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Quasiconformal dimensions
of self-similar fractals

Jeremy T. Tyson and Jang-Mei Wu

Abstract

The Sierpinski gasket and other self-similar fractal subsets of Rd,
d ≥ 2, can be mapped by quasiconformal self-maps of Rd onto sets
of Hausdorff dimension arbitrarily close to one. In R2 we construct
explicit mappings. In Rd, d ≥ 3, the results follow from general theo-
rems on the equivalence of invariant sets for iterated function systems
under quasisymmetric maps and global quasiconformal maps. More
specifically, we present geometric conditions ensuring that (i) isomor-
phic systems have quasisymmetrically equivalent invariant sets, and
(ii) one-parameter isotopies of systems have invariant sets which are
equivalent under global quasiconformal maps.

1. Introduction

The distortion of Hausdorff dimension by quasiconformal mappings has been
a subject of interest within geometric function theory for some time. Gehring
and Väisälä [9] established K-dependent bounds for the distortion of the
Hausdorff dimension of a fixed subset of Rd by a K-quasiconformal self-map
of Rd. The spectacular results of Astala [2] provide sharp bounds in the
planar case. In recent years dilatation-independent bounds for Hausdorff
dimension distortion have been considered. Bishop [4] showed that for sets
of positive dimension there is never an obstruction to raising dimension
by quasiconformal maps. On the other hand, examples of Tyson [26] and
Bishop-Tyson [6] (also [10, §15]) show that the corresponding statement for
lowering dimension can fail. For each α ∈ [1, d], there exists a compact set
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E ⊂ Rd for which dim F (E) ≥ dim E = α for every quasiconformal map F :
Rd → Rd. Here and henceforth we denote by “dim” the Hausdorff dimension.
In fact, these examples have the stronger property that the dimension cannot
be reduced by any quasisymmetric map to another metric space. Recall that
a homeomorphism F between metric spaces (X, d) and (Y, d′) is said to be
quasisymmetric if there exists an increasing homeomorphism η of [0,∞) to
itself such that

(1.1) d(x, y) ≤ td(x, z) ⇒ d′(F (x), F (y)) ≤ η(t)d′(F (x), F (z))

for all x, y, z ∈ X. See Tukia–Väisälä [24]. Every quasiconformal map F :
Rd → Rd, d ≥ 2, is quasisymmetric and the restriction of a quasisymmetric
map to a subset is again quasisymmetric.

For a fixed metric space X, the conformal dimension C dim X of X is the
infimum of the Hausdorff dimensions of all metric spaces quasisymmetrically
equivalent to X:

C dim X = inf{dim Y : ∃F : X → Y quasisymmetric}.
This concept was introduced by Pansu [22]. For further information regard-
ing conformal dimension, see Tyson [26, 27], Bishop–Tyson [5, 6], Balogh [3],
Keith–Laakso [13], and the recent work of Bonk and Kleiner [8, 7].

For a fixed set E ⊂ Rd we define the quasiconformal dimension QC dim E
to be the infimum of the Hausdorff dimensions of all images of E under
quasiconformal self-maps of Rd:

QC dim E = inf{dim F (E) : F : Rd → Rd quasiconformal}.
By the above remarks,

C dim E ≤ QC dim E ≤ dim E

for every E; and for each α ∈ [1, d] there exists E ⊂ Rd with

C dim E = QC dim E = dim E = α.

In this paper we show that the quasiconformal dimension is equal to one
for a class of self-similar subsets of Euclidean spaces. A motivating example
is the Sierpinski gasket SG (Figure 1),which can be characterized as the
unique nonempty compact set K in R2 satisfying

K = f0(K) ∪ f1(K) ∪ f2(K),

where

(1.2) fj(z) = (z + e2πij/3)/2, j = 0, 1, 2.
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Figure 1: The Sierpinski gasket SG.

The Hausdorff dimension of SG is log 3
log 2

= 1.5849 . . . We prove the following

Theorem 1.3 QC dim SG = 1.

Laakso [16] has earlier shown that C dim SG = 1. The strict inequality
QC dim SG < dim SG was previously established by Meyer [20], Laakso [16]
and Tyson, independently.1

In the plane, we also prove the corresponding theorem for the polygas-
kets PG(N) ⊂ R2 (see Figure 2) which are generated by regular N -sided
polygons.

Figure 2: Polygaskets PG(N) for N = 5, 6, 7, 8.

Theorem 1.4 For each N ≥ 3, N 
≡ 0 (mod 4), QC dim PG(N) = 1.

In higher dimensions, an analogous result holds for the d-dimensional
Sierpinski gaskets SGd ⊂ Rd.

Theorem 1.5 For each d ≥ 3, QC dim SGd = 1.

In each of these three theorems, we (i) construct self-similar sets of Haus-
dorff dimension arbitrarily close to one, (ii) build quasisymmetric maps from
the given set onto these new sets, and (iii) extend the quasisymmetric map to
a global quasiconformal map. Steps two and three rely on general theorems
on the quasisymmetric equivalence (Theorem 1.7) and global quasiconfor-
mal equivalence (Theorem 1.9) of invariant sets for iterated function systems.

1In June 2003, Laakso indicated to us an alternate proof for Theorem 1.3.
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These results will be stated momentarily. The application of the general qua-
siconformal extension theorem to the case of the higher-dimensional gaskets
is very complicated, and the construction of the self-similar sets in step (i)
in the case of the polygaskets is also quite intricate. These results are given
in sections 6 and 7, respectively.

Before stating our general results, we recall that an iterated function sys-
tem (IFS) is a family of strictly contractive similarities F = {f1, . . . , fM} of
a Euclidean space Rd. The invariant set K = K(F) is the unique nonempty
compact set which is invariant under the action of F . Certain geometric
conditions serve to limit the geometric complexity of invariant sets. First
is the open set condition (OSC), introduced by Moran [21] and rediscovered
by Hutchinson [11], which postulates the existence of a bounded nonempty
open set O in Rd such that the images of O under the maps in F are disjoint
proper subsets of O. By limiting the size of the overlap sets fi(K) ∩ fj(K),
i 
= j, the open set condition allows for the explicit computation of dim K
as the unique positive solution s to the equation

(1.6)
M∑
i=1

λs
i = 1,

where λi denotes the contraction ratio associated with fi ∈ F . Next is the
notion of post-critical finiteness (PCF), introduced by Kigami [14]. Post-
critically finite systems are essentially characterized by the requirement that
the critical set

⋃
i�=j fi(K)∩ fj(K) and its full backward image under F are

finite sets. For the precise definition, see section 3.
Our results hold for gasket type iterated function systems, a class which

we introduce in Definition 3.13. The term ‘gasket type’ is motivated by
the strong geometric similarities between the invariant sets of such systems
and that of the classical Sierpinski gasket. Gasket type systems are both
post-critically finite and satisfy the open set condition.

The precise statements of Theorems 1.7 and 1.9 use the language of sym-
bolic dynamics, which we now review. The dynamical attributes of an itera-
ted function system F = {f1, . . . , fM} are encoded via its symbolic represen-
tation as a quotient of the sequence space Σ=A∞, A = {1, . . . ,M}. Indeed,
there exists a continuous mapping πF from Σ onto the invariant set K=K(F).

Moreover, πF descends to a homeomorphism between Σ/
F∼ and K(F), where

the quotient space Σ/
F∼ is defined by the equivalence relation w

F∼ w′ if and
only if πF(w) = πF(w′).

Each iterated function system F contains certain distinguished elements
which comprise the boundary of F . See section 3 for the precise defini-
tion. An iterated function system is called boundary congruent if all of its
boundary elements share a common contraction ratio and have no rotation.
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Following Kigami [15], we say that two iterated function systems F =
{f1, . . . , fM} and G = {g1, . . . , gM} are isomorphic if, up to a reordering

of the indices, the equivalence relations Σ/
F∼ and Σ/

G∼ coincide. In this
case the canonically defined map πG ◦ π−1

F is a well-defined homeomorphism
between the invariant sets. We now state our theorem on quasisymmetric
equivalence of invariant sets.

Theorem 1.7 Let F and G be iterated function systems, each of which is
boundary congruent and of gasket type. If F and G are isomorphic, then
F = πG ◦ π−1

F : K(F) → K(G) is quasisymmetric.

Corollary 1.8 Let F be a boundary congruent, gasket type system with in-
variant set K. Then

C dim(K) ≤ inf dim K(G),

where the infimum is taken over all boundary congruent, gasket type sys-
tems G which are isomorphic with F .

Our next result concerns the global quasiconformal equivalence of invari-
ant sets. Here we require a stronger assumption about the manner in which
the two systems are related.

Theorem 1.9 Let F and G be iterated function systems, each of which is
boundary congruent and of gasket type. If F and G are equivalent through
a nondegenerate isotopy of boundary congruent, gasket type systems, then
F = πG ◦ π−1

F : K(F) → K(G) admits a quasiconformal extension to Rd.

Corollary 1.10 Let F be a boundary congruent, gasket type iterated func-
tion system with invariant set K. Then

QC dim(K) ≤ inf dim K(G),

where the infimum is taken over all boundary congruent, gasket type iterated
function systems G which are equivalent with F through some nondegenerate
isotopy of such systems.

Two systems F and G are said to be equivalent through an isotopy of it-
erated function systems if there exists a continuously varying one-parameter
family of systems F t = {f t

1, . . . , f
t
M}0≤t≤1, so that F = F0, G = F1, and

F t′ and F t′′ are isomorphic for any 0 ≤ t′ < t′′ ≤ 1. Nondegeneracy of
the isotopy means that the dimension of the affine subspace spanned by the
invariant set K(F t) is constant in t. For the relevant topology on the space
of iterated function systems, see Remark 3.4.
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Note that in the case of a complex isotopy {F t}t∈D of holomorphically
varying IFS’s in the plane, the conclusion of Theorem 1.9 is guaranteed by
Slodkowski’s extension [23] of the celebrated λ-lemma of Mañé, Sad and
Sullivan [17]. Theorem 1.9 can be viewed as a version of the λ-lemma for
real isotopies in any dimension, in the setting of self-similar invariant sets.

It would be interesting to know when two isomorphic systems can be
joined by an isotopy. For further discussion, see Remark 3.31.

The boundary congruence condition is essential; both Theorems 1.7
and 1.9 fail in its absence. See Example 4.5.

The definition of gasket-type systems (Definition 3.13) includes IFS’s
with totally disconnected invariant sets. A result of MacManus [18] states
that every uniformly perfect and uniformly disconnected subset of R2 is
equivalent via a quasiconformal map of R2 with the Cantor ternary set. In
the setting of self-similar invariant sets, total disconnectivity automatically
improves to uniform disconnectivity. Furthermore, all invariant sets are uni-
formly perfect, see Proposition 3.9. Since the Cantor ternary set has quasi-
conformal dimension equal to zero, every totally disconnected self-similar in-
variant set in R2 has quasiconformal dimension equal to zero. Corollary 1.10
includes this earlier result as a special case.

The restriction N 
≡ 0 (mod 4) in Theorem 1.4 is imposed because the
IFS for PG(N) is not post-critically finite when N ≡ 0 (mod 4) (cf. the case
N = 8 in Figure 2). In the absence of post-critical finiteness, it is difficult
to construct quasisymmetric deformations of invariant sets. The Sierpinski
carpet SC (Figure 3) is another example of an invariant set for a non-PCF
iterated function system. Note that C dim SC ≥ 1+log 2/ log 3 > 1 since SC
contains the product of [0, 1] with the Cantor ternary set, and such product
spaces are known to be minimal for conformal dimension [26]. Keith and
Laakso [13] have shown that C dim SC < dim SC = log 8/ log 3. The exact
value of C dim SC is unknown, and it is not known whether QC dim SG and
dim SC are equal.

Figure 3: The Sierpinski carpet SC.

This paper is organized as follows. In section 2 we prove that the global
quasiconformal dimension of the Sierpinski gasket is one. Section 3 contains
preliminary definitions and basic notation. The intrinsic quasisymmetry
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of the canonical homeomorphism on invariant sets (Theorem 1.7) and the
quasiconformal extensions to the ambient spaces (Theorem 1.9) are proved
in sections 4 and 5, respectively. Two theorems of Väisälä from [28], which
provide sufficient conditions for extending a quasisymmetric map to a global
quasiconformal map, play a crucial role in the proof of Theorem 1.9.

Finally, in sections 6 and 7 we prove Theorems 1.5 and 1.4. The con-
structions of the deformed iterated function systems for the polygasket and
the d-dimensional gasket are quite intricate and involve many technical com-
binatorial/geometric estimates.

2. The Sierpinski gasket

Fix a natural number n ∈ N. We view the Sierpinski gasket as the invariant
set for the following iterated function system consisting of 6n + 3 planar
contractive similarities:
(2.1)

F = {f (n+1)
j : j = 0, 1, 2} ∪ {f (m)

j ◦ fk : j, k = 0, 1, 2, j 
= k,m = 1, . . . , n}.

