 differs by at most a factor (1 + Cε) from Λ(�P′, η̄(y0)).

(18) The length and dimension of η̄(y0) are at most exp(C/ε).

For each y0 ∈ E, the work and storage used to compute η̄(y0) are at most
exp(C/ε). Hence, the total work and storage used to compute all the η̄(y0)

(y0 ∈ E) are at most exp(C/ε)N.
For each y0 ∈ E, we now apply Algorithm 26.1 to the Wh({y0})-descrip-

tor η̄(y0) and the linear map πE
{y0} : Wh(E) → Wh({y0}).

Thus, for each y0 ∈ E, we compute a Wh(E)-descriptor η(y0), with the
following properties.

(19) For any �P ∈ Wh(E), Λ(�P|{y0}, η̄(y0)) = Λ(�P, η(y0)).

(20) The length and dimension of η(y0) are at most exp(C/ε).

Moreover, for each fixed y0 ∈ E, the work and storage used to compute η(y0)

from η̄(y0) are at most exp(C/ε)N. Consequently, the total work and storage
used to compute all the η(y0) (y0 ∈ E) from the η̄(y0) (y0 ∈ E) are at most
exp(C/ε) · N2.

Comparing (7), (9) with (17), (19), we see that the following holds, for
each y0 ∈ E.

(21) For any �P ∈ Wh(E), the number Nε(�P|{y0}) in (7) differs by at most

a factor of (1 + Cε) from Λ(�P, η(y0)).

From (6), (7), (16) and (21), we learn that

(22) For any �P ∈ Wh(E), the number Nε(�P) computed from ε, �P by Algo-

rithm 21.1 differs by at most a factor of (1+Cε) from max{Λ(�P, η(λ))

(λ = 1, . . . , L), Λ(�P, η(y0)) (y0 ∈ E)}.

We now apply Algorithm 26.2 to compute the Wh(E)-descriptor

(23) η = (η(1) v · · · v η(L)) v
∨

y0∈E

η(y0).

The Cm
Norm of a Function with Prescribed Jets II 411

According to Proposition 26.2, we have

(24) Λ(�P, η) = max{Λ(�P, η(λ)) (λ = 1, . . . , L), Λ(�P, η(y0)) (y0 ∈ E)} for

any �P ∈ Wh(E).

Moreover, that same proposition gives

length (η) =
L∑

λ=1

length (η(λ)) +
∑

y0∈E

length (η(y0)) and

dim(η) =
L∑

λ=1

dim(η(λ)) +
∑

y0∈E

dim(η(y0)) .

Thanks to (15), (20) and (3), it follows that

(25) The length and dimension of η are at most exp(C/ε)N.

Also, the estimate for work and storage given in Algorithm 26.2 shows that
it takes work and storage at most exp(C/ε)N2 to compute η from (23).

The desired properties (1) and (2) of the descriptor η are now immediate
from (22), (24), (25). We have computed η using total work and storage at
most exp(C/ε)N2.

This completes our explanation of Algorithm 28.1.

Algorithm 28.2. Given ε, E, N as in Algorithm 28.1, and given a Whitney
field �P ∈ Wh(E), we compute a (1 + Cε)-optimal vector w0 for �P, η, where η

is the Wh(E)-descriptor computed from ε, E by Algorithm 28.1.
The work and storage used to compute w0 are at most exp(C/ε)N2.

Explanation: We repeat our explanation of Algorithm 28.1, and then continue
as follows.

For each λ = 1, . . . , L, we apply Algorithm 27.14 to ε, Q(λ), S(λ), �P|S(λ) .

This produces a (1 + Cε)-optimal vector w(λ) for �P|S(λ) , η̄(λ), with η̄(λ) as in
the explanation of Algorithm 28.1.

The work and storage used to compute a single w(λ) are at most exp(C/ε),
as we see from Algorithm 27.14. Hence, by (3), the total work and storage
used to compute all the w(λ) (λ = 1, . . . , L) are at most exp(C/ε)N.

