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Time-Frequency Analysis
of Sjöstrand’s Class

Karlheinz Gröchenig

Abstract

We investigate the properties an exotic symbol class of pseudodif-
ferential operators, Sjöstrand’s class, with methods of time-frequency
analysis (phase space analysis). Compared to the classical treat-
ment, the time-frequency approach leads to striklingly simple proofs
of Sjöstrand’s fundamental results and to far-reaching generalizations.

1. Introduction

In 1994/95 Sjöstrand introduced a symbol class for pseudodifferential oper-
ators that contains the Hörmander class S0

0,0 and also includes non-smooth
symbols. He proved three fundamental results about the L2- boundedness,
the algebra property, and the Wiener property. This work had consider-
able impact on subsequent work in both hard analysis [9, 10, 28, 42–44] and
time-frequency analysis [11,23,24].

Sjöstrand’s definition goes as follows: Let g ∈ S(R2d) be a function with
compact support satisfying the property∑

k∈Z2d

g(t − k) = 1,∀t ∈ R
2d.

Then a symbol σ ∈ S ′(R2d) belongs to M∞,1, the Sjöstrand class, if∫
R2d

sup
k∈Z2d

|(σ · g(. − k))̂(ζ)| dζ < ∞ .
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The Weyl transfrom of a symbol σ(z, ζ) is defined as

(1.1) σwf(x) =

∫
Rd

σ
(x + y

2
, ξ

)
e2πi(x−y)·ξf(y) dydξ .

Sjöstrand proved the following fundamental results about the Weyl trans-
form of a symbol σ ∈ M∞,1(R2d) [38,39].

(a) If σ ∈ M∞,1(R2d), then σw is a bounded operator on L2(Rd).

(b) If σ1, σ2 ∈ M∞,1(R2d) and τw = σw
1 σw

2 , then τ ∈ M∞,1(R2d); thus
M∞,1 is a (Banach) algebra of pseudodifferential operators.

(c) If σ ∈ M∞,1(R2d) and σw is invertible on L2(Rd), then (σw)−1 = τw for
some τ ∈ M∞,1(R2d). This is the Wiener property of M∞,1. For the
classical symbol classes results of this type go back to Beals [3].

The original proofs of Sjöstrand were carried out in the realm of classical
“hard” analysis. This line of investigation was deepened and extended in
subsequent work by Boulkhemair, Herault, and Toft [9,10,28,42–44].

Later it was discovered that Sjöstrand’s class M∞,1 is a special case of a
so-called modulation space. The family of modulation spaces had be stud-
ied in time-frequency analysis since the 1980s and later was also used in
the theory of pseudodifferential operators. The action of pseudodifferen-
tial operators with classical symbols on modulation spaces was investigated
by Tachizawa [41] in 1994; general modulation spaces as symbol classes
for pseudodifferential operators were introduced in [23] independently of
Sjöstrand’s work. This line of investigation and the emphasis on time-
frequency techniques was continued in [11,12,23,24,31,32].

To make the connection to time-frequency analysis, we introduce the
operators of translation and modulation,

(1.2) Txf(t) = f(t − x) and Mωf(t) = e2πiω·tf(t), t, x, ω ∈ R
d,

and note that

(1.3) (σ · g(· − z))̂ (ζ) =

∫
R2d

σ(t)ḡ(t − z) e−2πiζ·t dt = 〈σ,MζTzg〉 .

This is the so-called short-time Fourier transform. It is not only an impor-
tant and widely used time-frequency representation in signal analysis, but
an important object in the mathematical theory of time-frequency analy-
sis. A physicist would use a different terminology for the same object and
speak of position z , momentum ζ, and phase space R

2d instead of time and
frequency.
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In view of (1.3) a distribution belongs to Sjöstrand’s class, if its short-
time Fourier transform satisfies the condition∫

R2d

sup
z∈R2d

|〈σ,MζTzg〉| dζ < ∞ .

More generally, the modulation spaces are defined by imposing a weighted
Lp-norm on the short-time Fourier transform. This class of function spaces
was introduced by H. G. Feichtinger in 1983 [15] and [14, 16] and has been
studied extensively. The modulation spaces have turned out to be the appro-
priate function and distribution spaces for many problems in time-frequency
analysis.

The objective of this paper is to give the “natural” proofs of Sjöstrand’s
results. The definition of Sjöstrand’s class by means of the short-time Fourier
transform (1.3) suggests that the mathematics of translation and modula-
tion operators, in other words, time-frequency analysis, should enter in the
proofs. Although “natural” is a debatable notion in mathematics, we argue
that methods of time-frequency analysis should simplify the original proofs
and shed new light on Sjöstrand’s results. Currently, several different proofs
exist for the boundedness and the algebra property, both in the context of
“hard analysis” and of time-frequency analysis. However, for the Wiener
property only Sjöstrand’s original “hard analysis” proof was known, and it
was an open problem to find an alternative proof.

In the following, we will not only give conceptually new and technically
simple proofs of Sjöstrand’s fundamental results, but we will also obtain new
insights.

Firstly, time-frequency methods provide detailed information on which
class of function spaces Weyl transforms with symbols in M∞,1 act boundedly.

Secondly, the time-frequency methods suggest the appropriate and max-
imal generalization of Sjöstrand’s results (to weighted modulation spaces).
Although we restrict our attention to Weyl transforms and modulation
spaces on R

d, all concepts can be defined on arbitrary locally compact
abelian groups. One may conjecture that Sjöstrand’s results hold for (pseudo-
differential) operators on L2 of locally compact abelian groups as well. In
that case time-frequency methods hold more promise than real analysis
methods.