Here f (p) denotes the p-fold composition of f and F0 = {f0, f1, f2} denotes
the IFS from (1.2). Figure 4(c) shows the images of the triangle T0 with
vertices 1, ω = e2πi/3 and ω2 = e4πi/3 under the mappings in F in the
case n = 2.

Figure 4: (a) SG; (b) the defining triangles from F0 for SG; (c)
the defining triangles from F (n = 2) for SG.

We define a deformation G of F which generates an invariant set SGn.
F and G are isomorphic and the homeomorphism from SG to SGn is qua-
sisymmetric and can be extended to a quasiconformal map of R2. Finally,
limn→∞ dim SGn = 1. Taken together, these results prove Theorem 1.3.

To define G we replace the geometrically decreasing sequence of triangles
f

(m)
j ◦ fk(T0), m = 1, . . . , n, with a row of equally sized triangles. The defor-

mation can be viewed as a discrete analog of the conformal map z �→ log z.
The precise contraction mappings are chosen to guarantee combinatorial
equivalence of the defining triangles with those in Figure 4.
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Explicitly, consider the family of planar contraction mappings

G = {gj : j = 0, 1, 2} ∪ {hjkm : j, k = 0, 1, 2, j 
= k,m = 1, . . . , n},
where

gj(z) =
1

n + 2
z +

n + 1

n + 2
ωj ,(2.2)

hjkm(z) =
1

(n + 2)
√

3
eεjkπi/6(z − ωj) +

1

n + 2
ωk +

m + 1

n + 2
ωj,(2.3)

and ε01 =ε12 =ε20 =1, ε10 =ε21 =ε02 =−1. See Figure 5 for the case n=2.

(a)

(b)

(d)

(c)

Figure 5: (a) SG2; (b) the defining triangles from G for SG2.

According to a result from the following section (Proposition 3.29), in
order to show that F and G are isomorphic it suffices to verify that the ver-
tices of the triangles gj(T0), hjkm(T0) are identified according to the same rule

whereby the vertices of the triangles f
(n+1)
j (T0), f

(m)
j ◦ fk(T0) are identified.

We leave to the reader the straightforward verification of this fact.
By Theorem 1.7 there is a canonically defined quasisymmetric homeo-

morphism Fn : SG → SGn. It is easy to see what this homeomorphism
must be. By iteration, the identification of corresponding vertices of the
defining triangles for F and G may be extended to an identification be-
tween corresponding vertices of triangles at each level of the construction.
This correspondence extends by density to a homeomorphism between SG
and SGn. This is the canonical homeomorphism Fn.

Since the components of Ĉ \ SG are quasidiscs, the quasisymmetric
map Fn extends to a quasiconformal map in each component by Ahlfors’
Extension Theorem [1]. By [29, Theorem 3.3], the extended map is quasi-
conformal on all of R2.

To complete the proof of Theorem 1.3, we will estimate the Hausdorff
dimensions of the deformed gaskets SGn. Since G satisfies the open set con-
dition, the dimension of SGn is the unique positive solution to the equation

3
( 1

n + 2

)sn

+ 6n
( 1

(n + 2)
√

3

)sn

= 1.

Then 9n
(n+2)sn ≥ 1 whence sn ≤ log(9n)

log(n+2)
→ 1 as n → ∞.
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Remark 2.4 The linear interpolation F t = {gt
j , h

t
jkm}0≤t≤1 defined by

gt
j = tgj + (1 − t)f

(n+1)
j ,

ht
jkm = thjkm + (1 − t)fk ◦ f

(m)
j ,

(2.5)

is a nondegenerate isotopy between F and G. Thus the existence of the
quasiconformal extension would also follow from Theorem 1.9. However,
the above argument via Ahlfors’ Extension Theorem [1] is simpler.

3. Definitions and notation

3.1. Basic notation

In sections 3-5 we always work in a fixed Euclidean space Rd. For 1 ≤
p ≤ d we view Rp as a subset of Rd via the embedding (x1, . . . , xp) �→
(x1, . . . , xp, 0, . . . , 0). For a subset A of Rp, or more generally of a p-dimen-
sional affine subspace of Rd, we use |A|p to denote the p-dimensional Lebesgue
measure of A. We abbreviate |A| = |A|d and we denote the measure of the
unit ball in Rd by Ωd.

We denote the d × d identity matrix by Id. For a d × d matrix A we
denote by ||A|| := sup{|Av| : v ∈ Rd, |v| ≤ 1} the operator norm.

We say that a map f : Rd → Rd is a similarity if there exists λ > 0
so that the identity |f(x) − f(y)| = λ|x − y| holds for all x, y ∈ Rd. It is
well-known that any such map can be written in the form

(3.1) f(x) = f(0) + λ A · x
for some matrix A in the orthogonal group O(d).

A similarity is called strict if λ < 1. Each strict similarity f : Rd → Rd

has a unique fixed point a = (Id − λA)−1 · f(0), and can be written in the
form

(3.2) f(x) = a + λA(x − a).

Conversely, each triple (a, λ,A) with a ∈ Rd, 0 < λ < 1, and A ∈ O(d)
gives rise to a strict similarity f of Rd via (3.2). The space SS(Rd) of all
strict similarities of Rd is thus finite-dimensional. The topology on SS(Rd)
is the canonical topology arising from the representations of elements in
the form (3.2). Observe that this topology is metrizable, for example, it is
generated by the metric

(3.3) D(f, g) = |a − a′| + |λ − λ′| + ||A − A′||, f, g ∈ SS(Rd),

where f = (Id − λ A)a + λ A and g = (Id − λ′ A′)a′ + λ′ A′. The resulting
topology on SS(Rd) coincides with the topology of local uniform conver-
gence. Observe, however, that SS(Rd) is not a complete metric space.
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3.2. Iterated function systems

We review the basic theory of iterated function systems as developed in
Hutchinson [11]. For a modern treatment, see Kigami [15, Chapter 1]. Our
notation is consistent with [15].

An iterated function system (IFS) consists of a finite collection F =
{f1, . . . , fM} of strict similarities of the Euclidean space Rd. Associated to
each iterated function system F there is a unique nonempty compact set K =
K(F) ⊂ Rd which is invariant under the transformations f1, . . . , fM , i.e.,

K =
M⋃
i=1

Ki, Ki = fi(K).

This follows from the completeness of the space of all compact subsets of Rd

equipped with the Hausdorff metric, see [19, 4.13] or [15, Theorem 1.1.4].

Remark 3.4 For fixed M , the space IFS(Rd,M) of all iterated function
systems F = {f1, . . . , fM} in Rd is naturally identified with the quotient
SS(Rd)M/SM , where SM denotes the symmetric group of permutations of
M letters. Via this identification, the topology on SS(Rd) described above
induces a topology on IFS(Rd,M), which is generated by the metric

(3.5) D(F ,G) = min
ι∈SM

M
max
k=1

D(fk, gιk), F ,G ∈ IFS(Rd,M).

In the remainder of this section we fix an iterated function system F
in IFS(Rd,M) with invariant set K and denote by (aj, λj, Aj) the data
from (3.2) associated with an element fj ∈ F , j = 1, . . . ,M . To avoid some
trivial cases we assume that M ≥ 2 and a1 
= a2 so that diamK > 0.

3.3. Symbolic dynamics

Let A be an alphabet consisting of the letters 1, . . . ,M and let Wm = Am,
m ≥ 1 (resp. Σ = AN), denote the space of words of length m (resp. words
of infinite length) with letters drawn from A. We denote elements of these
spaces by concatenation of letters, i.e., we write w = w1w2 · · ·wm ∈ Wm or
w = w1w2 · · · ∈ Σ, where wj ∈ A. We set W = ∪m≥1Wm to be the set of all
words of finite length. For a fixed letter i ∈ A we denote by i the infinite
word iii · · · .

We denote by σ the shift map on Σ:

σ(w1w2w3 · · · ) = w2w3 · · · .
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Fix an IFS F as above. For each finite word w = w1 · · ·wm let fw = fw1 ◦
· · ·◦fwm and λw = λw1 · · ·λwm . For an arbitrary set S ⊂ Rd, let Sw = fw(S).
If S is a nonempty compact set with fi(S) ⊂ S for all i ∈ A, then

(3.6) lim
m→∞

max
w∈Wm

diam Sw = 0

and
K =

⋂
m≥0

⋃
w∈Wm

Sw.

If w = w1w2 · · · is an infinite word, then Sw :=
⋂

m Sw1···wm is nonempty;
by (3.6) Sw contains precisely one point. For infinite words w, the set Sw is
independent of the initial set S, indeed, Sw = Kw for any set S as above.

We consider on the space Σ the product topology induced by the discrete
topology on A and we define a map π = πF : Σ → K by setting π(w) equal to
the unique point in Kw. Then π is a continuous surjection between compact
sets [15, Theorem 1.2.3]. Observe that

(3.7) π(w) = lim
m→∞

fw1···wm(x0), w = w1w2 · · · ∈ Σ,

where x0 is an arbitrarily chosen point in Rd.

Proposition 3.8 π(w) = π(w′) for w 
= w′ ∈ Σ if and only if π(σsw) =
π(σsw′), where s = s(w,w′) := min{m : wm 
= w′

m} − 1.

This is Proposition 1.2.5 in [15]. Observe that s = s(w,w′) if and only
if wi = w′

i for 1 ≤ i ≤ s and ws+1 
= w′
s+1. Moreover, π(σsw) = π(σsw′) ∈⋃

i�=j Ki ∩ Kj.

3.4. Uniform perfectness

A metric space X is c-uniformly perfect, c > 0, if for every x ∈ X and every
0 < r < diam X the annulus B(x, r) \ B(x, cr) is nonempty. For example,
every connected space is 1/2-uniformly perfect.

In connection with the following proposition, recall our standing assump-
tions that M ≥ 2 and diam K > 0.

Proposition 3.9 The invariant set K is 1
2
λmin-uniformly perfect, where

λmin := min{λ1, . . . , λM}.
Proof. Let x ∈ K and r > 0 and choose τ ∈ Σ, π(τ) = x. Let w = w1 · · ·wm

be the shortest subword of τ for which Kw ⊂ B(x, r). If w is the empty
word, then K ⊂ B(x, r). In this case we may choose a point y ∈ K with
|x − y| ≥ 1

2
r and the result follows. If w is not the empty word, then

diam Kw ≥ λmin diam Kw1···wm−1 ≥ λminr.

Again, there exists y ∈ Kw with |x− y| ≥ 1
2
λminr. The proof is complete. �
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3.5. Post-critical finiteness and the open set condition

Following Hutchinson [11], we say that an IFS F = {f1, . . . , fM} satisfies
the open set condition (OSC) if there exists a nonempty bounded open set O
such that Oj ⊂ O for all j and Oj ∩Ok = ∅ for all j 
= k, where Oj = fj(O).
Recall that for an IFS which satisfies the open set condition, the dimension
of the invariant set can be computed using (1.6). See, e.g., Theorem 9.3
in [19] or Theorem 1.5.7 in [15].

For an IFS F , let
C := ∪i�=jKi ∩ Kj

denote the critical set for the images Ki = fi(K), and let

(3.10) P :=
⋃

w∈W

f−1
w (C) ∩ K

denote the post-critical set. The symbolic preimages of these sets are the
critical symbols π−1(C) and the post-critical symbols

(3.11) π−1(P ) =
⋃
m≥1

σm(π−1(C))

which are defined as subsets of the sequence space Σ.2 (For the equality of
the expressions in (3.11), see [15, Proposition 1.3.5].) An IFS is said to be
post-critically finite (PCF) if it has finitely many post-critical symbols.

On some occasions we will refer to the post-critical set as the boundary
of F . We denote the set of maps f ∈ F whose fixed point lies in P by ∂F .

The following result is a special case of Lemma 1.3.14 in [15].

Proposition 3.12 Let F be post-critically finite and let fi ∈ F with fixed
point ai. Then π−1(ai) = {i}.

The prototypical PCF system satisfying the open set condition is the
standard IFS F = {f0, f1, f2} in (1.2) defining the Sierpinski gasket SG.
See Figure 4(a). Observe that the interior of the initial triangle T0 with
vertices at 1, ω and ω2 verifies the open set condition.

Note that in this example the post-critical set P coincides with the set of
fixed points of the maps in F and also with the vertices of T0. These identi-
fications need not hold in general. The concept of a gasket type IFS, which
we introduce next, axiomatizes certain relations among these three sets.

2Our definition for post-critical finiteness agrees with that of [15], however, some of
our terminology differs. In particular, in [15] the terms critical and post-critical set refer
to the sets π−1(C) and π−1(P ).
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3.6. Gasket-type systems

Let F be an IFS with invariant set K. Let Fix(F) = {a1, . . . , aM} be the
set of fixed points of the maps in F . Denote by Π the convex hull of K. As
usual, let Πw = fw(Π) for w ∈ W .