For each λ = 1, . . . , L, we recall that η(λ) = η̄(λ) ◦ πE
S(λ) . Consequently,

Proposition 26.1 shows that

(26) For each λ = 1, . . . , L, w(λ) is a (1 + Cε)-optimal vector for �P, η(λ).

Next, for each y0 ∈ E, we apply Algorithm 27.4 to ε, y0, �P|{y0}. This

produces a (1 + Cε)-optimal vector w(y0) for �P|{y0}, η̄(y0), with η̄(y0) as in
the explanation of Algorithm 28.1.

The work and storage used to compute a single w(y0) are at most exp(C/ε),
as we see from Algorithm 27.4. Hence, the total work and storage used to
compute all the w(y0) (y0 ∈ E) are at most exp(C/ε) · N.

412 C. Fefferman

For each y0 ∈ E, we recall that η(y0) = η̄(y0) ◦ πE
{y0}. Consequently,

Proposition 26.1 shows that

(27) For each y0 ∈ E, w(y0) is a (1 + Cε)-optimal vector for �P, η(y0).

Now (23), (26), (27) and Proposition 26.2 together show that

w0 = (w(1) , . . . , w(L) , (w(y0))y0∈E)

is a (1 + Cε)-optimal vector for �P, η, with η as in Algorithm 28.1.
We have seen that the work and storage used to compute w0 are most

exp(C/ε)N, plus the work and storage needed to repeat Algorithm 28.1.
Thus, our algorithm uses total work and storage at most exp(C/ε)N2.

This completes our explanation of Algorithm 28.2.

Remark 28.1. To carry out Algorithm 28.2, we needn’t repeat all the steps
in Algorithm 28.1. This allows us easily to reduce the work and storage of
Algorithm 28.2 to exp(C/ε)N log N and exp(C/ε)N, respectively. Unfortu-
nately, these improvements will not help us when we apply Algorithm 28.2
in the next section.

29. From Whitney Fields to Functions

In this section, we pass from Whitney fields to functions, and give the proof
of Theorem 2. We begin by introducing some definitions and notation.

Given a finite set E ⊂ R
n, we write Fns(E) to denote the vector space

of all functions f : E → R. We identify f ∈ Fns(E) with the Whitney field
[f] = (P̃x)x∈E, where for each x ∈ E, P̃x denotes the constant polynomial
P̃x(y) = f(x) (all y ∈ R

n). Thus, Fns(E) is identified with a subspace of
Wh(E). Also, we write Wh0(E) to denote the space of all Whitney fields
�P = (Px)x∈E ∈ Wh(E) such that Px(x) = 0 for all x ∈ E.

Thus,

(1) Wh(E) = Fns(E) ⊕ Wh0(E).

In this section we write �P to denote an element of Wh0(E), f to denote an
element of Fns(E), and (f, P) to denote an element of Wh(E), as in (1).

Let us record some of our earlier definitions and results using the above
notation.

Let (f, �P) ∈ Wh(E), with �P = (Px)x∈E ∈ Wh0(E). Then the Cm-norm of
(f, P) is given by

(2) ‖ (f, �P) ‖Cm(Rn) = inf {‖ F ‖Cm(Rn):
F ∈ Cm(Rn), F = f on E, ∂αF(x) = ∂αPx(x) for 0 < |α| ≤ m, x ∈ E}.

The Cm
Norm of a Function with Prescribed Jets II 413

For f ∈ Fns(E), the Cm-norm is given by

(3) ‖ f ‖Cm(Rn) = inf {‖ F ‖Cm(Rn): F ∈ Cm(Rn), F = f on E}.

Comparing (2) and (3), we see that

(4) ‖ f ‖Cm(Rn) = inf {‖ (f, �P) ‖Cm(Rn): �P ∈ Wh0(E)},

for any f ∈ Fns(E).
In terms of our new notation, Algorithm 21.1 takes the following form.