Thirdly, we show that Weyl transforms with symbols in Sjöstrand’s class
are almost diagonalized by Gabor frames. This may not be surprising, be-
cause it is well-known that pseudodifferential operators with classical sym-
bols are almost diagonalized by wavelet bases and local Fourier bases [33,35].
What is remarkable is that the almost diagonalization property with respect
to Gabor frames is a characterization of Sjöstrand’s class.
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Finally, the new proof of the Wiener property highlights the interaction
with recent Banach algebra techniques, in particular the functional calculus
in certain matrix algebras.

The remainder of the paper is divided into three parts. In Section 2 we in-
troduce the basic definitions and results from time-frequency analysis. This
area has now reached a level of sophistication that makes it possible to ap-
proach a subject that is usually the domain of “hard analysis”. In Section 3
we prove the almost diagonalization property of pseudodifferential operators
with symbols in Sjöstrand’s class. In Section 4 we prove Sjöstrand’s results
and their generalization. With the background in time-frequency analysis
this part becomes very short. We conclude with some remarks and problems.

Acknowledgment. The author would like to thank Thomas Strohmer for
stimulating discussions and providing an early version of the manuscript [40],
and furthermore the Institute for Mathematical Sciences, National Univer-
sity of Singapore, for its hospitality. This work was finished at IMS while
the author was visiting in 2004.

2. Tools from Time-Frequency Analysis

We prepare the tools from time-frequency analysis. Most of these are stan-
dard and discussed at length in the text books [18,21], but the orginal ideas
go back much further.

2.1. Time-Frequency Representations

We combine time x ∈ R
d and frequency ξ ∈ R

d into a single point z = (x, ξ)
in the “time-frequency“ plane R

2d. Likewise we combine the operators of
translation and modulation to a time-frequency shift and write

π(z)f(t) = MξTxf(t) = e2πiξ·tf(t − x)

The short-time Fourier transform (STFT) of function/distribution f on R
d

with respect to window g is defined by

Vgf(x, ξ) =

∫
Rd

f(t)ḡ(t − x)e−2πit·ξ dt

= 〈f,MξTxg〉 = 〈f, π(z)g〉 .

The short-time Fourier transform of a symbol σ(x, ξ), (x, ξ) ∈ R
2d, is a func-

tion on R
4d and will be denoted by VΦσ(z, ζ) for z, ζ ∈ R

2d in order to
distinguish it from the STFT of a function on R

d.
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Usually we fix g in a space of test functions, e.g., g ∈ S(Rd), and interpret
f → Vgf as a linear mapping and Vgf(x, ξ) as the time-frequency content
of f near the point (x, ξ) in the time-frequency plane.

Similarly, the (cross-) Wigner distribution of f, g ∈ L2(Rd) is defined as

W (f, g)(x, ξ) =

∫
Rd

f
(
x +

t

2

)
g
(
x − t

2

)
e−2πiξ·t dt.

Writing ǧ(t) = g(−t) for the inversion, we find that the Wigner distribution
is just a short-time Fourier transform in disguise:

W (f, g)(x, ξ) = 2d e4πix·ξ Vǧf(2x, 2ξ) .

We will need a well-known intertwining property of Wigner distribution,
which expresses the Wigner distribution of a time-frequency shift as a time-
frequency shift, see [18, p. 57] and [21, Prop. 4.3.2].

Lemma 2.1. Let z = (z1, z2), w = (w1, w2) ∈ R
2d and f, g ∈ L2(Rd). Then

W (π(w)f, π(z)g)(x, ξ) = eπi(z1+w1)·(z2−w2) e2πix·(w2−z2) e2πiξ·(−w1+z1) ×
× W (f, g)

(
x − w1 + z1

2
, ξ − w2 + z2

2

)
.

In short, with the notation j(z) = j(z1, z2) = (z2,−z1) we have

(2.1) W (π(w)f, π(z)g) = cMj(w−z)Tw+z
2

W (f, g) ,

and the phase factor c = eπi(z1+w1)·(z2−w2) is of modulus 1.

2.2. Weyl Transforms

Using the Wigner distribution, we can recast the definition of the Weyl
transform as follows:

(2.2) 〈σwf, g〉 = 〈σ,W (g, f)〉 f, g ∈ S(Rd)

In the context of time-frequency analysis this is the appropriate definition
of the Weyl transform, and we will never use the explicit formula (1.1).
Whereas the integral in (1.1) is defined only for a restricted class of symbols
(σ should be locally integrable at least), the time-frequency definition of σw

makes sense for arbitrary σ ∈ S ′(R2d). In addition, if T : S(Rd) → S ′(Rd)
is continuous, then the Schwartz kernel theorem implies that there exists a
σ ∈ S ′(R2d) such that 〈Tf, g〉 = (σwf, g〉 for all f, g ∈ S(Rd). Thus, in a
distributional sense, every reasonable operator possesses a Weyl symbol.
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The composition of Weyl transforms defines bilinear form on symbols
(twisted product)

σwτw = (σ � τ)w

Again, there is a (complicated) explicit formula for the twisted product [18,29],
but it is unnecessary for our purpose.

2.3. Weight Functions

We use two classes of weight functions. By v we always denote a non-negative
function on R

2d with the following properties:

(i) v is continuous, v(0) = 1, and v is even in each coordinate, i.e.,

v(±z1,±z2, . . . ,±z2d) = v(z1, . . . , z2d) ,

(ii) v is submultiplicative, i.e., v(w + z) ≤ v(w)v(z), w, z ∈ R
2d,

(iii) v satisfies the GRS-condition (Gelfand-Raikov-Shilov [20])

(2.3) lim
n→∞

v(nz)1/n = 1, ∀z ∈ R
2d .