Definition 3.13 We say that F is a system of gasket type if the following
conditions hold:

(i) Π is a polyhedron,

(ii) each vertex of Π is in Fix(F).

(iii) for all i, j ∈ A, i 
= j, Ki ∩ Kj = Πi ∩ Πj, and when this intersection
is nonempty, it contains exactly one point which is a common vertex
of Πi and Πj,

(iv) for v ∈ C the set Sv :=
⋃

m≥1 σmπ−1(v) contains at most two words.

Condition (iii) implies that the post-critical set P is contained in the set
of vertices V (Π) of the polyhedron Π. Thus

(3.14) P ⊂ V (Π) ⊂ Fix(F)

for gasket type systems. Both inclusions may be strict. Observe that we do
not require that the post-critical set be nonempty; in particular, we allow
the possibility that a gasket type IFS is totally disconnected.

Gasket type systems are post-critically finite. Indeed, π−1(P ) = ∪v∈CSv

has cardinality at most M(M − 1). In fact, condition (iv) is equivalent with
the following:

(iv’) F is post-critically finite and Πi ∩ Πj ∩ Πk = ∅ whenever i, j, k ∈ A,
i 
= j, i 
= k, j 
= k.

Lemma 3.15 Let F be a gasket-type IFS. If v ∈ Ki ∩ Kj with i 
= j, then
Sv = {k, l} and v = fi(ak) = fj(al), where ak, al denote the fixed points of
fk, fl, respectively.

Proof. Suppose that v ∈ Ki ∩ Kj. Then f−1
i (v), f−1

j (v) ∈ P ⊂ Fix(F)

and v = fi(ak) = fj(al) for some fk, fl ∈ ∂F . Then v = π(ik) = π(jl) and
k, l ∈ Sv. �

Examples 3.16 Set ω = e2πi/3. For j = 1, . . . , 6 let fj(z) = 2
3
aj + 1

3
z,

where a1 = 1, a2 = (1 + ω)/2, a3 = (1 + ω2)/2, a4 = ω, a5 = −1/2 and
a6 = ω2. Also let f̃2(z) = 1

3
ω2(z − 1) and f̃3(z) = 1

3
ω(z − 1). Finally, let

f̂1(z) = 1
3

+ 2
3
z.
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(1) The IFS F = {f1, f2, f3, f4, f5, f6} is a post-critically finite system
which fails to satisfy the second assertion in (iv’).

(2) The gasket type IFS F = {f1, f̃2, f̃3, f4, f6} shows that the case “Sv is
a singleton” in (iv) can occur.

(3) The IFS F = {f̂1, f4, f5, f6} shows that in general elements of the
critical set need not be vertices of every polyhedron in which they lie.
Thus the last phrase in (iii) is not a consequence of the remaining parts
of the definition.

Finally, the strict inclusion V (Π) � Fix(F) in (3.14) may hold, as is wit-
nessed by any of these three examples.

Proposition 3.17 Gasket type systems satisfy the open set condition.

Proof. If the topological dimension p of Π is equal to d, we choose O to
be the interior of Π. If p < d we write Rd = Λ ⊕ Λ⊥ as the direct sum
of the p-dimensional affine subspace Λ which spans Π and its orthogonal
complement Λ⊥, with origin chosen so that Λ×{0} coincides with Λ. Then
we may choose O = O′ × Bd−p(0, 1) ⊂ Rd, where O′ denotes the interior of
Π in the subspace topology on Λ. �

Remark 3.18 Note also that Πv ⊂ Πw if and only if v is formed by adding
additional letters after w; in this case we call Πv a descendant or a subpoly-
hedron of Πw. By the generation of a descendant Πv of Πw we mean the
number of additional letters in v, i.e., the length of v minus the length of
w. The children of Πw are its first generation descendants. If Πv is a child
of Πw, we denote by Π̂v = Πw the parent of Πv. When Πv and Πv′ are two
distinct descendants of Πw, then either (i) Πv ∩ Πv′ = ∅ or (ii) Πv ∩ Πv′

contains exactly one point, or (iii) Πv ⊂ Πv′ or Πv′ ⊂ Πv. When Πv and Πv′

are two distinct children of Πw, then either (i) or (ii) must be true. We call
two subpolyhedra adjacent if they intersect in exactly one point. Observe
that condition (ii) of Definition 3.13 implies that each vertex of Πw can be
a vertex of at most one child Πwi.

3.7. Geometric data associated with a gasket type system

Let F = {f1, . . . , fM} be a gasket type system. Let

λmin := min{λ1, . . . , λM},
λmax := max{λ1, . . . , λM},(3.19)

be the minimal and maximal scaling ratios associated with the elements
of F .
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Next, let

(3.20) δ :=
min{dist(Πi, Πj) : Πi ∩ Πj = ∅, i, j ∈ A}

diam Π

be the minimal relative distance between non-adjacent children and let

(3.21) θ := min {∠xvy : x ∈ Πi, y ∈ Πj, Πi ∩ Πj = {v} 
= ∅, i, j ∈ A}

be the minimal angle between adjacent children. If all of the children Πi are
disjoint, the minimum in (3.21) is over the empty set; in this case we set
θ = π. (See, e.g., Lemmas 3.23–3.26 and (5.2).)

Finally, let

(3.22) κ := λmin · smin(Π)

diam Π
,

where

smin(Π) := min{|v − w| : v, w distinct vertices of Π}.
Observe that all five of these quantities are positive and λmax < 1;

θ > 0 follows from the fact that the sets Πi are convex polyhedra which
meet only at vertices. Moreover, as functions of the IFS F , the quan-
tities in (3.19)–(3.22) are functions of either the contraction ratios λi or
the vertices of Π, and thus are continuous with respect to the topology on
IFS(Rd,M) described in Remark 3.4.

In the following three lemmas we fix a subpolyhedron Πw = fw(Π).

Lemma 3.23 Let Πwi and Πwj be two adjacent children of Πw which inter-
sect at v. If x ∈ Πwi and y ∈ Πwj, then

|x − y| ≤ |x − v| + |y − v| ≤ csc(θ/2)|x − y|.

Proof. It follows from the definition of θ and the self similarity that ∠xvy ≥
θ > 0 for all x ∈ Πwi and y ∈ Πwj. The stated inequalities then follow from
the Law of Cosines and the triangle inequality. �

Lemma 3.24 Let Πwi, Πwj and Πwk be three distinct children of Πw. Then

(3.25) min{δ, 1

2
κ sin(θ/2)} diam Πw ≤ max{|x − y|, |x − z|} ≤ diam Πw

for x ∈ Πwi, y ∈ Πwj and z ∈ Πwk.
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Proof. Suppose Πwi and Πwj are not adjacent. Then

|x − y| ≥ dist(Πwi, Πwj) ≥ δ diam Πw.

A similar result holds if Πwi and Πwk are not adjacent. Let {v} = Πwi ∩Πwj

and {v′} = Πwi ∩Πwk, and assume that |x− y| < 1
2
sin(θ/2)smin(Πwi). From

Definition 3.13(iv’), we have v 
= v′. By the previous lemma,

csc(θ/2)|x − z| ≥ |x − v′| ≥ |v − v′| − |x − v| ≥ smin(Πwi) − csc(θ/2)|x − y|
>

1

2
smin(Πwi) ≥ 1

2
κ diam Πw. �

Lemma 3.26 Let v be a vertex of Πw and let Πwi and Πwj be distinct chil-
dren of Πw so that v is a vertex of Πwj. Then

(3.27) min{δ, κ sin(θ/2)} diam Πw ≤ dist(v, Πwi) ≤ diam Πw.

Observe that under the hypotheses of Lemma 3.26, v is not a vertex
of Πwi. See Remark 3.18.

Proof. Let x ∈ Πwi. If Πwi and Πwj are not adjacent, then |x − v| ≥
δ diam Πw. Suppose that Πwi and Πwj are adjacent, with Πwi ∩Πwj = {v1}.
As discussed above, v1 
= v. By Lemma 3.23,

|x − v| ≥ sin(θ/2)|v − v1| ≥ sin(θ/2)smin(Πwj) ≥ κ sin(θ/2) diam Πw.

�

3.8. Boundary congruence

Let F be a gasket type system. We say that F is boundary congruent if all
of the similarities in ∂F share a common contraction ratio and have trivial
rotation matrix. In other words, there exists 0 < λ∂ < 1 so that each f ∈ ∂F
satisfies f(x) = a + λ∂(x − a) for some a ∈ P .

Remark 3.28 One could generalize the definition of boundary congruence
by requiring that all of the maps in ∂F share a common contraction ratio
λ∂ and a common rotation matrix A∂ ∈ O(d). However, it can be shown
that this a priori weaker requirement is in fact equivalent with the stated
condition. (Here the standing assumptions that M ≥ 2 and Fix(F) contains
at least two elements are needed.)

The boundary congruence property is essential for proving quasisymme-
try of the canonical homeomorphism F between isomorphic invariant sets.
Without it, the relative distances |x− v|/|y − v| and |F (x)−F (v)|/|F (y)−
F (v)| will be incommensurable at a point v in the critical set of F . See
Example 4.5.
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3.9. Isomorphic systems

Fix M ≥ 1 and denote by SM the symmetric group on M letters. Each
permutation ι ∈ SM induces a bijection of Σ = {1, . . . ,M}∞ by the formula
w1w2 · · · �→ ιw1ιw2 · · · . We use the same notation ι for this bijection of Σ.

Let F ,G ∈ IFS(Rd,M). Following Kigami [15, Definition 1.3.2], we say
that F and G are isomorphic if the map F := πG ◦ ι ◦ π−1

F is a well-defined
homeomorphism between K(F) and K(G). In other words, there exists a
permutation ι ∈ SM so that πG ◦ι(w) = πG ◦ι(w′) whenever w,w′ ∈ Σ satisfy
πF(w) = πF(w′).

To simplify matters, we assume henceforth that for isomorphic systems
F and G, the elements of G are ordered so that ι is the identity. Then the
canonical homeomorphism from K(F) to K(G) is

F = πG ◦ π−1
F .

Proposition 3.29 gives an effective way to verify that two gasket type
systems are isomorphic.

Proposition 3.29 Let F and G be two gasket type iterated function sys-
tems. For each i = 1, . . . ,M , denote the fixed point of fi by ai and the fixed
point of gi by a′

i. Then the following are equivalent:

(i) F and G are isomorphic,

(ii) for each v ∈ C, if v = fi(ak) = fj(al) for some i 
= j (as in
Lemma 3.15), then gi(a

′
k) = gj(a

′
l).

Proof. First assume that F and G are isomorphic, and let v = fi(ak) =
fj(al) ∈ C. Then πF(ik) = v = πF(jl) whence πG(ik) = πG(jl) and gi(a

′
k) =

gj(a
′
l). Thus (i) implies (ii).
To see why the converse holds, suppose that w,w′ ∈ Σ, w 
= w′ and

πF(w) = πF(w′). By Proposition 3.8,

v := πF(σsw) = πF(σsw′) ∈ C,

where s = s(w,w′). By Lemma 3.15, Sv = {k, l} and v = fi(ak) = fj(al) for
some i 
= j and k and l. Thus

π−1(v) = {ik, jl} ⊃ {σsw, σsw′}.

Since σsw 
= σsw′ we may assume without loss of generality that σsw = ik
and σsw′ = jl. By the hypothesis πG(σsw) = πG(σsw′) and so πG(w) =
πG(w′) as required. �
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3.10. Isotopies of iterated function systems

Assume that F t = {f t
1, . . . , f

t
M}, 0 ≤ t ≤ 1, is a one-parameter family of

iterated function systems in Rd which vary continuously in t, that is, the map
t �→ F t is continuous with respect to the topology on the space IFS(Rd,M)
discussed in Remark 3.4. We say that {F t} is an isotopy if F t′ and F t′′ are
isomorphic whenever 0 ≤ t′ < t′′ ≤ 1. We call such an isotopy nondegenerate
if the dimension of the affine subspace Λt of Rd spanned by the invariant set
K(F t) is constant in t. We denote this common dimension by p.

Remark 3.30 Nondegeneracy of the isotopy ensures that the invariant sets
K(F t) are “uniformly thick” in dimension p. For a precise statement along
these lines, see Remark 5.5.

A typical example of a degenerate isotopy is the planar family

F t = {f t
1, f

t
2, f

t
3, f

t
4},

where

f t
1(z) = λtz, f t

2(z) = λt(1 + eiπt/3z), f t
3(z) = 1 − f t

2(1 − z),

f t
4(z) = 1 − f t

1(1 − z), and λt =
1

4
csc2(πt/6).

This isotopy interpolates between F0, whose invariant set is the unit segment
[0, 1], and F1, whose invariant set is the von Koch snowflake.