Algorithm 29.1. Given ε > 0, assumed to be less than a small enough
controlled constant; and given a Whitney field (f, �P) ∈ Wh(E), with �P =

(Px)x∈E ∈ Wh0(E), and with #(E) = N, 2 ≤ N < ∞; we compute a number

Nε(f, �P) ≥ 0, and a function F ∈ Cm(Rn), with the following properties.

(5) F = f on E.

(6) ∂αF(x) = ∂αPx(x) for 0 < |α| ≤ m, x ∈ E.

(7) ‖ F ‖Cm(Rn)≤ (1 + Cε) · Nε(f, �P).

(8) Nε(f, �P) ≤ (1 + Cε) ‖ (f, �P) ‖Cm(Rn).

Moreover,

(9) The one-time work of the algorithm is at most exp(C/ε) N log N, the
query work is at most C log(N/ε), and the storage used is at most
exp(C/ε)N.

Note that (5)...(8) and (2) imply

(10) (1 − Cε) ‖ (f, �P) ‖Cm(Rn)≤ Nε(f, �P) ≤ (1 + Cε) ‖ (f, �P) ‖Cm(Rn),

and

(11) ‖ F ‖Cm(Rn)≤ (1 + Cε) · ‖ (f, �P) ‖Cm(Rn).

Next, we prepare to express Algorithms 28.1 and 28.2 in our new nota-
tion. A Wh(E)-descriptor η takes the form

(12) η = (Fns(E) ⊕ Wh0(E), W, λ1, . . . , λI),

where W is a finite-dimensional vector space, and λ1, . . . , λI : Fns(E) ⊕
Wh0(E) ⊕ W → R are linear functionals. We write (f, �P, w) to denote an

element of Fns(E) ⊕ Wh0(E) ⊕ W, and we write λi(f, �P, w) to denote the

value of the linear functional λi applied to the vector (f, �P, w).
Let η be a Wh(E)-descriptor in the form (12).

Then, for (f, �P) ∈ Fns(E) ⊕ Wh0(E), we have

(13) Λ((f, �P), η) = min
w∈W

max
i=1,...,I

|λi(f, �P, w)|.

414 C. Fefferman

Some of our computations will involve Fns(E)-descriptors η̌. We identify
Fns(E) with R

N (N = #(E)), by taking the co-ordinates of f ∈ Fns(E) to
be the function values f(x) (all x ∈ E). Thus, a Fns(E)-descriptor η̌ can be
stored in the computer as a matrix, as described in Section 26.

The reformulations of Algorithms 28.1 and 28.2 in our new notation are
as follows.

Algorithm 29.2. Given ε > 0, assumed to be less than a small enough
controlled constant; and given a set E ⊂ R

n, with #(E) = N, 2 ≤ N < ∞;
we compute a Wh(E)-descriptor η in the form (12), with the following prop-
erties.

(14) Let (f, �P) ∈ Wh(E). Then the number Nε(f, �P) computed from ε, (f, �P)

by Algorithm 29.1 differs by at most a factor of (1+Cε) from Λ((f, �P), η);
see (13).

(15) In (12), we have I ≤ exp(C/ε)N and dim W ≤ exp(C/ε)N.

Moreover,

(16) The work and storage used to compute η are at most exp(C/ε) · N2.

Algorithm 29.3. Given ε, E, N as in Algorithm 29.2, and given a Whit-
ney field (f, �P) ∈ Wh(E), we compute a (1 + Cε)-optimal vector w0 ∈ W

for (f, �P) and η, where η is the Wh(E)-descriptor computed from ε, E by
Algorithm 29.2.

The work and storage used to compute w0 are at most exp(C/ε) · N2.

As a simple consequence of Theorem 4 from the introduction (see Feffer-
man-Klartag [22, 23]), we have the following algorithm.