We call a weight satisfying properties (i)–(iii) admissible. Every weight of the
form v(z) = ea|z|b(1 + |z|)s logr(e + |z|) for parameters a, r, s ≥ 0, 0 ≤ b < 1
is admissible, whereas the exponential weight v(z) = ea|z|, a > 0, is not,
because it violates (2.3).

Associated to an admissible weight v, we define the class of so-called
v-moderate weights by

(2.4) Mv = {m ≥ 0 : sup
w∈R2d

m(w + z)

m(w)
≤ Cv(z),∀z ∈ R

2d} .

Compare also [29, Ch. 18.5]. This definition implies that the weighted mixed-
norm �p-space �p,q

m is invariant under translation whenever m ∈ Mv. Pre-
cisely, set

‖c‖�p,q
m

=
( ∑

l∈Zd

( ∑
k∈Zd

|ckl|p m(αk, βl)p
)q/p)1/q

,

and
(T(r,s)c)(k,l) = c(k−r,l−s), k, l, r, s ∈ Z

d,

then
‖T(r,s)c‖�p,q

m
≤ Cv(αr, βs)‖c‖�p,q

m
.

Consequently, Young’s theorem for convolution implies that

�1
v ∗ �p,q

m ⊆ �p,q
m .
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2.4. Modulations Spaces and Symbol Classes

Let ϕ(t) = e−πt2 be the Gaussian on R
d, then we define a norm on f by

imposing a norm on the short-time Fourier transform of f as follows:

‖f‖Mp,q
m

= ‖Vϕf‖Lp,q
m

=

(∫
Rd

(∫
Rd

|Vgf(x, ξ)|p m(x, ξ)p dx

)q/p

dξ

)1/q

If 1 ≤ p, q < ∞ and m ∈ Mv, we define Mp,q
m (Rd) as the completion of the

subspace H0 = span {π(z)ϕ : z ∈ R
2d} with respect to this norm, if p = ∞

or q = ∞, we use a weak-∗ completion. For p = q we write M p
m for Mp,p

m , for
m ≡ 1, we write M p,q instead of M p,q

m . For the theory of modulation spaces
and some applications we refer the reader to [16] and [21, Ch. 11-13].

Remarks: 1. The cautionary definition is necessary only for weights of
superpolynomial growth. If m(z) = O(|z|N) for some N > 0, then M p,q

m is
in fact the subspace of tempered distributions f ∈ S ′(Rd) for which ‖f‖Mp,q

m

is finite. If m ≥ 1 and 1 ≤ p, q ≤ 2, then M p,q
m is a subspace of L2(Rd).

However, if v(z) = ea|z|b , b < 1, then M 1
v ⊆ S(Rd) and S ′(Rd) ⊆ M∞

1/v, and

we would have to use ultradistributions in the sense of Björk [6] to define
Mp,q

m as a subspace of “something”.

2. Equivalent norms: Assume that m ∈ Mv and that g ∈ M 1
v , then

(2.5) ‖Vgf‖Lp,q
m

 ‖f‖Mp,q
m

.

Therefore we can use arbitrary nonzero windows in M 1
v in place of the

Gaussian to measure the norm of M p,q
m [21, Ch. 11]. In the following we

will use this norm equivalence frequently without mentioning.

3. The class of modulation spaces contains a number of classical function
spaces [21, Prop.11.3.1], in particular M 2 = L2; if m(x, ξ) = (1 + |ξ|2)s/2,
s ∈ R, then M 2

m = H2
s , the Bessel potential space; likewise, the Shubin

class Qs can be identified as a modulation space [7, 37]; and even S can be
represented as an intersection of modulation spaces.

4. If m ∈ Mv, the following embeddings hold for 1 ≤ p, q ≤ ∞:

M 1
v ↪→ Mp,q

m ↪→ M∞
1/v ,

and M 1
v is dense in M p,q

m for p, q < ∞, and weak-∗ dense otherwise.

5. The original Sjöstrand class is M∞,1(R2d) [38, 39]. We will use the
weighted class M∞,1

v as a symbol class for pseudodifferential operators in
our investigation. For explicitness, we recall the norm of σ ∈ M∞,1

v :

(2.6) ‖σ‖M∞,1
v

=

∫
R2d

sup
z∈R2d

|VΦσ(z, ζ)| v(ζ) dζ .
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In the last few years modulation spaces have been used implicitly and
explicity as symbol classes by many authors, see [9–12, 23–25, 27, 28, 31, 32,
34,35,41–44] for a sample of work.

2.5. Gabor Frames

Fix a function g ∈ L2(Rd) and a lattice Λ ⊆ R
2d. Usually we take Λ =

αZ
d × βZ

d or Λ = αZ
2d for some α, β > 0. Let G(g, Λ) = {π(λ)g : λ ∈ Λ}

be the orbit of g under π(Λ). Associated to G(g, Λ) we define two operators;
first the coefficient operator Cg which maps functions to sequences on Λ and
is defined by

(2.7) Cgf(λ) = 〈f, π(λ)g〉 , λ ∈ Λ ,

and then the Gabor frame operator S = Sg,Λ

(2.8) Sf =
∑
λ∈Λ

〈f, π(λ)g〉π(λ)g = C∗
gCgf .

Definition 1. The set G(g, Λ) is called a Gabor frame (Weyl-Heisenberg
frame) for L2(Rd), if Sg,Λ is bounded and invertible on L2(Rd). Equivalently,
Cg is bounded from L2(Rd) into �2(Λ) with closed range, i.e. ‖f‖2  ‖Cgf‖2.