On the other hand, every isotopy of gasket type systems for which the
polyhedron Πt is identical for all t, is nondegenerate. This covers, for exam-
ple, the isotopies in Remark 2.4 and section 6.

Remark 3.31 It is not clear when two isomorphic systems can be joined
by a nondegenerate isotopy. In the planar case, linear isotopies (as in (2.5))
always generate similarities provided all of the contraction maps involved
are orientation-preserving, i.e. analytic. However, it is not easy to determine
whether the intermediate IFS’s are all isomorphic to the original system and
whether the isotopy is nondegenerate.

In higher dimensions linear isotopies do not give similarity maps for
0 < t < 1. This stems from the fact that the Cauchy-Riemann system
defining conformality in higher dimensions is nonlinear (see [12, (1.22)]). As
before, if all of the maps in question have coherent orientations, nonlinear
isotopies of similarity maps can be found. But again the questions of de-
termining when the intermediate systems are all isomorphic, and when the
isotopy is nondegenerate are formidable. In the case of the d-dimensional
gaskets (section 6), we will construct explicit nondegenerate isotopies. See
Proposition 6.14.
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4. Quasisymmetric maps between invariant sets

In this section we prove Theorem 1.7, which asserts that the canonical home-
omorphism F = πG ◦ π−1

F between the invariant sets of two isomorphic,
boundary congruent, gasket type systems F and G, is quasisymmetric.

For brevity, we write K = K(F) and K ′ = K(G). In general, we will
put a prime over a quantity that has been defined for F to denote the
corresponding quantity for G. For example, {λ′

j} will denote the contraction
ratios for the maps in G and λ′

∂ will denote the contraction ratio associated
with the similarities whose fixed points lie in ∂G. Let Π and Π′ be the convex
hulls of K and K ′, respectively. Without loss of generality we may assume
that diam Π = diam Π′ = 1.

The proof of Theorem 1.7 relies on a series of geometric lemmas (Lem-
mas 4.1–4.3) which describe the metric distortion induced by the canonical
homeomorphism. The setting for these lemmas is the following. We fix
a word w ∈ W and let Q = Πw = fw(Π) and Q′ = gw(Π′). We denote
by d = diam Q = λw and d′ = diam Q′ = λ′

w, and by Qτ = fwτ (Π) and
Q′

τ = gwτ (Π
′) for a word τ ∈ W .

In the statements of the lemmas, we write A � B (resp. A � B, resp.
A � B) if A ≤ CB (resp. A ≥ B/C, resp. A/C ≤ B ≤ CA) for some
constant C < ∞ which may depend on F and G, but does not depend on
the length of the word w.

Lemma 4.1 Let x, y ∈ Q. If |x − y| � d, then |F (x) − F (y)| � d′.

Lemma 4.2 Let x ∈ Q and let v be the common vertex of two children of
Q. If |x − v| � λk

∂d for some k ∈ N, then |F (x) − F (v)| � (λ′
∂)

kd′.

Lemma 4.3 Let Qτ and Qη be adjacent subpolyhedra in Q, not necessarily
in the same generation. If x ∈ Qτ and y ∈ Qη with |x − y| � λk

∂d for some
k ∈ N, then |F (x) − F (y)| � (λ′

∂)
kd′.

Proof of Lemma 4.1. Let x, y ∈ Q with |x − y| ≥ cd, for some positive
constant c depending only on F . Let n be the smallest index such that x
and y are contained in nonadjacent nth generation subpolyhedra Qτ and Qη

respectively. Then the parents Q̂τ and Q̂η are either adjacent or identical.
It follows that

|x − y| ≤ diam Q̂τ + diam Q̂η ≤ 2λn−1
maxd,

and so λn−1
max ≥ 1

2
c.

Since F and G are isomorphic, Q′
τ and Q′

η are nonadjacent. This implies

that |F (x)−F (y)| ≥ δλn−1
min d′ � d′. The reverse inequality |F (x)−F (y)| ≤ d

is trivial. �
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Proof of Lemma 4.2. Let x ∈ Q, let v be the common vertex of two
children of Q, and assume that λk

∂/cd ≤ |x− v| ≤ cλk
∂d for some k ∈ N. Let

Qτ , τ ∈ Wn, be the smallest descendant of Q which contains x and v. Then

min{δ, κ sin(θ/2)} diamQτ ≤ |x − v| ≤ diam Qτ

by Lemma 3.26. The boundary congruence assumption implies that diamQτ =
λn

∂d, whence |k − n| � 1.
Since F and G are isomorphic, Q′

τ is the smallest descendant of Q′ which
contains F (x) and F (v). Applying Lemma 3.26 again yields

min{δ′, κ′ sin(
θ′

2
)} diam Q′

τ ≤ |F (x) − F (v)| ≤ diam Q′
τ .

As before, diam Q′
τ = (λ′

∂)
nd and |k − n| � 1. The proof is complete. �

Proof of Lemma 4.3. Let Qτ and Qη be two adjacent subpolyhedra
of Q with common vertex v, and let x ∈ Qτ and y ∈ Qη satisfy |x − y| �
λk

∂d. Let Qi and Qj be the unique children of Q which are ancestors of Qτ

and Qη, respectively. Applying Lemma 3.23 to x ∈ Qi and y ∈ Qj yields
|x−v|+|y−v| � |x−y| � λk

∂d. Assume as we may that |y−v| ≤ |x−v| � λk
∂d.

By Lemma 4.2,

|F (y) − F (v)| � (λ′
∂)

kd′ � |F (x) − F (v)|.
Applying Lemma 3.23 again yields

|F (x) − F (y)| � |F (x) − F (v)| + |F (y) − F (v)| � (λ′
∂)

kd′

as desired. �
Proof of Theorem 1.7. To prove that F is quasisymmetric, it suffices to
show that there exists a constant C so that

(4.4) x, y, z ∈ K,
1

2
≤ |x − y|

|x − z| ≤ 2 ⇒ 1

C
≤ |F (x) − F (y)|

|F (x) − F (z)| ≤ C.

Indeed, assume that F satisfies (4.4) and assume that x, y, z ∈ K satisfy
|x − y| ≤ |x − z|. If in addition 1

2
|x − z| ≤ |x − y| then (4.4) immediately

yields
|F (x) − F (y)|
|F (x) − F (z)| ≤ C,

so assume that |x − y| ≤ 1
2
|x − z|. Then |y − z| ≥ 1

2
|x − z| and |y − z| ≤

|y − x| + |x − z| ≤ 2|x − z| so

|F (x) − F (y)|
|F (x) − F (z)| ≤ 1 +

|F (y) − F (z)|
|F (x) − F (z)| ≤ C + 1
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by (4.4). Thus we have shown that F is weakly quasisymmetric. Similarly,
F−1 is weakly quasisymmetric. Since K and K ′ are doubling and uniformly
perfect (Proposition 3.9), F is necessarily quasisymmetric. This follows from
a simple modification of Theorem 10.19 of [10].

Let x, y, z ∈ K with 1
2
|x − z| ≤ |x − y| ≤ 2|x − z| and assume that Q

is the smallest subpolyhedron of Π which contains x, y and z. Let Qi be a
child of Q containing x. (If x is in the critical set C then choose either of the
children containing x.) Then all possible locations of x, y and z are covered
by the following four cases (and the variation of (4) in which y and z are
switched):

(1) at least one of y and z is contained in a child of Q which is disjoint
from Qi;

(2) y ∈ Qj and z ∈ Qk for two different children Qj, Qk of Q each of which
is adjacent to Qi;

(3) y and z are elements of the same child Qj of Q which is adjacent to Qi;

(4) y is an element of a child Qj of Q which is adjacent to Qi and z ∈ Qi.

In each of these cases, we will show that the ratio |F (x)−F (y)|
|F (x)−F (z)| is bounded away

from zero and infinity.

Case (1) is the simplest. If, say, y is contained in a child disjoint from
Qi, then |x − z| ≥ 1

2
|x − y| ≥ 1

2
δd. Consequently |F (x) − F (y)| � d′ and

|F (x) − F (z)| � d′ by Lemma 4.1.

For case (2), Lemma 3.24 yields max{|x − y|, |x − z|} � d. Then this
case can be completed as in case (1).

In cases (3) and (4) x and y are in different subpolyhedra and all three
points are in Qi ∪ Qj. Let Qi ∩ Qj = {v}. Choose integers k, l and m so
that |x − v| � λk

∂d, |y − v| � λl
∂d and |z − v| � λm

∂ d. Then Lemma 4.2
(applied to Q = Qi and Q = Qj) implies that |F (x) − F (v)| � (λ′

∂)
kd′,

|F (y) − F (v)| � (λ′
∂)

ld′ and |F (z) − F (v)| � (λ′
∂)

md′. We divide these
two cases into further subcases (i), (ii) and (iii) according to which of the
quantities |x − v|, |y − v| or |z − v| is the largest.

Case (i): Assume first that |x− v| is the largest. Since |x− v|+ |y− v| �
|x − y| by Lemma 3.23, we have |x − y| � |x − v| � λk

∂a. By Lemma 4.3,
|F (x) − F (y)| � (λ′

∂)
kd′.

By assumption, |x − z| � |x − y| � λk
∂d as well. In case (3) (x and z

are in different subpolyhedra Qi and Qj) we apply Lemma 4.3, while in
case (4) (x and z are in the same subpolyhedron Qi) we apply Lemma 4.1
on the smallest subpolyhedron of Qi containing v, x and z. In either case
we conclude that |F (x) − F (z)| � (λ′

∂)
kd′ as desired.
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Case (ii): The case when |y − v| is largest is handled by interchanging x
and y in case (i).

Case (iii): Finally, we consider the case when |z − v| is the largest. In
case (4) we use Lemma 3.23 as before to conclude that |z − y| � λm

∂ d. Thus
|z − x| + |x − y| � λm

∂ d and since both terms on the left hand side are
comparable, each in turn is � λm

∂ d. Since all of the distances |x− y|, |x− z|
and |y − z| are bounded above by this same quantity we conclude that

|x − y| � |x − z| � |y − z| � |z − v| � λm
∂ d.

We now apply Lemma 4.3 and Lemma 4.1 to the smallest subpolyhedron
containing v, x and z as above to conclude that

|F (x) − F (z)| � |F (y) − F (z)| � (λ′
∂)

md′.

Finally, in case (3) we use Lemma 3.23 again to conclude that |z−x| � λm
∂ d,

whence |y − x| � λm
∂ d by the hypothesis. Applying Lemma 4.3 twice yields

the same conclusion

|F (x) − F (z)| � |F (y) − F (z)| � (λ′
∂)

md′.

All cases have now been covered and the proof of Theorem 1.7 is complete. �
Example 4.5 The assumption of boundary congruence in Theorem 1.7 is
necessary. To see this, consider the IFS’s F = {f1, f2} and G = {g1, g2}
on the real line, where f1(x) = x/2, f2(x) = x/2 + 1/2 and g1(x) = x/3,
g2(x) = 2x/3+1/3. The invariant set for both of these IFS’s is the unit line
segment [0, 1], and the induced canonical homeomorphism F = πG ◦ π−1

F is
not quasisymmetric.

5. Global quasiconformal extensions

In this section we study the question: when does the canonical homeomor-
phism between the invariant sets of two isomorphic IFS’s F and G admit a
global quasiconformal extension? The main result, Theorem 1.9, provides
the existence of such an extension when F and G are boundary congruent
gasket type systems which are joined by a nondegenerate isotopy of such
systems.

Tukia and Väisälä’s theory of s-quasisymmetric maps and extension the-
orems [25, 28] is crucial in our proof of Theorem 1.9. A map f : X → Y
between metric spaces is said to be s-quasisymmetric, s > 0, if it is η-
quasisymmetric for some increasing homeomorphism η satisfying η(t) ≤ t+s
for 0 ≤ t ≤ 1/s. The notion of s-quasisymmetry provides a quantitative
measure for the degree of “closeness” of a quasisymmetric map to the space
of similarities.
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The following theorem asserts that the canonical homeomorphism is s-
quasisymmetric for some small s, provided the original systems are suffi-
ciently close in the natural topology described in Remark 3.4.

Theorem 5.1 Let d ≥ 1 and M ≥ 2. There exists a continuous function
ε : IFS(Rd,M) → (0, 1) so that the following statement holds:

Let F and G be iterated function systems, each of which is boundary
congruent and of gasket type. Assume that F and G are isomorphic and
D(F ,G) < ε(F). Then the canonical homeomorphism

F = πG ◦ π−1
F : K(F) → K(G)

is s-quasisymmetric with s → 0 as D(F ,G) → 0.

Here D denotes the metric on IFS(Rd,M) defined in (3.5).
We may choose

(5.2) ε(F) = 2 · 10−7δκ sin2(θ/2)λ8
min(1 − λmax)

3,

where λmin, λmax, δ, θ, and κ are the values defined in (3.19)–(3.22) for F .
Observe that ε(F) is a continuous function of F .