Algorithm 29.4. Given f ∈ Fns(E), with E ⊂ R
n, #(E) = N, 2 ≤ N < ∞,

we compute �P# ∈ Wh0(E) such that

(17) ‖ (f, �P#) ‖Cm(Rn)≤ C ‖ f ‖Cm(Rn).

The computation of �P# uses work at most CNlog N, and storage at most CN.

Explanation: By Theorem 4, we can compute a function F ∈ Cm(Rn), such
that F = f on E, and ‖ F ‖Cm(Rn)≤ C ‖ f ‖Cm(Rn). The computation of F

involves one-time work at most CN log N, storage at most CN, and query
work at most C log N.

We take

�P# = (P#
x)x∈E , where P#

x = Jx(F) − f(x) for x ∈ E .

The Cm
Norm of a Function with Prescribed Jets II 415

Thus, �P# ∈ Wh0(E), and the Whitney field (f, �P#) agrees with F, in the
sense that F(x) = f(x) for x ∈ E, and

∂αF(x) = ∂αP#
x (x) for 0 < |α| ≤ m , x ∈ E .

Hence, (2) yields ‖ (f, �P#) ‖Cm(Rn)≤‖ F ‖Cm(Rn)≤ C ‖ f ‖Cm(Rn). This
proves (17). The work and storage of our algorithm are as asserted.

This completes our explanation of Algorithm 29.4.

Algorithm 29.5. Given ε > 0, assumed to be less than a small enough
controlled constant; and given f ∈ Fns(E), with E ⊂ R

n, #(E) = N, 2 ≤
N < ∞; we compute a number Nε(f) ≥ 0 and a function F ∈ Cm(Rn), with
the following properties.

(18) F = f on E.

(19) ‖ F ‖Cm(Rn)≤ (1 + Cε) · Nε(f).

(20) Nε(f) ≤ (1 + Cε) · ‖ f ‖Cm(Rn).

The algorithm uses one-time work at most exp(C/ε)N5(log N)2, query
work at most C log(N/ε), and storage at most exp(C/ε)N2.

Explanation: The algorithm proceeds in several steps.

Step 1: Applying Algorithm 29.2 to ε, E, we compute a Wh(E)-descriptor

(21) η = (Fns(E) ⊕ Wh0(E), W, λ1, . . . , λI),

satisfying (14) and (15).
The work and storage of Step 1 are at most exp(C/ε)N2, by (16).
In (21), each λi is a linear functional on [Fns(E) ⊕ Wh0(E)] ⊕ W. We

may instead regard λi as a linear functional on Fns(E) ⊕ [Wh0(E) ⊕ W].
This allows us to carry out the next step below.

Step 2: We compute the Fns(E)-descriptor η̌, defined by

(22) η̌ = (Fns(E), Wh0(E) ⊕ W, λ1, . . . , λI).

Thanks to (15), we see easily that

(23) The length and dimension of η̌ are at most exp(C/ε)N.

Moreover, the task of computing η̌ from η is trivial; it requires work and
storage at most exp(C/ε)N2.

Let us discuss the relationship of η and η̌ to Cm-norms.
For any �P ∈ Wh0(E), (10) and (14) together show that

(24) (1 − Cε) ‖ (f, �P) ‖Cm(Rn)≤ min
w∈W

max
i=1,...,I

|λi(f, �P, w)|

≤ (1 + Cε) ‖ (f, �P) ‖Cm(Rn) .

(Here we have also used (13).)

416 C. Fefferman

Taking the infimum over �P in (24), and recalling (4), we see that

(25) (1 − Cε) ‖ f ‖Cm(Rn)≤ inf
(�P,w)∈Wh0(E)⊕W

max
i=1,...,I

|λi(f, �P, w)|

≤ (1 + Cε) ‖ f ‖Cm(Rn) .