If G(g, Λ) is a frame, then the function γ = S−1g ∈ L2(Rd) is well
defined and is called the (canonical) dual window. Likewise the “dual tight
frame window” γ̃ = S−1/2g is in L2(Rd). Using different factorizations of
the identity and the commutativity Sg,Λπ(λ) = π(λ)Sg,Λ for all λ ∈ Λ, we
obtain the following series expansions (Gabor expansions) for f ∈ L2(Rd):

f = S−1S =
∑
λ∈Λ

〈f, π(λ)g〉π(λ)γ(2.9)

= SS−1f =
∑
λ∈Λ

〈f, π(λ)γ〉π(λ)g .(2.10)

= S−1/2SS−1/2f =
∑
λ∈Λ

〈f, π(λ)S−1/2g〉π(λ)S−1/2g .(2.11)

The so-called “tight Gabor frame expansion” (2.11) is particularly useful
and convenient, because it uses only one window S−1/2g and behaves like
an orthonormal expansion (with the exception that the coefficients are not
unique).

The existence and construction of Gabor frames for separable lattices
Λ = αZ

d × βZ
d) is well understood (see [13,21,30,45]) and we may take the

existence of Gabor frames with suitable g for granted.
The expansions (2.9) – (2.11) converge unconditionally in L2(Rd), but for

“nice” windows the convergence can be extended to other function spaces.



Time-Frequency Analysis of Sjöstrand’s Class 711

The following theorem summarizes the main properties of Gabor expan-
sions and the characterization of time-frequency behavior by means of Gabor
frames [17,26].

Theorem 2.2. Let v be an admissible weight function (in particular v sat-
isfies the GRS-condition (2.3)). Assume that G(g, αZ

d × βZ
d) is a Gabor

frame for L2(Rd) and that g ∈ M 1
v . Then

(i) The dual window γ = S−1g and S−1/2g are also in M 1
v .

(ii) If f ∈ M p,q
m , then the Gabor expansions (2.9) – (2.11) converge un-

conditionally in Mp,q
m for 1 ≤ p, q < ∞ and all m ∈ Mv, and weak-∗ uncon-

ditionally if p = ∞ or q = ∞.

(iii) The following norms are equivalent on M p,q
m :

(2.12) ‖f‖Mp,q
m

 ‖Cgf‖�p,q
m

 ‖Cγf‖�p,q
m

.

Remark. When g ∈ M 1 ⊇ M 1
v , then G(g, Λ) is necessarily overcomplete

by the Balian–Low theorem [4]. Although the coefficients 〈f, π(λ)g〉 and
〈f, π(λ)γ〉 are not unique, they are the most convenient ones for time-
frequency estimates.

3. Almost Diagonalization of Pseudodifferential Oper-
ators

The tools of the previous section have been developed mainly for applications
in signal analysis, but in view of the definition of the Weyl transform (1.1)
and of Sjöstrand’s class (2.6), we can tailor these methods to the investi-
gation of pseudodifferential operators. It is now “natural” to study σw on
time-frequency shifts of a fixed function (“atom”) and then study the matrix
of σw with respect to a Gabor frame. This idea is related to the confinement
characterization of M∞,1 [39], but is conceptually much simpler.

3.1. Almost Diagonalization

We first establish a simple, but crucial relation between the action of σw on
time-frequency shifts and the short-time Fourier transform of σ. Recall that

j(z1, z2) = (z2,−z1) for z = (z1, z2) ∈ R
2d .

Lemma 3.1. Fix a window g ∈ M 1
v and Φ = W (g, g). Then, for σ ∈ M∞,1

v◦j−1,∣∣〈σwπ(z)ϕ, π(w)ϕ〉∣∣ =
∣∣∣VΦσ

(w + z

2
, j(w − z)

)∣∣∣ =
∣∣VΦσ(u, v)| and(3.1)

|VΦσ(u, v)| =
∣∣∣〈σwπ(u − 1

2
j−1(v)g, π(u +

1

2
j−1(v))g

〉∣∣∣(3.2)

for u, v, w, z ∈ R
2d.
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Proof. Note that (3.1) and (3.2) are well-defined, because the assumption
g ∈ M 1

v implies that Φ = W (g, g) ∈ M 1
1⊗(v◦j−1)(R

2d) [11, Prop. 2.5], and so

the short-time Fourier transform VΦσ makes sense for σ ∈ M∞,1
v◦j−1.

We use the time-frequency definition of the Weyl transform (1.1) and the
intertwining property Lemma 2.1, then

〈σwπ(z)g, π(w)g〉Rd = 〈σ,W (π(w)g, π(z)g)〉R2d

= 〈σ, cMj(w−z)Tw+z
2

W (g, g)〉(3.3)

= c̄VW (g,g)σ
(w + z

2
, j(w − z)

)
,(3.4)

where c is a phase factor of modulus one.

To obtain (3.2), we set u = w+z
2

and v = j(w−z). Then w = u+ 1
2
j−1(v)

and z = u − 1
2
j−1(v), and reading formula (3.4) backwards yields (3.2). �

The next result on almost diagonalization is crucial and all properties of
the Sjöstrand class will follow easily.

Theorem 3.2 (Almost Diagonalization). Fix a non-zero g ∈ M 1
v and as-

sume that G(g, Λ) is a Gabor frame for L2(Rd). Then the following properties
are equivalent.

(i) σ ∈ M∞,1
v◦j−1(R

2d).

(ii) σ ∈ S ′(R2d) and there exists a function H ∈ L1
v(R

2d) such that

(3.5) |〈σwπ(z)g, π(w)g〉| ≤ H(w − z) ∀w, z ∈ R
2d .

(iii) σ ∈ S ′(R2d) and there exists a sequence h ∈ �1
v(Λ) such that

(3.6) |〈σwπ(µ)g, π(λ)g〉| ≤ h(λ − µ) ∀λ, µ ∈ Λ .