Theorem 5.3 (Väisälä) Let Λ be a p-dimensional affine subspace of Rd

and let A be a compact, thick subset of Λ. There exists s0 > 0 such that if
0 ≤ s ≤ s0, then each s-quasisymmetric map F : A → F (A) ⊂ Rd admits
an s1-quasisymmetric extension F̃ : Rd → Rd.

This is Theorem 6.2 of [28]. Here, for a p-dimensional affine subspace
Λ ⊂ Rd, we say that a set A ⊂ Λ is thick in Λ if there exist constants r0 > 0
and β > 0 such that for any a ∈ A and any 0 < r ≤ r0, there is a simplex
∆ ⊂ Λ whose vertices lie in A∩B(a, r) and which has p-volume |∆|p ≥ βrp.
See [28, §6.1].

Lemma 5.4 Let K be the invariant set for an iterated function system F
in Rd, and assume that diam K > 0. Then K is thick in Λ, where Λ denotes
the affine subspace of Rd spanned by K.

Proof. Without loss of generality we may assume that diamK = 1. Fix a
specific simplex ∆ with vertices in K and p-volume |∆|p > 0. We will show
that K is thick in Λ with parameters r0 = 1 and β = λp

min|∆|p.
Fix x ∈ K and 0 < r ≤ 1. By the proof of Proposition 3.9, there exists

w ∈ W with Kw ⊂ B(x, r) and diam Kw ≥ λminr. The simplex ∆w = fw(∆)
has vertices in Kw and p-volume |∆|p(diam Kw)p. Then |∆w|p ≥ βrp as
desired. �
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Remark 5.5 When {F t} is a nondegenerate isotopy of isomorphic systems,
there exist simplices ∆t ⊂ Λt with vertices in K(F t) and inf0≤t≤1 |∆t|p > 0.
To see this, observe that p+1 ≤ M (since Λt is contained in the span of the
M fixed points of the maps in F) and for each t,

(5.6) max
{i1,...,ip+1}⊂A

| co(at
i1
, . . . , at

ip+1
)|p > 0,

where co denotes convex hull. For each fixed set {i1, . . . , ip+1} ⊂ A, the p-
volume of co(at

i1
, . . . , at

ip+1
) is a continuous function of t. Since the maximum

of finitely many continuous functions is again continuous, the expression
in (5.6) is continuous in t ∈ [0, 1], and thus has a positive lower bound
independent of t.

In this case, the proof of Lemma 5.4 shows the following stronger state-
ment: when {F t} is a nondegenerate isotopy of isomorphic systems, the sets
K(F t) are all thick, with parameters r0 and β independent of t. Therefore
the value of s0 in Theorem 5.3 can be chosen independent of t, when the
theorem is applied to A = F t, 0 ≤ t ≤ 1.

Assuming temporarily the validity of Theorem 5.1, we now give the proof
of Theorem 1.9.

Proof of Theorem 1.9. Let {F t}0≤t≤1 be a nondegenerate isotopy of
boundary congruent, gasket type IFS’s joining F = F0 to G = F1.

Since the maps t �→ F t from [0, 1] to IFS(Rd,M) and F �→ ε(F) from
IFS(Rd,M) to (0,∞) are continuous, ε0 := inf t ε(F t) > 0. For each ε < ε0,
choose N = N(ε) so that D(Fa,F b) < ε for all 0 ≤ a < b ≤ 1 with

(5.7) b − a ≤ 1

N
.

We abbreviate K(t) = K(F t). By Theorem 5.1, for any a and b satisfy-
ing (5.7) the map Fa,b : K(a) → K(b) is s(ε)-quasisymmetric with s(ε) → 0
as ε → 0. Combining Theorem 5.3 with Lemma 5.4 and Remark 5.5, we
conclude that each of the maps Fa,b : K(a) → K(b) ⊂ Rd extends to an

s1(ε)-quasisymmetric map F̃a,b : Rd → Rd. Moreover, s1(ε) → 0 as ε → 0.
Choose 0 < ε < ε0 so that s(ε) ≤ s0 (the value from Theorem 5.3)

and s1(ε) ≤ 1. Then the index N = N(ε) is fixed. To complete the proof
of Theorem 1.9, apply the discussion in the previous paragraph to each of
the maps F(j−1)/N,j/N : K((j − 1)/N) → K(j/N), j = 1, . . . , N , to deduce
the existence of s1(ε)-quasisymmetric extensions of these maps to Rd. As

before, denote these extensions by ˜F(j−1)/N,j/N . Every s-quasisymmetric
self-map of Rd, s ≤ 1, is (1 + s)-quasiconformal. Hence the composition

F̃ := F̃0,1/N ◦ · · · ◦ ˜F(N−1)/N,1 is (1 + s1(ε))
N -quasiconformal. This completes

the proof. �
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Remark 5.8 The proof shows that the extension F̃ is 1+o(1)-quasiconformal
when D(F ,G) → 0. Indeed, note that when D(F ,G) < ε, then N = 1 and
the extension is 1 + s1(ε)-quasiconformal.

To prove Theorem 5.1 we will make use of the following result which
gives a sufficient condition for a function to be s-quasisymmmetric.

Theorem 5.9 (Väisälä) Let X ⊂ Rp be c-uniformly perfect and let 0 <
κ ≤ 1

144
c4. Let f : X → f(X) ⊂ Rd be a map such that for every bounded

A ⊂ X there is a similarity embedding h : Rp ↪→ Rd with scale factor λh

for which ||h − f ||L∞(A) ≤ κλh diam A. Then f is s-quasisymmetric, where
s = s(κ) → 0 as κ → 0.

This theorem is due to Väisälä. In [28, Theorem 3.9] it is proved for
connected sets X. The extension to uniformly perfect sets requires only
minor modifications; we include this extension here to show the dependence
of the constants.

Proof of Theorem 5.9. Following the proof from [28], we deduce that
f is injective and satisfies t′ ≤ t + 4κ(1 + t)2 for any a, b, x ∈ X, where
t′ = |f(a) − f(x)|/|f(b) − f(x)| and t = |a − x|/|b − x|. If t ≤ κ−1/4 then
t′ ≤ t + 9κ1/2. Hence if f is quasisymmetric, then it is s-quasisymmetric
with s = s(κ) = max{κ1/4, 9κ1/2}.

To show that f is quasisymmetric, it suffices to verify the conditions in
Theorem 3.10 of [24]. Set h = 2/c and H = 4/c. Since X is c-uniformly
perfect, it is (1

2
c, 1

2
)-homogeneously dense. If t ≤ 2/c then t ≤ κ−1/4 and

t′ ≤ t+9κ1/2 < 4/c. If t ≤ c/4 then t′ ≤ c/4+ (c4/36)(1+ c/4)2 ≤ c/2. The
quasisymmetry of f follows. �

The following technical proposition plays a key role in the proof of Theo-
rem 5.1. For ease of exposition, we have deferred the proof of this proposition
to an appendix.

Proposition 5.10 Let F and G be isomorphic, boundary congruent, gasket
type iterated function systems with D(F ,G) ≤ 1

2
min{λmin, 1 − λmax}, where

λmin = λmin(F) and λmax = λmax(F). Assume that diam K = 1 and 0 ∈ K,
where K = K(F). Let i, j, k, l ∈ A satisfy πF(ik) = πF(jl). Let n ∈ N be
arbitrary and set τ = i k · · · k︸ ︷︷ ︸

n

and η = j l · · · l︸ ︷︷ ︸
n

.

Then
|| id−Φ||L∞(Π(F)) ≤ CD(F ,G),

where Φ = g−1
η ◦ gτ ◦ f−1

τ ◦ fη and

(5.11) C =
500

λmin(1 − λmax)3
.
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Corollary 5.12 With hypotheses as in Proposition 5.10, if D(F ,G) < ε(F),
then

(5.13) || id−Φ||L∞(Π(F)) ≤ 10−4δκ sin2(θ/2)λ7
min.

Let F and G be isomorphic iterated function systems with D(F ,G) ≤
ε(F). For future reference we record the estimates

(5.14) λmax(G) ≤ ε(F) + λmax ≤ 1

2
(1 + λmax)

and

(5.15) λmin(G) ≥ λmin − ε(F) ≥ 1

2
λmin

which follow from the inequalities ε(F) ≤ 1
2
λmin and ε(F) ≤ 1

2
(1 − λmax).

Proof of Theorem 5.1. Let ε : IFS(Rd,M) → (0,∞) be the function
given in (5.2). Let F = {f1, . . . , fM} and G = {g1, . . . , gM} be isomorphic
IFS’s as in the statement of the theorem. By Proposition 3.9, K = K(F)
is c-uniformly perfect with c = 1

2
λmin. Since the theorem is invariant under

similarity mappings of Rd, we may assume that diamK = 1 and 0 ∈ K.
The conclusion will follow after we verify the assumptions of Theorem 5.9
for the canonical homeomorphism F : K → K(G) ⊂ Rd with

(5.16) κ =
1

144
c4 =

1

2304
λ4

min.

Let A be a subset of K.

Case 1 (A = K): Since K ⊂ B(0, 1) and D(F ,G) < ε(F),

(5.17) max
i

||fi − gi||L∞(K) ≤ 3ε(F).

We will verify the hypothesis of Theorem 5.9 with h equal to the identity.
Let x ∈ K and choose w = w1w2 · · · ∈ Σ with πF(w) = x. Then πG(w) =
F (x) and

|x − F (x)| = |πF(w) − πG(w)|
= lim

m→∞
|fw1 ◦ fw2 ◦ · · · ◦ fwm(x0) − gw1 ◦ gw2 ◦ · · · ◦ gwm(x0)|

by (3.7). By the triangle inequality and (5.17),

|x − F (x)| ≤ 3ε(F) + λgw1
lim

m→∞
|fw2 ◦ · · · ◦ fwm(x0) − gw2 ◦ · · · ◦ gwm(x0)|.
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Iterating yields

|x − F (x)| ≤ 3ε(F)(1 + λgw1
+ λgw1

λgw2
+ · · · )

≤ 3

1 − λmax(G)
ε(F) ≤ 6

1 − λmax
ε(F) ≤ κ

by the choice of ε(F) in (5.2) and (5.14).
Thus the hypothesis in Theorem 5.9 is verified in this case.

Case 2 (A = Kw for some w ∈ W ): The canonical homeomorphism F :
K(F) → K(G) verifies the identity

F |Kw = gw ◦ F ◦ f−1
w .

By the previous case, || id−F ||L∞(K) ≤ κ diam K. Choose h = gw ◦ f−1
w .

The proof of this case is then finished by the calculation

||h − F ||L∞(Kw) = λgw || id−F ||L∞(K) ≤ λgwκ diam K = κλh diamKw.

Case 3 (general A): Let Πw be the smallest subpolyhedron of Π contain-
ing A. If A meets three distinct children of Πw then

(5.18) diamA ≥ min{δ, 1

2
κ sin(θ/2)} diam Πw

by Lemma 3.24. Also if A meets two nonadjacent children of Πw, then
diam A ≥ δ diam Πw and so again (5.18) holds. Choosing h = gw ◦ f−1

w as in
the previous case and applying that case, we conclude

||h − F ||L∞(A) ≤ ||h − F ||L∞(Kw) ≤ 6

1 − λmax

ε(F)λh diam Kw

≤ 6

1 − λmax

· 1
1
2
κδ sin(θ/2)

ε(F)λh diam A ≤ κλh diam A

by the choice of ε(F).
The final (and most difficult) case occurs when A is contained entirely

within two adjacent children Πwi and Πwj of Πw. As before, let Πwi ∩Πwj =
{v}. We consider the smallest pair of subpolyhedra Πwτ and Πwη of Πw

satisfying the following conditions:

(i) Πwτ is contained in Πwi and Πwη is contained in Πwj,

(ii) Πwτ ∩ Πwη = {v},
(iii) A ⊂ Πwτ ∪ Πwη, and

(iv) τ and η have equal length.
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The boundary congruence of F implies that

(5.19) λmin diam Πwη ≤ diam Πwτ ≤ 1

λmin

diam Πwη.

Also, a combination of Lemmas 3.23 and 3.26 and the choice of Πwτ and
Πwη reveal that

diam A ≥ sin(θ/2) min{δ, κ sin(θ/2)}min{diam Πwτ , diam Πwη}
≥ δκ sin2(θ/2)λmin diam Πwτ

(5.20)

by (5.19).
We claim that the similarity h = gwτ ◦ f−1

wτ verifies the condition in
Theorem 5.9. For the part of A which lies within Πwτ this is immediate:

||h − F ||L∞(A∩Πwτ ) ≤ ||h − F ||L∞(Kwτ )

≤ 6

1 − λmax
ε(F)λh diam Πwτ

≤ 6

1 − λmax

· 1

δκ sin2(θ/2)λmin

ε(F)λh diam A

≤ κλh diam A

(5.21)

by (5.20). For the part of A which lies within Πwη we proceed in two steps.
Let h1 = gwη ◦ f−1

wη . We will show that

(5.22) ||h1 − F ||L∞(A∩Πwη) ≤ 1

2
κλh diam A

and

(5.23) ||h1 − h||L∞(A∩Πwη) ≤ 1

2
κλh diam A.