That is,

(26) (1 − Cε) ‖ f ‖Cm(Rn)≤ Λ(f, η̌) ≤ (1 + Cε) ‖ f ‖Cm(Rn),

thanks to (22) and the definition of Λ(f, η̌).
In view of (26), we would like to compute Λ(f, η̌) up to a factor (1+Cε),

using Algorithm 26.3.

One of the inputs to that algorithm is a vector, assumed to satisfy con-
dition (†) in Section 26. To produce such a vector, we proceed as follows.

Step 3: Applying Algorithm 29.4 to f, we compute �P# ∈ Wh0(E) such that

(27) ‖ (f, �P#) ‖Cm(Rn)≤ C ‖ f ‖Cm(Rn).

The work and storage used for Step 3 are at most CN log N and CN,
respectively.

Step 4: Applying Algorithm 29.3 to ε, E, N and (f, �P#), we compute a (1 +

Cε)-optimal vector w# ∈ W for (f, �P#), η. Thus,

(28) max
i=1,...,I

|λi(f, �P
#, w#)| ≤ (1 + Cε) · min

w∈W
max
i=1,...I

|λi(f, �P
#, w)|.

The work and storage used for Step 4 are at most exp(C/ε)N2.
Observe that

(29) max
i=1,...,I

|λi(f, �P
#, w#)| ≤ (1 + Cε) · min

w∈W
max

i=1,...,I
|λi(f, P

#, w)| (by (28))

≤ (1 + C′ε) ‖ (f, �P#) ‖Cm(Rn) (by (24))

≤ C ‖ f ‖Cm(Rn) (by (27)).

On the other hand, for any �P ∈ Wh0(E), we have

‖ f ‖Cm(Rn)≤‖ (f, �P) ‖Cm(Rn) (by (4))

≤ (1 + Cε) · min
w∈W

max
i=1,...,I

|λi(f, �P, w)| (by (24)).

Consequently,

(30) ‖ f ‖Cm(Rn)≤ (1 + Cε) · min
(�P,w)∈Wh0(E)⊕W

max
i=1,...,I

|λi(f, �P, w)|.

(The minimum is achieved, thanks to an elementary remark from Sec-
tion 26.)

The Cm
Norm of a Function with Prescribed Jets II 417

Combining (29) and (30), we learn that

(31) max
i=1,...,I

|λi(f, �P
#, w#)| ≤ C min

(�P,w)∈Wh0(E)⊕W
max

i=1,...,I
|λi(f, �P, w)|.

Let us compare (22) and (31) with condition (†) in the statement of

Algorithm 26.3. We find that the vector (�P#, w#) satisfies (†) for the list of

affine functions Wh0(E) ⊕ W � (�P, w) �→ λi(f, �P, w) (i = 1, . . . , I), with Γ

in (†) equal to C in (31).

Thus, we are in position to apply Algorithm 26.3.

Step 5: We apply Algorithm 26.3 to the list of affine functions (�P, w) �→
λi(f, �P, w) (i = 1, . . . , I), with (�P#, w#) here playing the rôle of the
vector w0 in Algorithm 26.3. We recall that we can take Γ = C in
Algorithm 26.3.

Thus, we compute a vector

(32) (�P0, w0) ∈ Wh0(E) ⊕ W,

such that

(33) max
i=1,...,I

|λi(f, �P
0, w0)| ≤ (1 + Cε) · min

(�P,w)∈Wh0(E)⊕W
max

i=1,...,I
|λi(f, �P, w)|.