Proof. We first prove the equivalence (i) ⇐⇒ (ii) by means of Lemma 3.1.

(i) =⇒ (ii) Assume that σ ∈ M∞,1
v◦j−1 and set

H0(v) = sup
u∈R2d

|VΦσ(u, v)|

By definition of M∞,1
v◦j−1 we have H0 ∈ L1

v◦j−1(R2d), so Lemma 3.1 implies
that

|〈σwπ(z)ϕ, π(w)ϕ〉| =
∣∣∣VΦσ

(w + z

2
, j(w − z)

)∣∣∣
≤ sup

u∈R2d

|VΦσ(u, j(w − z))|(3.7)

= H0(j(w − z)) .

Since ‖H0 ◦ j‖L1
v

= ‖H0‖L1
v◦j−1

< ∞, we can take H = H0 ◦ j ∈ L1
v(R

2d) as

the dominating function in (3.5).
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(ii) =⇒ (i) Conversely, assume that σ ∈ S ′(R2d) and that σw is almost
diagonalized by the time-frequency shifts π(z) with dominating function
H ∈ L1

v(R
2d) as in (3.5). Using the transition formula (3.2), we find that

|VΦσ(u, v)| =
∣∣∣〈σwπ(u−1

2
j−1(v))g, π(u+

1

2
j−1(v))g

〉∣∣∣ ≤ H(j−1(v)) ∀u∈R
2d.

We conclude that∫
R2d

sup
u∈R2d

|VΦσ(u, ζ)| v(j−1(ζ)) dζ(3.8)

≤
∫

R2d

H(v−1(ζ))v(j−1(ζ)) dζ = ‖H‖L1
v

< ∞ ,

and so σ ∈ M∞,1
v◦j−1(R

2d).

The discrete condition (iii) is similar, but technically more subtle to
handle.

(i) =⇒ (iii) To show this implication, we use the well-known fact
that the short-time Fourier transform of a distribution possesses “nice” local
properties, see [11, 21, 44] for various statements and proofs. In particular,
if σ ∈ M∞,1

v◦j−1, then VΦσ ∈ W (C, �∞,1
v◦j−1)(R4d) [21, Thm. 12.2.1]. This means

the following: let Q = [−1/2, 1/2]2d and define the sequence ak, k ∈ Z
2d, to

be ak = supζ∈k+Q supz∈R2d |VΦσ(z, ζ)|; then∑
k∈Z2d

ak v(j−1(k)) = ‖a‖�1
v◦j−1

≤ C‖σ‖M∞,1

v◦j−1
< ∞ .

Using (3.1) once more, we obtain that

|〈σwπ(µ)g, π(λ)g〉| =
∣∣∣VΦσ

(λ + µ

2
, j(λ − µ)

)∣∣∣ ≤ ak if j(λ − µ) ∈ k + Q .

Now set
h(λ) = ak if λ ∈ j−1(k + Q) = j−1(k) + Q .

Then∑
λ∈Λ

h(λ) v(λ) =
∑

k∈Z2d

∑
λ∈j−1(k)+Q

ak v(λ)

≤
∑

k∈Z2d

∑
λ∈j−1(k)+Q

ak v(j−1(k)) sup
u∈Q

v(−u)(3.9)

= C max
k∈Z2d

card {λ ∈ Λ : λ ∈ j−1(k) + Q}|
∑

k∈Z2d

ak v(j−1(k))

≤ C ′‖σ‖M∞,1

v◦j−1
.

This is (iii) as desired.
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(iii) =⇒ (ii) To prove this implication, we finally use the hypothesis
that G(g, Λ) is a Gabor frame. Since g ∈ M 1

v , the dual window γ is also in
M 1

v by Theorem 2.2. In particular, every time-frequency shift π(u)g has the
following frame expansion:

(3.10) π(u)g =
∑
ν∈Λ

〈π(u)g, π(ν)γ〉π(ν)g .

If g, γ ∈ M 1
v , then by the local properties of short-time Fourier trans-

forms [21, Thm. 12.2.1], we know that Vγg ∈ W (C, �1
v)(R

2d). This means
that for every relatively compact set C ⊆ R

2d we have∑
ν∈Λ

sup
u∈C

|Vγg(ν + u)|v(ν) ≤ C‖g‖M1
v

In particular, if C is a symmetric relatively compact fundamental domain
of the lattice Λ and

(3.11) α(ν) = sup
u∈C

|Vγg(ν + u)| = sup
u∈C

|〈π(−u)g, π(ν)γ〉| ,

then the sequence α is in �1
v(Λ).

Given z, w ∈ R
2d we can write them uniquely as w = λ+u, z = µ+u′ for

λ, µ ∈ Λ and u, u′ ∈ C. Inserting the expansions (3.10) and the definition of
α in the matrix entries, we find that

|〈σwπ(µ + u′)g, π(λ + u)g〉| = |〈σwπ(µ)π(u′)g, π(λ)π(u)g〉|
≤

∑
ν,ν′∈Λ

|〈σwπ(µ + ν ′)g, π(λ + ν)g〉| |〈π(u′)g, π(ν ′)γ〉| |〈π(u)g, π(ν)γ〉|

≤
∑

ν,ν′∈Λ

h(λ + ν − µ − ν ′)α(ν ′)α(ν)

= (h ∗ α ∗ α̌)(λ − µ) ,

with α̌(λ) = α(−λ). Since h ∈ �1
v by hypothesis (iii) and α ∈ �1

v by con-
struction, we also have h ∗ α ∗ α̌ ∈ �1

v(Λ).
Now set

H(z) =
∑
λ∈Λ

(h ∗ α ∗ α̌)(λ) χC−C(z − λ) .