The proof of (5.22) is similar to that of (5.21); we use

diam A ≥ δκ sin2(θ/2)λmin diam Πwη

in place of (5.20) as well as the estimate

λ−1
h λh1 =

λ′
wλ′

ηλwλτ

λwληλ′
wλ′

τ

=
λ′

jλi

λjλ′
i

≤ λmax λmax(G)

λmin λmin(G)
≤ 2

λ2
min

which follows from (5.15).
To complete the proof it suffices to verify (5.23). In fact we will prove that

(5.24) ||h1 − h||L∞(Πwη) ≤ 1

2
κ · δκ sin2(θ/2)λmin · λh diam Πwη;

observe that (5.24) and (5.20) together imply (5.23).
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Using the definitions of h and h1 we reduce (5.24) to the statement

(5.25) ||gη ◦ f−1
η − gτ ◦ f−1

τ ||L∞(Πη) ≤ 1

2
κ · δκ sin2(θ/2)λmin · λh diam Πwη

λ′
w

.

By the choice of Πwτ and Πwη we have

τ = i k · · · k︸ ︷︷ ︸
n

and η = j l · · · l︸ ︷︷ ︸
n

for some n ∈ N. Setting Φ = g−1
η ◦ gτ ◦ f−1

τ ◦ fη as in Proposition 5.10, we
see that (5.25) in turn is equivalent to

(5.26) || id−Φ||L∞(Π) ≤ 1

2
κ · δκ sin2(θ/2)λmin · λh diam Πwη

λ′
wλ′

η

.

Observe that

λh diam Πwη

λ′
wλ′

η

=
λ′

τλη

λτλ′
η

≥ λminλmin(G) ≥ 1

2
λ2

min.

Thus it suffices to verify the inequality

(5.27) || id−Φ||L∞(Π) ≤ 1

4
κ · δκ sin2(θ/2)λ3

min =
1

9216
δκ sin2(θ/2)λ7

min.

By the choice of κ in (5.16), (5.27) follows from (5.13) which was the con-
clusion of Corollary 5.12. Modulo the proof of Proposition 5.10, the proof
of Theorem 5.1 is complete. �

6. Higher-dimensional gaskets

Fix an integer d ≥ 2 and consider the IFS F0 in Rd defined by the d + 1
conformal contractions

fj(x) = pj +
1

2
(x − pj), j = 0, . . . , d,

where {p0, . . . , pd} is a collection of points in Rd satisfying |pi − pj| = 1 for
all i 
= j. Using a convenient abuse of notation, we will occasionally write
pj to denote the vector based at the origin with terminus pj.

We denote the invariant set for F0 by SGd and call this the d-dimensional
Sierpinski gasket. Observe that

dim SGd =
log(d + 1)

log 2
.
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Furthermore, for each n ∈ N, SGd is the invariant set for the IFS
(6.1)

F = {f (n+1)
j : j = 0, . . . , d}∪{f (m)

j ◦fk : j, k = 0, . . . , d, j 
= k,m = 1, . . . , n}
in IFS(Rd,M), M = (d + 1)(nd + 1).

In this section we prove Theorem 1.5 which states that the global qua-
siconformal dimension of SGd is equal to one for each d ≥ 3. To prove
Theorem 1.5, we will construct, for each n, a system isomorphic with F
(Proposition 6.12) so that the invariant sets of the deformed IFS’s have
Hausdorff dimensions tending to one (Proposition 6.13). We then show that
each deformed system can be joined to the corresponding undeformed sys-
tem F by a nondegenerate isotopy (Proposition 6.14). Theorem 1.5 then
follows from Corollary 1.10.

6.1. Geometry of the d-dimensional gasket

Denote by ∆0 the initial simplex obtained as the closed convex hull of the
points p0, . . . , pd. Without loss of generality, we may assume that the cen-
troid of ∆0 is the origin in Rd. Denote the distance from any vertex pj to
the centroid by

(6.2) σd := |pj|,
denote the length of the altitude at pj (that is, the distance from pj to the
hyperplane Hj ⊂ Rd spanned by the points p0, . . . , pj−1, pj+1, . . . , pd) by

(6.3) ad := dist(pj, Hj),

and denote the angle between the altitude at pj and any of the edges pjpk

by θd.

Lemma 6.4 σd =
√

d
2d+2

, ad =
√

d+1
2d

, and

(6.5) cos θd = ad =
1

2σd
.

In what follows we never use the exact formulas for σd and ad but we do
use (6.5) repeatedly.

Proof. In the planar case we have σ2 = 1/
√

3, a2 =
√

3/2 and θ2 = π/6.
Now let d ≥ 3 be arbitrary. By considering the triangle with vertices at pj,
pk and the origin, we see that σd cos θd = 1.

On the other hand, considering the triangle with vertices at pj, pk and
the centroid of ∆0 ∩ Hj, we see that cos θd = ad and σ2

d−1 + a2
d = 1. The

conclusion follows by induction on d. �
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In the remainder of this section, we assume that the dimension d ≥ 3 is
fixed and write σ = σd, θ = θd, etc.

For each j, k = 0, . . . , d, j 
= k, let Λjk be the plane spanned by the
vectors pj and pk and let Ajk ∈ O(d) be the rotation matrix that maps the
vector pk − pj onto the vector − pj

|pj | = −pj

σ
and acts as the identity on Λ⊥

jk.

Thus Ajk rotates vectors in Λjk by angle θ.
In the deformed IFS (defined in the following subsection), the matri-

ces Ajk will occur as the rotation matrices associated with similarities hjkm

(compare with (2.3)). To guarantee that the simplices hjkm(∆0) and hjlm(∆0)
intersect at precisely one vertex, we must verify the identities hjkm(pl) =
hjlm(pk). These identities will follow from the next lemma.

Lemma 6.6 For each j, k, l = 0, . . . , d, j 
= k, j 
= l, k 
= l,

(Ajk + Ajl)(pl − pk) =
2 + 3σ

1 + 2σ
(pl − pk).

Proof. The matrices Ajk, Ajl leave invariant the orthogonal complement of
the subspace Λ of Rd spanned by the vectors pj, pk and pl. It thus suffices to
restrict our attention to this three-dimensional subspace, and it is convenient
to identify Λ with R3 and choose coordinates in Λ so that pj = (0, 0, σ),

pk =

(√
3σ2 − 1

2σ
,
1

2
, σ − 1

2σ

)

and

pl =

(√
3σ2 − 1

2σ
,−1

2
, σ − 1

2σ

)
,

or possibly with pk and pl reversed. (Note that |pj | = |pk| = |pl| = σ and
|pj − pk| = |pj − pl| = |pk − pl| = 1.) From the definition of Ajk we have

Ajk(pk − pj) = −pj

σ
,

Ajk(−pj

σ
) = 2 cos θ(−pj

σ
) − (pk − pj) = (1 − 1

σ2
)pj − pk,

Ajk(pj × pk) = pj × pk,

(6.7)

where pj × pk denotes the cross product of pj and pk within the subspace Λ.
The vectors pk − pj, −pj/σ and pj × pk span Λ (note that they are not an
orthonormal basis) and hence from the values in (6.7) we compute

(6.8) Ajk(pl−pk) =
1 + σ − σ2

σ(1 + 2σ)
pj +

2 + 3σ

2(1 + 2σ)
(pl−pk)+

σ

2(1 + 2σ)
(pk +pl).

The result follows by symmetry in k and l. �
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6.2. Deformations of d-dimensional gaskets

We now describe the deformed versions of the d-dimensional gasket SGd

which will figure in the proof of Theorem 1.5. Fix a natural number n ∈ N.
The deformed gasket SGd

n is the invariant set for a new IFS G ∈ IFS(Rd,M)
with M = (d + 1)(nd + 1). Choose λ and µ so that

λ

µ
=

2 + 3σ

1 + 2σ

is the eigenvalue from Lemma 6.6 and

(6.9) 2λ +
nµ

σ
= 1;

and define the IFS

G = {gj : j = 0, . . . , d} ∪ {hjkm : j, k = 0, . . . , d, j 
= k,m = 1, . . . , n},
where

(6.10) gj(x) = λx + (1 − λ)pj

and

(6.11) hjkm(x) = µAjk(x − pj) + λpk + (λ + mµ/σ)pj.

(Compare with (2.2) and (2.3) and recall that |pj| = σ.)
Observe that the contraction ratios µ associated with the maps hjkm

are constant. If we define R′
j,m = {hjkm(∆0) : k = 0, . . . , d, k 
= j} and

A′
j = ∪n

m=1R′
j,m ∪ {gj(∆0)}, then the deformed gasket SGd

n has the form of
a “starfish” with d + 1 arms A′

0, . . . ,A′
d. Each arm A′

j consists of n blocks
R′

j,m of equal diameter and a cap gj(∆0) of diameter λ. Each block R′
j,m is

a simplicial complex comprised of d simplices hjkm(∆0) of diameter µ. The
dual graph for R′

j,m is the complete graph on d vertices.3

Proposition 6.12 F and G are isomorphic.

Proof. In view of Proposition 3.29, it suffices to verify that the combinato-
rial equivalence of the defining simplices for F and G, i.e., that the vertices
of {f(∆0) : f ∈ F} are identified according to the same rule whereby the
vertices of {g(∆0) : g ∈ G} are identified. More precisely, we must verify the
identities

3By the dual graph for a simplicial complex K we mean the abstract graph Γ whose
vertices are in one-to-one correspondence with the simplices in K, where two vertices in
Γ are connected by an edge if and only if the corresponding simplices in K meet at a
vertex.
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(a) hjkn(pj) = gj(pk),

(b) hjk,m+1(pk) = hjkm(pj), 1 ≤ m ≤ n − 1,

(c) hjkm(pl) = hjlm(pk), 1 ≤ m ≤ n,

(d) hjk1(pk) = hkj1(pj),

for all j, k, l = 0, . . . , d, j 
= k, j 
= l. These facts follow directly from
the definitions of gj and hjkm, the first identity in (6.7), and the eigenvalue
condition in Lemma 6.6. For example, to verify (c) we use the definition of
hjkm to compute

hjkm(pl) − hjlm(pk) = µAjk(pl − pj) + λpk − µAjl(pk − pj) − λpl

= µAjk(pl − pk) + µAjl(pl − pk) − λ(pl − pk)

= 0.

The proofs of (a), (b) and (d) are similar. �

Proposition 6.13 dim SGd
n → 1 as n → ∞.

Proof. Since each of the sets SGd
n satisfies the open set condition, the

dimension sd
n of SGd

n is the unique positive number satisfying

(d + 1)λsd
n + d(d + 1)nµsd

n = 1.

Since µ < λ < 2/n it follows that

1 ≤ (d + 1)2 n
( 2

n

)sd
n

whence sd
n ≤ log((d+1)2n)

log(n/2)
→ 1 as n → ∞. �

Proposition 6.14 There exists a nondegenerate isotopy of isomorphic sys-
tems {F t}0≤t≤1 joining F = F0 to G = F1.

Proof. Let At
jk be the orthogonal matrix which is the identity on Λ⊥

jk and
acts as a rotation on Λjk by angle tθ. Thus {At

jk} interpolates between the
identity matrix and Ajk.

For 0 ≤ t < 1, set

αt =
sin(1 − t)θ

sin θ
and βt =

sin tθ

sin θ
.

Lemma 6.15 At
jk(pk − pj) = αt(pk − pj) + βt(−pj

σ
).
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Proof. Fix j and k and let A = Ajk and Λ = Λjk. Let v = pk − pj and
w = −pj/σ. Then Atv lies in Λ, so Atv = αv + βw for some α, β ∈ R. By
definition, the angle between Atv and v is tθ and the angle between Atv and
w is (1 − t)θ. Thus

cos tθ = Atv · v = α + β cos θ and cos(1 − t)θ = Atv · w = α cos θ + β

from which it follows that α = αt and β = βt. �

Lemma 6.16 (At
jk + At

jl)(pl − pk) = 6σ2+2σ2 cos tθ−2
4σ2−1

(pl − pk).