Thanks to (23), we have I, D ≤ exp(C/ε)N in Algorithm 26.3. There-
fore, the work consumed by Step 4 is at most exp(C/ε)N5(log N)2, while
the storage used is at most exp(C/ε)N2. (These quantities dominate the
work and storage used in Algorithm 29.5. Thus, virtually all the work goes
into solving one big linear programming problem.)
We now observe that

‖ f ‖Cm(Rn)≤‖ (f, �P0) ‖Cm(Rn) (by (4))

≤ (1 + Cε) · min
w∈W

max
i=1,...,I

|λi(f, �P
0, w)| (by (24))

≤ (1 + Cε) · max
i=1,...,I

|λi(f, �P
0, w0)|

≤ (1 + C′ε) · min
(�P,w)∈Wh0(E)⊕W

max
i=1,...,I

|λi(f, �P, w)| (by (33))

≤ (1 + C′′ε) · ‖ f ‖Cm(Rn) (by (25)).
In particular,

(34) ‖ f ‖Cm(Rn)≤‖ (f, �P0) ‖Cm(Rn)≤ (1 + C′′ε) · ‖ f ‖Cm(Rn).

This reduces matters to Algorithm 29.1. We proceed as follows.

418 C. Fefferman

Step 6: We apply Algorithm 29.1 to ε and (f, �P0).

Thus, we compute a number Nε(f, �P
0) ≥ 0, and a function F ∈ Cm(Rn),

with the following properties.

(35) F = f on E.

(36) ∂αF(x) = ∂αP0,x(x) for 0 < |α| ≤ m, x ∈ E; where �P0 = (P0,x)x∈E.

(37) ‖ F ‖Cm(Rn)≤ (1 + Cε) Nε(f, �P
0).

(38) Nε(f, �P
0) ≤ (1 + Cε) ‖ (f, �P0) ‖Cm(Rn).

The one-time work of Step 6 is at most exp(C/ε)N log N, while the query
work is at most C log(N/ε), and the storage used is at most exp(C/ε) · N.
Finally, we mop up as follows.

Step 7: We set Nε(f) = Nε(f, �P
0), and take F as in Step 6. Let us check

that Nε(f) and F have the desired properties (18), (19), (20). In
fact, we have already proven (18); see (35). Also, (19) is immediate

from (37), since we have just set Nε(f) = Nε(f, �P
0). To check (20),

we note that

Nε(f) = Nε(f, �P
0) ≤ (1 + Cε) ‖ (f, �P0) ‖Cm(Rn)

≤ (1 + C′′′ε) ‖ f ‖Cm(Rn) ,

by (38) and (34). Thus, (18), (19), (20) hold.

We have seen that the one-time work of Steps 1...7 above is at most
exp(C/ε)N5(log N)2, while the query work (which occurs only in Step 6) is
at most C log(N/ε), and the storage used is at most exp(C/ε)N2.

This completes our explanation of Algorithm 29.5.

Note that (18), (19), (20) and the definition of ‖ f ‖Cm(Rn) show that

(39) (1 − Cε) ‖ f ‖Cm(Rn)≤ Nε(f) ≤ (1 + Cε) ‖ f ‖Cm(Rn),

and

(40) ‖ F ‖Cm(Rn)≤ (1 + Cε) · ‖ f ‖Cm(Rn), F = f on E.

Thus, (39) and (40) hold for the number Nε(f) and the function F ∈ Cm(Rn)
computed by Algorithm 29.5.

Theorem 2 from the introduction is now obvious; in the case #(E) ≥ 2,
we just apply Algorithm 29.5 to ε′, f, with ε′ = c · min(ε, 1) for a small
enough c.

The case #(E) = 1 follows; details are left to the reader.

The Cm
Norm of a Function with Prescribed Jets II 419

References

[1] Arya, S., Mount, D., Netanyahu, N., Silverman, R. and Wu, A.:
An optimal algorithm for approximate nearest neighbor searching in fixed
dimensions. J. ACM 45 (1998), no. 6, 891–923.

[2] Bierstone, E., Milman, P. and Paw�lucki, W.: Differentiable func-
tions defined on closed sets. A problem of Whitney. Invent. Math. 151
(2003), no. 2, 329–352.