Then

(3.12) ‖H‖L1
v
≤

∑
λ

(
h ∗ α ∗ α̌

)
(λ)v(λ) ‖χC−C‖L1

v
= c‖h ∗ α ∗ α̌‖�1v < ∞ .
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If z, w ∈ R
2d with w = λ + u, z = µ + u′ for λ, µ ∈ Λ and u, u′ ∈ C, then

w − z ∈ λ − µ + C − C and

(h ∗ α ∗ α∗)(λ − µ) ≤ H(w − z).

Combining these observations, we have shown that∣∣∣〈σwπ(z)g, π(w)g〉
∣∣∣ ≤ (h ∗ α ∗ α̌)(λ − µ) ≤ H(w − z) ,

and this is (ii). �

Corollary 3.3. Under the hypotheses of Theorem 3.2, assume that T :
S(Rd) → S ′(Rd) is continuous and satisfies the estimates∣∣∣〈Tπ(µ)g, π(λ)g〉

∣∣∣ ≤ h(λ − µ) ∀λ, µ ∈ Λ

for some h ∈ �1
v. Then T = σw for some symbol σ ∈ M∞,1

v◦j−1.

Proof. Schwartz’s kernel theorem and (1.1) imply that T = σw for some
distributional symbol σ ∈ S ′(R2d) (see also [21, Thm. 14.3.5]). Now apply
Theorem 3.2. �
Remarks: 1. Motivated by the concept of “confined symbols” [8], Sjöstrand
proved that σ ∈ M∞,1 if and only if there exists h ∈ �1(Λ) such that

‖(Tµχ)wσw(Tλχ)w‖L2→L2 ≤ h(λ − µ),

where χ ∈ S(R2d) satisfies ∑
λ∈Λ

χ(t − λ) = 1.

The equivalence (i) ⇔ (ii) was also obtained independently by Strohmer [40].

2. Property (ii) says that σw preserves the time-frequency localization
and that σw maps the time-frequency shifts π(z)g into functions in M 1

v with
a uniform envelope H in the time-frequency plane. This could be rephrased
by saying that σw maps time-frequency “atoms” into time-frequency “mole-
cules”.

3. By property (iii) σw is almost diagonalized by the Gabor frame
G(g, Λ). It is well-known that certain types of pseudodifferential opera-
tors are almost diagonalized with respect to wavelet bases or local Fourier
bases [33,35]. What is remarkable in Theorem 3.2 is that the almost diago-
nalization property actually characterizes a symbol class.



716 K. Gröchenig

3.2. Matrix Formulation

Let us formulate Theorem 3.2 on a more conceptual level. Let

f =
∑
µ∈Λ

〈f, π(µ)γ〉π(µ)g

be the Gabor expansion of f ∈ L2(Rd), then

(3.13) Cg(σ
wf)(λ) = 〈σwf, π(λ)g〉 =

∑
µ∈Λ

〈f, π(µ)γ〉 〈σwπ(µ)g, π(λ)g〉 .

We therefore define the matrix M(σ) associated to the symbol σ with respect
to a Gabor frame by the entries

(3.14) M(σ)λµ = 〈σwπ(µ)g, π(λ)g〉 , λ, µ ∈ Λ .

With this notation, (3.13) can be recast as

(3.15) Cg(σ
wf) = M(σ)Cγf ;

or as a commutative diagram:

(3.16)

L2(Rd)
σw−→ L2(Rd)

↓ Cγ ↓ Cg

�2(Λ)
M(σ)−→ �2(Λ)

Lemma 3.4. If σw is bounded on L2(Rd), then M(σ) is bounded on �2(Λ)
and maps ranCg into ranCg with kerM(σ) ⊇ (ranCg)

⊥ = ker C∗
g .

Proof. Note that ranCγ = ranCg, since 〈f, π(λ)γ〉 = 〈f, π(λ)S−1g〉 =
= 〈S−1f, π(λ)g〉 for all λ ∈ Λ, or Cγ = CgS

−1.

Consequently, by the frame property and (3.16) we have

‖M(σ)Cγf‖2 = ‖Cg(σ
wf)‖2 ≤ C1‖σwf‖2 ≤ C2‖f‖2 ≤ C3‖Cgf‖2 ,

and so M(σ) is bounded from ranCg into ranCg. If c ∈ (ranCg)
⊥ = kerC∗

g ,
then

∑
µ∈Λ cµπ(µ)g = 0, and thus

(M(σ)c)(λ) =
∑
µ∈Λ

〈σwπ(µ)g, π(λ)g〉cµ = 0,

i.e., c ∈ ker M(σ). �

Since G(g, Λ) = {π(λ)g : λ ∈ Λ} is only a frame, but not a basis, not
every matrix A is of the form M(σ). It is easy to see that if A maps ran Cg

into Cg and kerA ⊇ ker C∗
g , then A = M(σ) for some σ ∈ S ′(R2d).
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Next we formalize the properties of the matrices occurring in Theo-
rem 3.2.

Definition 2. We say that a matrix A = (aλµ)λ,µ∈Λ belongs to Cv = Cv(Λ),
if there exists a sequence h ∈ �1

v(Λ) such that

(3.17) |aλµ| ≤ h(λ − µ) ∀λ, µ ∈ Λ .

We endow Cv with the norm

‖A‖Cv = inf{‖h‖�1v
: |aλµ| ≤ h(λ − µ),∀λ, µ ∈ Λ}(3.18)

=
∑
µ∈Λ

sup
λ∈Λ

|aλ,λ−µ| v(µ) .