The proof is similar to that of Lemma 6.6, using the identities

At
jk(pk − pj) = αt(pk − pj) + βt(−pj

σ
)

and
At

jk(−
pj

σ
) = (αt + 2βt cos θ)(−pj

σ
) − βt(pk − pj)

in place of the first and second equations of (6.7). Observe that the eigen-
value in Lemma 6.16 is equal to 2 when t = 0 and is equal to 2+3σ

1+2σ
when

t = 1 (since 2 cos θ = 1/σ).
We now define the deformed iterated function systems. Fix 0 ≤ t < 1

and define

(6.17) F t = {gt
j : j = 0, . . . , d} ∪ {ht

jkm : j, k = 0, . . . , d, j 
= k,m = 1, . . . , n},
where

(6.18) gt
j(x) := λtx + (1 − λt)pj

and

ht
jkm(x) := µt(ρt)n−mAt

jk(x − pj) + λt(ρt)n−mpk

+ (1 + νt/σ − (λt + νt/σ)(ρt)n−m)pj,
(6.19)

and the data λt, µt, νt, and ρt > 1 are determined by the equations

αt +
λt

µt
=

6σ2 + 2σ2 cos tθ − 2

4σ2 − 1
,(6.20)

µtαt = λt(ρt − 1),(6.21)

µtβt = νt(ρt − 1),(6.22)

(2λt + νt/σ)(ρt)n = 1 + νt/σ.(6.23)

The geometric intuition behind (6.18) and (6.19) is very simple. For 0 ≤
t < 1 let Rt

j,m := {ht
jkm(∆0) : k = 0, . . . , d, k 
= j}. For fixed j and m,

the simplices in Rt
j,m form a simplicial complex whose dual graph is the

complete graph on d vertices.
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These simplices are tilted from h0
jkm(∆0) according to the rotation matrix

At
jk and by an angle tθ relative to the axis 0pj. Scaled in order for Rt

j,m and
Rt

j,m+1 to intersect properly, the diameters µt(ρt)n−m of the simplices in Rt
j,m

must decrease geometrically in m. The overall scaling ratios λt and µt are
chosen to make the entire picture fit precisely within the original simplex
∆0 and to guarantee the required intersections among the child simplices.
This ensures that the IFS’s F t and F t′ are isomorphic for t 
= t′.

As before, to establish the proposition it suffices to verify the identities

(a) ht
jkn(pj) = gt

j(pk),

(b) ht
jk,m+1(pk) = ht

jkm(pj), 1 ≤ m ≤ n − 1,

(c) ht
jkm(pl) = ht

jlm(pk), 1 ≤ m ≤ n,

(d) ht
jk1(pk) = ht

kj1(pj),

for all j, k, l = 0, . . . , d, j 
= k, j 
= l.
Condition (a) follows directly from the definitions, while condition (b)

follows from Lemma 6.15, (6.21) and (6.22). For condition (c) we use Lem-
mas 6.15 and 6.16 as well as (6.20). Finally, condition (d) follows from
Lemma 6.15 and equations (6.21), (6.22) and (6.23). We leave the details
to the reader. �
Remark 6.24 For fixed t < 1 the quantities λt/µt, ρt and νt/µt are inde-
pendent of n. From (6.23) it follows that λt, µt, νt = O(ρ−n).

Now assume that n ∈ N is fixed. It is straightforward to verify that the
IFS F0 from (6.17) coincides with the IFS F from (6.1). To verify that the
IFS F t converges to the IFS G as t → 1, we analyze the limiting behavior
of the equations (6.20)–(6.23). Set ε = 1 − t. Beginning with (6.20) and
using (6.5) we find

λt

µt
=

λ

µ
− θ

2 sin θ
ε + O(ε2).

From (6.21) we find

ρt = 1 +
µθ

λ sin θ
ε +

µ2θ2

2λ2 sin2 θ
ε2 + O(ε3)

and from (6.22) we find

νt

µt
=

λ sin θ

µθ
· 1

ε
−

(
1

2
+

λ cos θ

µ

)
+ O(ε).

Dividing (6.23) through by µt and substituting the values for λt/µt, ρt and
νt/µt from above, we find after some work that

(6.25)
1

µt
=

(
n

σ
+

2λ

µ

)
+ O(ε) =

1

µ
+ O(ε)

by (6.9). Hence µt = µ + O(ε) and λt = λ + O(ε).
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7. The polygaskets

Fix an integer N ≥ 3 and consider the IFS F0 generated by the N con-
tractions fj(z) = ωj + λ(N)(z − ωj), j = 0, . . . , N − 1, of the plane. Here
ω = e2πi/N is the principal Nth root of unity, Π is the regular N -gon with
vertices at the Nth roots of unity, and the contraction ratio λ(N) is chosen
so that neighboring polygons fj(Π) and fj+1(Π) meet on the boundary but
not in their interiors.4 The polygasket PG(N) is the invariant set for F0.

Observe that two polygons fj(Π), fj+1(Π) meet at either a single point
or along a line segment, according to whether N 
≡ 0 (mod 4) or N ≡ 0
(mod 4). (See also Lemma 7.8.) It follows that F0 satisfies the open set
condition for any N (choose O to be the interior of Π), and is of gasket type
provided N 
≡ 0 (mod 4).5

For the remainder of this section, we fix an integer N ≥ 5 with N 
≡ 0
(mod 4). We will prove Theorem 1.4 which asserts that the global quasicon-
formal dimension of PG(N) is equal to one.

We let

(7.1) q = q(N) := 1 +

[
N

4

]
.

An easy calculation shows that

λ = λ(N) =
1 − ω

(1 − ωq)(1 + ω1−q)
=

sin(π/N)

sin(πq/N) cos(π(q − 1)/N)
.

7.1. Sketch of the proof

Fix an integer n ≥ 1 and consider PG(N) as the invariant set for the fol-
lowing IFS in IFS(R2,M), M = N(N − 1)n + N :

F :={f (n+1)
j : j = 0, . . . , N − 1}

∪ {f (m)
j ◦ fk : j, k = 0, . . . , N − 1, j 
= k,m = 1, . . . , n}.

(7.2)

See Figure 6 for the case N = 9, n = 2.

4By convention, all arithmetic computations involving indices are taken mod N .
5When N ≡ 0 (mod 4), two adjacent similarity pieces fj(PG(N)) and fj+1(PG(N))

intersect either along a line segment (if N = 4) or along a Cantor set (if N = 8, 12, 16, . . .).
PG(4) is a closed square. For PG(4k), k ≥ 2, we do not know whether the dimension
can be reduced by a quasiconformal map of the plane. See Figure 2 for the case N = 8.
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2β

2α
ω

q

Figure 6: (a) PG(9); (b) the defining nonagons from F0 for the
nonagasket; (c) the defining nonagons from F (n = 2) for the
nonagasket

Set P := ∪f∈Ff(Π). The critical set C0 for F separates P into N “arms”

Aj = f
(n+1)
j (Π) ∪

n⋃
m=1

N⋃
k=1,k �=j

f
(m)
j ◦ fk(Π), j = 0, . . . , N − 1.

Equivalently, Aj can be characterized as the union of those polygons f(Π),
f ∈ F , which are contained in the sector {reiθ : |θ−2πj/N | ≤ π/N}. Within

a fixed arm Aj, the two point sets {f (m)
j (ωj+q), f

(m)
j (ωj−q)}, m = 2, . . . , n+1,

separate Aj into n intermediate blocks

Bj,m =
N⋃

k=1,k �=j

f
(m)
j ◦ fk(Π),

m = 1, . . . , n, and one terminal block

Bj,n+1 = f
(n+1)
j (Π).

Observe that all of the N−1 polygons in a block Bj,m, m = 1, . . . , n, have the
same size λm+1 diam Π and that these sizes form a geometrically decreasing
sequence. The polygon in the terminal block Bj,n+1 has the same size as
those in the final intermediate block Bj,n.

Our goal is to construct a new gasket type IFS

G := {gj : j = 0, . . . , N−1}∪{hjkm : j, k = 0, . . . , N−1, j 
= k,m = 1, . . . , n}
which is isomorphic to F . The precise details of this construction are quite
complicated and will occupy the bulk of this section. In brief, the idea is to
replace the geometrically decreasing blocks Bj,m in each arm with blocks of
constant size. The overall shape of the resulting invariant set PGn(N) will
be essentially that of an N -armed starfish. See Figure 7 for a picture of one
of the deformed arms in the case N = 9, n = 3.
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In order to show that F and G are isomorphic, we will verify the condition
in Proposition 3.29. See Proposition 7.24. Theorem 1.7 then ensures that
the canonical homeomorphism F : PG(N) → PGn(N) is quasisymmetric.
A computation (see Proposition 7.25) yields limn→∞ dim PGn(N) = 1.

It is likely that the deformed IFS’s may be joined to the original IFS by
isotopies, however, establishing this fact rigorously is technically difficult.
For this reason, we use the more well-developed theory of quasiconformal
maps in the plane to directly construct quasiconformal extensions of the
canonical homeomorphisms from PG(N) to PGn(N). See Proposition 7.26.

The remainder of this section is organized as follows. We first collect
some additional geometric observations regarding the structure of the N -
gasket which will be important in the proof. We then prove Theorem 1.4 by
filling in the details in the above sketch.

7.2. Geometry of the polygasket

The critical set for PG(N) as generated by F0 is given explicitly as

(7.3) C0 = {fj(ω
j+q) = fj+1(ω

j+1−q) : j = 1, . . . , N}.
For m ≥ 0 let Cm = ∪w∈Wmfw(C0).

Lemma 7.4 Each subpolygon Πw, w ∈ Wm, meets
⋃

w′∈Wm,w′ �=w Πw′ in ei-
ther two or three points. This intersection contains three points if and only
if m ≥ 2 and Πw has a vertex in C0 ∪ · · · ∪ Cm−2. In this case Πw has
precisely one vertex v in C0 ∪ · · · ∪ Cm−2.

We leave the proof to the reader.
Within the polygon Π we distinguish a particular (directed) chord ωqω−q.

Similarly, for each Πw, w ∈ W , we distinguish the chord fw(ωq)fw(ω−q). In
general, we say that a polygon Π′ has chord xy if there is a similarity which
maps Π′ onto Π taking x to ωq and y to ω−q.

For three points a, b, c in the plane, denote by ∠abc ∈ [0, 2π) the oriented
angle from ba to bc. If 0 < ∠abc < π let ∠eabc = π − ∠abc be the exterior
angle at the vertex b for the triangle with vertices a, b, c.

Set

γ =
π

2
− πq

N
,(7.5)

α =
π

2
− 2(q − 1)π

N
> 0,(7.6)

and

(7.7) β =
2qπ

N
− π

2
> 0.
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Here γ = ∠ωq10, while the quantities 2α and 2β give the angles between
adjacent N -gons (see Figure 6(b)). Note that α + β = 2π/N = ∠exyz
is the exterior angle at the vertex of a regular N -gon, or equivalently, the
exterior angle at y for the triangle with vertices x, y, z, where xy and yz are
the directed chords associated with a pair of adjacent children of Π (with
respect to the original IFS F0).

In connection with the following lemma, recall our standing assumption
that N ≥ 5, N 
≡ 0 (mod 4).

Lemma 7.8 (i) N ≡ 1, 2 or 3 (mod 4) if and only if 2α < 2π/N , 2α =
2π/N or 2α > 2π/N , respectively;

(ii) γ
q−1

< min{2α, 2π/N} and γ
q

< 2β;

(iii) 2γ
N−2q

= 2α if N ≡ 1 (mod 4) and 2γ
N−2q

< 2π/N if N ≡ 2, 3 (mod 4).

Proof. These facts are easy computations using the definitions (7.5), (7.6),
(7.7) together with the definition of q in (7.1). �

The equality in Lemma 7.8(iii) when N ≡ 1 (mod 4) introduces addi-
tional complications into the construction of the deformed gaskets in this
case. See the remarks following Claim 7.17.

Lemma 7.9 Let Π′ and Π′′ be polygons with chords xy and yz respectively,
where 0 < ∠xyz < π. If

max{0, 2π

N
− 2α} < ∠exyz <

2π

N
+ 2β,

then Π′ ∩ Π′′ = {y}.
In the context of this lemma it is important to note that we do not

require |x − y| = |y − z|.
Proof. Let a and b be vertices of Π′ which are neighbors of y so that a, y, b
occur in clockwise order around the boundary of Π′. Let c and d be the
vertices of Π′′ which are neighbors of y so that c, y, d occur in clockwise
order. It suffices to prove that ∠dya > 0 and ∠byc > 0. A computation
gives ∠ayx = ∠zyd = (2q − 1)π/N and ∠xyb = ∠cyz = (N − 2q − 1)π/N .
Thus

∠dya = 2π − ∠ayx − ∠xyz − ∠zyd

> π − 2(2q − 1)π

N
+ max{0, 2π

N
− 2α} ≥ 0.