[3] Bierstone, E., Milman, P. and Paw�lucki, W.: Higher-order tangents
and Fefferman’s paper on Whitney’s extension problem. Ann. of Math. (2)
164 (2006), no. 1, 361–370.

[4] Brudnyi, A. and Brudnyi, Y.: Metric spaces with linear extensions
preserving Lipschitz condition. Amer. J. Math. 129 (2007), no. 1, 217–314.

[5] Brudnyi, Y.: On an extension theorem. Funk. Anal. i Prilzhen. 4 (1970),
97–98; English transl. in Func. Anal. Appl. 4 (1970), 252–253.

[6] Brudnyi, Y. and Shvartsman, P.: The traces of differentiable functions
to subsets of R

n. In Linear and Complex Analysis, 279–281. Lect. Notes in
Math., Springer-Verlag, 1994.

[7] Brudnyi, Y. and Shvartsman, P.: A linear extension operator for a
space of smooth functions defined on closed subsets of Rn. Dokl. Akad.
Nauk SSSR 280 (1985), 268-270. English transl. in Soviet Math. Dokl. 31
(1985), no. 1, 48–51.

[8] Brudnyi, Y. and Shvartsman, P.: Generalizations of Whitney’s exten-
sion theorem. Int. Math. Research Notices 3 (1994), 129–139.

[9] Brudnyi, Y. and Shvartsman, P.: The Whitney problem of existence
of a linear extension operator. J. Geom. Anal. 7 (1997), no. 4, 515–574.

[10] Brudnyi, Y. and Shvartsman, P.: Whitney’s extension problem for
multivariate C1,w functions. Trans. Amer. Math. Soc. 353 (2001), no. 6,
2487–2512.

[11] Callahan, P. B. and Kosaraju, S. R.: A decomposition of multidi-
mensional point sets with applications to k-nearest-neighbors and n-body
potential fields. J. ACM 42 (1995), no. 1, 67–90.

[12] Dyer, M.: A class of convex programs with applications to computational
geometry. In Proceedings of the Eighth Annual Symposium on Computa-
tional Geometry (1992), 9–15.

[13] Fefferman, C.: Interpolation and extrapolation of smooth functions by
linear operators. Rev. Mat. Iberoamericana 21 (2005), no. 1, 313–348.

[14] Fefferman, C.: A sharp form of Whitney’s extension theorem. Ann. of
Math. (2) 161 (2005), 509–577.

[15] Fefferman, C.: Whitney’s extension problem for Cm. Ann. of Math. (2)
164 (2006), no. 1, 313–359.

420 C. Fefferman

[16] Fefferman, C.: Whitney’s extension problem in certain function spaces.
(preprint).

[17] Fefferman, C.: A generalized sharp Whitney theorem for jets. Rev. Mat.
Iberoamericana 21 (2005), no. 2, 577–688.

[18] Fefferman, C.: Extension of Cm,ω smooth functions by linear operators.
Rev. Mat. Iberoamericana 25 (2009), no. 1, 1–48.

[19] Fefferman, C.: Cm extension by linear operators Ann. of Math. (2) 166
(2007), no. 3, 779–835.

[20] Fefferman, C. and Klartag, B.: Fitting a Cm-smooth function to
data III. Annals of Math. (2), to appear.

[21] Fefferman, C.: The Cm norm of a function with prescribed jets I,
preprint.

[22] Fefferman, C. and Klartag, B.: Fitting a Cm-smooth function to
data I. Annals of Math. (2), to appear.

[23] Fefferman, C. and Klartag, B.: Fitting a Cm-smooth function to
data II. Rev. Mat. Iberoamericana 25 (2009), no. 1, 49–273.

[24] Fefferman, C. and Klartag, B.: An example related to Whitney exten-
sion with almost minimal Cm norm. Rev. Mat. Iberoamericana 25 (2009),
no. 2, 423–446.

[25] Glaeser, G.: Étude de quelques algèbres tayloriennes. J. Analyse Math. 6
(1958), 1–124.