Since every A ∈ Cv is dominated by a convolution operator, the algebra
property is evident.

Lemma 3.5. Cv is a Banach ∗-algebra.
Remark: If A ∈ Cv, then A is automatically bounded on �p

m for 1 ≤ p ≤ ∞
and m ∈ Mv. This follows from the pointwise inequality |Ac(λ)| ≤ (h ∗
|c|)(λ) and Young’s inequality. If Λ = αZ

d × βZ
d, then also

(3.19) ‖Ac‖�p,q
m

≤ ‖h ∗ |c| ‖�p,q
m

≤ ‖h‖�1v ‖c‖�p,q
m

.

Theorem 3.2 can be recast as follows.

Theorem 3.6. A symbol σ is in M∞,1
v◦j−1 if and only if M(σ) ∈ Cv and

(3.20) ‖σ‖M∞,1

v◦j−1
 ‖M(σ)‖Cv .

The estimate ‖M(σ)‖Cv ≤ C1‖σ‖M∞,1

v◦j−1
is contained in (3.7), the converse

inequality follows by combining (3.8) and (3.12).

Remark: In view of this reformulation it is natural to consider other matrix
algebras and study the relation between symbols and the membership of
M(σ) in a matrix algebra.

4. The Proofs of Sjöstrand’s Results

We are now ready to prove Sjöstrand’s results in their “natural” context
and at the same time we formulate suitable extensions. In place of “hard
analysis” we use time-frequency methods, Theorem 3.2, and recent Banach
algebra techniques.

Though frames do not enter in the formulation of the results, they are
vital in the proofs. To treat all weights in the class Mv, we need to assume
as in Theorem 2.2 that the window is chosen from an appropriate space of
test functions M 1

v .
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4.1. Boundedness

Theorem 4.1. If σ ∈ M∞,1
v◦j−1, then σw is bounded on Mp,q

m for 1 ≤ p, q ≤ ∞
and all m ∈ Mv. The operator norm can be estimated uniformly by

‖σw‖Mp,q
m →Mp,q

m
≤ C‖M(σ)‖Cv  ‖σ‖M∞,1

v◦j−1
,

with a constant independent of p, q, and m.

Proof. Fix a Gabor frame G(g, αZ
d × βZ

d) with window g ∈ M 1
v◦j−1. By

Theorem 2.2 also γ ∈ M 1
v◦j−1 and the following norms are equivalent on M p,q

m :

‖f‖Mp,q
m

 ‖Cgf‖�p,q
m

 ‖Cγf‖�p,q
m

for every 1 ≤ p, q ≤ ∞ and m ∈ Mv.

Now let f ∈ M 1
v ⊆ L2(Rd) be arbitrary. Applying diagram (3.16), we

estimate the Mp,q
m -norm of σwf as follows:

‖σwf‖Mp,q
m

≤ C0 ‖Cγ(σ
wf)‖�p,q

m
= C0 ‖M(σ)Cgf‖�p,q

m
.

Since M(σ) ∈ Cv by Theorem 3.2, M(σ) is bounded on �p,q
m for m ∈ Mv

by (3.19). So we continue the above estimate by

‖σwf‖Mp,q
m

≤ C0‖M(σ)‖�p,q
m →�p,q

m
‖Cgf‖�p,q

m
≤ C1‖M(σ)‖Cv ‖f‖Mp,q

m
.

This implies that σw is bounded on the closure of M 1
v in the Mp,q

m -norm. If
p, q < ∞, then by density σw is bounded on M p,q

m . For p = ∞ or q = ∞, the
argument has to be modified as in [5]. �

Remarks: 1. In particular, if σ ∈ M∞,1, then σw is bounded on L2(Rd)
[9,38] and on all M p,q(Rd) for 1 ≤ p, q ≤ ∞ [21,23].

2. Theorem 4.1 is a slight improvement over [21, Thm. 14.5.6] where the
boundedness on M p,q

m for m ∈ Mv required that σ ∈ M∞,1
w with

w(ζ) = v(j−1(ζ)/2)2 ≥ v(j−1(ζ)).

Since S0
0,0 ⊆ M∞,1, the Weyl transforms σw for σ ∈ M∞,1 cannot be

bounded on Lp(Rd) in general. Using the embeddings Lp ⊆ Mp,p′ for 1 ≤
p ≤ 2 and Lp ⊆ Mp for 2 ≤ p ≤ ∞, we obtain an Lp result as follows.

Corollary 4.2. Assume that σ ∈ M∞,1. If 1 ≤ p ≤ 2, then σw maps Lp

into M p,p′, whereas for 2 ≤ p ≤ ∞, σw maps Lp into Mp.
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4.2. The Algebra Property

Theorem 4.3. If v is submultiplicative, then M∞,1
v is a Banach ∗-algebra

with respect to the twisted product � and the involution σ → σ̄.

Proof. It is convenient to use a tight Gabor frame G(g, αZ
d × βZ

d) with
γ = g ∈ M 1

v as in (2.11). By using (3.16) twice, we obtain that

M(σ � τ)Cgf = Cg((σ � τ)w f) = Cg(σ
w τwf)

= M(σ)
(
Cg(τ

wf)) = M(σ)M(τ)Cgf .

Therefore the operators M(σ �τ) and M(σ)M(τ) coincide on ranCg. Since
M(σ)|(ranCg)⊥ = 0 for all σ ∈ M∞,1 by Lemma 3.4, we obtain that

(4.1) M(σ � τ) = M(σ)M(τ)

as an identity of matrices (on �2).