[26] Har-Peled, S. and Mendel, M.: Fast construction of nets in low-
dimensional metrics, and their applications. SIAM J. Comput. 35 (2006),
no. 5, 1148–1184.

[27] John, F.: Extremum problems with inequalities as subsidiary conditions.
In Studies and Essays Presented to R. Courant on his 60th Birthday,
187–204. Interscience Publishers, Inc., New York, 1948.

[28] Karmarkar, N.: A new polynomial-time algorithm for linear program-
ming. Combinatorica 4 (1984), 302–311.

[29] Khachiyan, L. G.: A polynomial-time algorithm in linear programming.
Dokl. Akad. Nauk SSSR 244 (1979), 1093–1096; translated in Soviet Math.
Dokl. 20 (1979), 191–194.

[30] Knuth, D.: The Art of Computer Programming, Volume 2: Seminumerical
Algorithms, 3rd edition. Addison-Wesley, 1997.

[31] Malgrange, B.: Ideals of Differentiable Functions. Oxford Univ. Press,
1966.

[32] Megiddo, N.: Linear programming in linear time when the dimension is
fixed. J. ACM 31 (1984), no. 1, 114–127.

[33] Preparata, F. P. and Shamos, M. I.: Computational Geometry: An
introduction, 2nd edition. Texts and Monographs in Computer Science.
Springer-Verlag, New York, 1985.

The Cm
Norm of a Function with Prescribed Jets II 421

[34] Schönhage, A.: On the power of random access machines. In Proc. 6th.
Internat. Colloq. Automata Lang. Program., 520–529. Lecture Notes Com-
put. Sci, Vol. 71. Springer-Verlag, 1979.

[35] Shvartsman, P.: Lipschitz selections of multivalued mappings and traces
of the Zygmund class of functions to an arbitrary compact. Dokl. Acad.
Nauk SSSR 276 (1984), 559–562; English transl. in Soviet Math. Dokl. 29
(1984), 565–568.

[36] Shvartsman, P.: On traces of functions of Zygmund classes. Sibirskyi
Mathem. J. 28 N5 (1987), 203–215; English transl. in Siberian Math. J.
28 (1987), 853–863.

[37] Shvartsman, P.: Lipschitz selections of set-valued functions and Helly’s
theorem. J. Geom. Anal. 12 (2002), no. 2, 289–324.

[38] Stein, E. M.: Singular Integrals and Differentiability Properties of Func-
tions. Princeton Univ. Press, 1970.

[39] Von Neumann, J.: First draft of a report on the EDVAC. Contract No.
W-670-ORD-492, Moore School of Electrical Engineering, Univ. of Penn.,
Philadelphia, 1945. Reprinted in IEEE Annals of the History of Computing
15 (1993), no. 4, 27–75.

[40] Webster, R.: Convexity. Oxford Science Publications, 1994.
[41] Whitney, H.: Analytic extensions of differentiable functions defined in

closed sets. Trans. Amer. Math. Soc. 36 (1934), 63–89.
[42] Whitney, H.: Differentiable functions defined in closed sets I. Trans.

Amer. Math. Soc. 36 (1934), 369–389.
[43] Whitney, H.: Functions differentiable on the boundaries of regions. Ann.

of Math. 35 (1934), 482–485.
[44] Zobin, N.: Whitney’s problem on extendability of functions and an intrin-

sic metric. Adv. Math. 133 (1998), no. 1, 96–132.
[45] Zobin, N.: Extension of smooth functions from finitely connected planar

domains. J. Geom. Anal. 9 (1999), no. 3, 489–509.

Recibido: 30 de mayo de 2007

Charles Fefferman
Department of Mathematics

Princeton University
Fine Hall, Washington Road
Princeton, New Jersey 08544

cf@math.princeton.edu

Partially supported by NSF Grants #DMS0245242 and #DMS0601025.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