Now, if σ, τ ∈ M∞,1
v , then M(σ),M(τ) ∈ Cv◦j by Theorem 3.6. By the

algebra property of Cv◦j we have M(σ)M(τ) ∈ Cv◦j, and once again by
Theorem 3.6 we have M(σ � τ) ∈ Cv◦j with the norm estimate

‖σ � τ‖M∞,1
v

≤ C0‖M(σ � τ)‖Cv◦j

≤ C0 ‖M(σ)‖Cv◦j
‖M(τ)‖Cv◦j

≤ C1 ‖σ‖M∞,1
v

‖τ‖M∞,1
v

.

�
Compare [22,38,39,42] for other proofs.

4.3. Wiener Property of Sjöstrand’s Class

For the Wiener property we start with two results about the Banach alge-
bra Cv.

Theorem 4.4. Assume that v is a submultiplicative weight satisfying the
GRS-condition

(4.2) lim
n→∞

v(nz)1/n = 1 ∀z ∈ R
2d .

If A ∈ Cv and A is invertible on �2(Zd), then A−1 ∈ Cv. As a consequence

(4.3) SpB(�2)(A) = SpCv
(A)

for all A ∈ Cv, where SpA(A) denotes the spectrum of A in the algebra A.

Originally, this important result was proved by Baskakov [1,2] in several
papers, and by Sjöstrand [39] for the unweighted case v ≡ 1.
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Recall that an operator A : �2 → �2 is pseudo-invertible, if there exists a
closed subspace R ⊆ �2, such that A is invertible on R and ker A = R⊥. The
unique operator A† that satisfies A†Ah = AA†h = h for h ∈ R and kerA† =
R⊥ is called the (Moore-Penrose) pseudo-inverse of A. The following lemma
is borrowed from [19].

Lemma 4.5 (Pseudoinverses). If A ∈ Cv has a (Moore-Penrose) pseudoin-
verse A†, then A† ∈ Cv.

Proof. By means of the Riesz functional calculus [36] the pseudoinverse
can be written as

A† =
1

2πi

∫
C

1

z
(zI − A)−1 dz ,

where C is a suitable path surrounding SpB(�2)(A)\{0}. By (4.3) this formula

make sense in Cv, and consequently A† ∈ Cv. �

Theorem 4.6. Assume that v satisfies the GRS-condition

lim
n→∞

v(nx)1/n = 1 ∀x ∈ R
2d.

If σ∈M∞,1
v (R2d) and σw is invertible on L2(Rd), then (σw)−1 =τw for some

τ ∈ M∞,1
v .

Proof. Again, we use a tight Gabor frame G(g, αZ
d×βZ

d) with g = γ ∈ M 1
v

as in (2.11) for the analysis of the Weyl transform.

Let τ ∈ S ′(R2d) be the unique distribution such that τw = (σw)−1.
Then the matrix M(τ) is bounded on �2 and maps ranCg into ranCg with
ker M(τ) ⊆ (ranCg)

⊥ (by Lemma 3.4).

We show that M(τ) is the pseudo-inverse of M(σ). Let c = Cgf ∈ ranCg,
then

M(τ)M(σ)Cgf = M(τ)Cg(σ
wf) = Cg(τ

wσwf) = Cgf ,

and likewise M(σ)M(τ) = Iran Cg . Since ker M(σ), kerM(τ) ⊆ (ranCg)
⊥, we

conclude that M(τ) = M(σ)†.

By Theorem 3.2 the hypothesis σ ∈ M∞,1
v implies that M(σ) belongs to

the matrix algebra Cv◦j. Consequently by Lemma 4.5, we also have M(τ) =
M(σ)† ∈ Cv◦j. Using Theorem 3.2 again, we conclude that τ ∈ M∞,1

v . This
finishes the proof of the Wiener property. �

It can be shown that Theorem 4.6 is false, when v does not satisfy (4.2).
Thus the GRS-condition is sharp.
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Corollary 4.7 (Spectral Invariance on Modulation Spaces). If σ ∈ M∞,1
v◦j−1

and σw is invertible on L2(Rd), then σw is invertible simultaneously on all
modulation spaces M p,q

m (Rd), where 1 ≤ p, q ≤ ∞ and m ∈ Mv.

Proof. By Theorem 4.6 (σw)−1 = τw for some τ ∈ M∞,1
v◦j−1 and then by

Theorem 4.1 τw is bounded on Mp,q
m for the range of p, q and m specified.

Since σwτw = τwσw = I on M 1
v , this factorization extends by density to all

of Mp,q
m . Thus τw = (σw)−1 on Mp,q

m . �

Remarks: 1. It is known that M∞,1 is invariant under convolution with
“chirps” eit·Ct for any symmetric real-valued d × d-matrix C [21, 38]. As a
consequence, the properties of the symbol class M∞,1 carry over to other
calculi of pseudodifferential operators, in particular to the Kohn–Nirenberg
correspondence [38,42].

2. Translation and modulation operators can be defined on arbitrary lo-
cally compact abelian groups (LCA groups), and consequently, modulation
spaces and the Kohn–Nirenberg correspondence are well-defined on LCA
groups in place of R

d. Therefore Sjöstrand’s results should hold in the
general context of LCA groups, but it is clear that the methods of classical
analysis can no longer be applied, whereas it is plausible that time-frequency
methods can be generalized. For instance, it is not hard to verify that the
matrix algebra Cv for v ≡ 1 coincides with M∞,1(Zd × T

d). Thus The-
orem 4.4 says that the Wiener property holds for the modulation space
C = M∞,1(Zd × T

d). Therefore we conjecture that Theorem 4.6 holds for

M∞,1(G × Ĝ) for an arbitrary LCA group G, and will pursue this question
elsewhere.
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[39] Sjöstrand, J.: Wiener type algebras of pseudodifferential operators.
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