Similarly

∠byc = ∠xyz − ∠xyb − ∠cyz

> π − 2(N − 2q − 1)π

N
− 2π

N
− 2β ≥ 0. �



244 J.T. Tyson and J.-M. Wu

7.3. Notation and definitions

We restrict our attention to a single arm of the polygasket; without loss of
generality assume that it is A0. For m ≥ 0 and k = 0, . . . , N − 1 we set

Πm
k := f

(m)
0 (Πk)

and

Xm
k := f

(m)
0 ◦ fk(ω

k+q) = f
(m)
0 ◦ fk+1(ω

k+1−q).

Thus the critical set C0 = {X0
k : 0 ≤ k ≤ N − 1}. Furthermore, the blocks

within A0 are

Bm := B0,m ={Πm
k : 1 ≤ k ≤ N − 1}

and Bn+1 := B0,n+1 ={Πn
0}, and Xm

k = Πm
k ∩ Πm

k+1. Figure 7 shows a single
arm in the case N = 9, n = 3.

X

X 0

1

2

0
0X

0

X0
0~

X X
1 2
0 0

~ ~

Figure 7: (a) One arm of the undeformed gasket PG(9), showing
the junction points X0

0 , X1
0 , X2

0 , . . . ; (b) one arm of the deformed
hexagasket PG3(9), showing the junction points X̃0

0 , X̃1
0 , X̃2

0 , . . .

Within Bm we define certain distinguished polygons. The right joint
(resp. left joint) is Πm

q (resp. Πm
N−q). The right side (resp. left side), consists

of the polygons Πm
k with 1 ≤ k ≤ q − 1 (resp. N − q + 1 ≤ k ≤ N − 1).6

Finally, the bridge consists of the polygons Πm
k with q + 1 ≤ k ≤ N − q − 1.

Observe that all of the polygons Πm
k , 1 ≤ k ≤ N − 1, fall into one of these

five categories.

Note that the points ωq, f0(ω
q) = X0

0 , f
(2)
0 (ωq) = X1

0 , . . . , 1 are collinear,

as are the points ω−q, f0(ω
−q) = X0

N−1, f
(2)
0 (ω−q) = X1

N−1, . . . , 1. Note also
that the set SR (resp. SL) which is the union of all of the right joints and
right arms (resp. the left joints and left arms) is connected.

6The language here is from the viewpoint of an observer standing at the point z = 1.
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7.4. Initial attempt to construct PGn(N)

A natural approach to the construction of the deformed arm A′
1 is the fol-

lowing:

1. Apply a similarity h1 to SR of the form

h1(z) = X0
0 + eiγ(z − X0

0 ),

where γ is defined in (7.5). Note that h1 maps the line containing
X0

0 , X
1
0 , . . . , 1 to the line containing X0

0 = h1(X
0
0 ), h1(X

1
0 ), . . . , h1(1)

which is parallel to the x-axis.

2. Apply a continuous map h2 to h1(SR), where h2 is defined inductively
as follows: h2 is the identity on h1(B1 ∩ SR) and

h2(z) = h2(X
m−1
0 ) + λ−m(z − h2(X

m−1
0 ))

for z ∈ h1(Bm ∩ SR), 2 ≤ m ≤ n. Observe that each set h2(Bm ∩ SR)
is a horizontal translate of h2(B1 ∩ SR).

3. Repeat parts 1 and 2 for SL.

4. Adjust the bridges within each block Bm so that the vertices which
anchor the bridge to the left and right joints coincide with the new
positions of those vertices within h1(SR).

5. Adjust the size of the last block Bn+1 so that the vertices which anchor
it to the left and right sides of Bm are correct.

However, there is a small problem with this plan. The image of the first
block B1 is no longer contained within the sector {reiθ : |θ| ≤ π/N} due to
the large rotation angle γ; thus the images of neighboring arms will overlap.
This complicates the construction. To correct this problem we use smaller
rotations (by angle γ/(q− 1)) of each of the q− 1 polygons in the right side,
and similarly in the left side of the first block.

We now give the proof of Theorem 1.4 in detail. We will describe the
construction of the deformed blocks B′

m within the arm A′
0 block by block.

The other deformed arms A′
1, . . . ,A′

N−1 are obtained from A′
0 by rotation.

7.5. Block 1

In this block, we leave the right and left joints as well as the bridge un-
changed. Thus X1

k , q− 1 ≤ k ≤ N − q, are unchanged. Replace the remain-
ing points X1

k by points X̃1
k (and for convenience, denote by X̃1

k = X1
k the

unchanged points also) so that the exterior angles

(7.10) ∠eX̃
1
k+1X̃

1
kX̃1

k−1 =
2π

N
− γ

q − 1
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for 1 ≤ k ≤ q−1 and N−q ≤ k ≤ N−2, and that the distances |X1
k −X1

k+1|
are equal for all 0 ≤ k ≤ N − 2. Replace each Π1

k (for 1 ≤ k ≤ q − 1 and
N − q + 1 ≤ k ≤ N − 1) by the regular N -gon Π̃1

k with directed chord

X̃1
kX̃1

k−1; and again denote by Π̃1
k = Π1

k the unchanged polygons as well.

Let B′
1 = {Π̃1

k : 1 ≤ k ≤ N − 1}.
Claim 7.11 The only points of intersection of the polygons in B′

1 are {X̃1
k} =

Π̃1
k ∩ Π̃1

k+1, k = 1, . . . , N − 2.

From (7.10) and Lemma 7.8(ii) it follows that

2π

N
− 2α < ∠eX̃

1
k+1X̃

1
kX̃1

k−1 <
2π

N

and the claim follows from Lemma 7.9.

Claim 7.12 Each polygon Π̃1
k, 1 ≤ k ≤ N − 1, is contained in the sector

{reiθ : |θ| ≤ π/N} and

N−1⋃
k=1

Π̃1
k ∩ {re±iπ/N} = {X0

0 , X
0
N−1}.

Let L be the ray {reiπ/N : r ≥ 0}. Calculations show that the angle ϕk

from the chord X̃1
kX̃1

k−1 to L increases as k decreases from q to 1. When
N ≡ 2, 3 (mod 4) the ϕk’s are all positive; when N ≡ 1 (mod 4) all of these
values except ϕq are positive and |ϕq| < ϕq−1. These facts show that

dist(Xk, L) ≥ max
k=q−1,q

{dist(Xq, L), dist(Xq−1, L)} = dist(Xq, L)

for k = 0, . . . , q − 2. From this, Claim 7.12 follows easily.

Claim 7.13 The chord X1
0X1

1 has been rotated by an angle γ, i.e., the angle

between X1
0X

1
1 and X̃1

0X̃
1
1 is γ.

This angle of rotation is built up through the cumulative effect of q − 1
rotations by angle γ/(q − 1).

7.6. Blocks 2 to n − 1

Let h̃1 be the similarity

(7.14) h̃1(z) = X1
0 + Λeiγ(z − X1

0 ),

where Λ ≥ 1 is a constant to be determined later. Then X1
0 = h̃1(X

1
0 ),

h̃1(X
2
0 ), . . . , h̃1(1) lie on a horizontal line. Apply h̃1 to SR \ B1. (Recall that

SR denotes the union of all of the right joints and right arms.) Then the
sets h̃1(SR ∩ Bm), m = 2, . . . , n, are all similar to one another.
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Let h̃2 be a continuous map of h̃1(SR \B1) which translates h̃1(SR ∩Bm)
horizontally and expands h̃1(SR ∩ Bm) by a factor λ2−m. More precisely, h̃2

is defined inductively as follows: h̃2 is the identity on h̃1(B2), and after h̃2

has been defined on h̃1(Bm−1) (and hence defined at h̃1(X
m−1
0 )),

h̃2(z) = h̃2h̃1(X
m−1
0 ) + λ2−m(z − h̃2h̃1(X

m−1
0 ))

for z ∈ h̃1(Bm), 3 ≤ m ≤ n.
Let Π̃m

k = h̃2h̃1(Π
m
k ), 1 ≤ k ≤ q, be the new right side and right joint for

B′
m, 2 ≤ m ≤ n. Observe that Π̃m

k has chord X̃m
k X̃m

k−1, where

(7.15) X̃m
k = h̃2h̃1(X

m
k ), 1 ≤ k ≤ q.

Define the left joint and left side for B′
m analogously. Note that X̃1

0 , X̃2
0 , . . . , X̃n

0

are collinear.
To complete the discussion for these blocks, we must describe what hap-

pens to the bridges.
Consider first the bridge in B2. Using the formula in (7.15), we observe

that the angle between the vectors X̃2
N−q−1X̃

2
N−q and X̃2

q X̃2
q−1 is equal to

2γ plus the angle between X2
N−q−1X

2
N−q and X2

q X2
q−1 due to the rotations

resulting from h̃2. Therefore points X̃2
k , q + 1 ≤ k ≤ N − q − 2, can be

chosen so that

(i) the distances |X̃2
k − X̃2

k−1| are equal for all q + 1 ≤ k ≤ N − q − 1; and

(ii) ∠eX̃
2
k+1X̃

2
kX̃2

k−1 = 2π
N

− 2γ
N−2q

for q ≤ k ≤ N − q − 1.

Now let Π̃2
k, q + 1 ≤ k ≤ N − q − 1, be the regular N -gon with directed

chord X̃2
kX̃2

k−1. This defines the new bridge in B′
2.

The new bridges in B′
m for 3 ≤ m ≤ n are defined to be translates of the

bridge in B′
2 in the obvious manner.

We have now defined the deformed blocks B′
m for all 2 ≤ m ≤ n. How-

ever, the sides of B′
n will be modified later in order to fit in the terminal

block B′
n+1.

Claim 7.16 For each m = 2 . . . , n any two polygons in B′
m, not in the

bridge, meet at most at one point.

This is clear from the construction.

Claim 7.17 For each m = 2 . . . , n any two polygons in B′
m, not in the sides,

meet at most at one point.
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If N ≡ 2, 3 (mod 4) this follows from the choice of the points X̃m
k ,

Lemma 7.8(ii) and Lemma 7.9, since

2π

N
− 2α ≤ 0 < ∠eX̃

m
k+1X̃

m
k X̃m

k−1 <
2π

N
.

If N ≡ 1 (mod 4) we have

2π

N
− 2α = ∠eX̃

m
k+1X̃

m
k X̃m

k−1

and the hypothesis in Lemma 7.9 fails; neighboring polygons in the bridge
share a side. Therefore we must make the exterior angles between neighbor-
ing chords in the bridge slightly larger than 2π − 2γ/(N − 2q). This can be
accomplished by a small clockwise rotation of Π̃2

q about the point X̃1
0 , and

a small counterclockwise rotation of Π̃2
N−q about the point X̃1

N−1. Subse-

quently, we must make small adjustments to the points X̃2
k for 1 ≤ k ≤ q

and N − q ≤ k ≤ N − 1. We require, and indeed it is possible, that (i)

X̃1
0 X̃2

0 and X̃1
N−1X̃

2
N−1 remain horizontal, (ii) the newly positioned chords

X̃2
kX̃2

k−1, 2 ≤ k ≤ q − 1 or N − q + 2 ≤ k ≤ N − 1, for the sides have equal
length, and (iii) the modification of all chords involved can be as small as
future needs require. In view of (i)–(iii), it is again possible to choose the
subsequent blocks B′

m, 3 ≤ m ≤ n, as horizontal translates of B′
2.

Claim 7.18 The right side of B′
1 and the union of the right joints and right

sides of B′
m, 2 ≤ m ≤ n, intersect precisely at the point X̃1

0 .

This is due to the fact that the two segments X1
0X1

1 and X1
01 are each

rotated by the angle γ in the process of forming B′
1 and ∪n

m=2B′
m.

Claim 7.19 For each 2 ≤ m ≤ n − 1, B′
m and the union of the right joints

and right sides of B′
m+1, intersect precisely at X̃m

0 .

This is again obvious from the construction. The statements for the left
side are analogous.

The scaling factor Λ in (7.14) can be chosen so that the next three claims
are satisfied.

Claim 7.20 B′
1 is disjoint from the bridge of B′

2.

Claim 7.21 For each 2 ≤ m ≤ n−1, B′
m is disjoint from the bridge of B′

m+1.

Claim 7.22 The deformed arm is contained in the sector {reiθ : |θ| ≤ π/N}
and intersects the boundary of this sector only at the points X̃0

0 and X̃0
N−1.
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7.7. Blocks n and n + 1

Finally, we describe the terminal block B′
n+1. In order to properly fit this

block into the deformed arm A′
0 it is necessary to make some small modifi-

cations to the penultimate block B′
n.

The joints and the bridge Π̃n
k , q ≤ k ≤ N − q, in Block n will remain

unchanged. In particular, the points X̃n
k , q−1 ≤ k ≤ N − q, are unchanged.

For 0 ≤ k ≤ q − 2 and N − q + 1 ≤ k ≤ N − 1 replace X̃n
k by new points,

again called X̃n
k , so that (i) the distances |X̃n

k − X̃n
k−1| are equal for all

1 ≤ k ≤ q−1 and N − q +1 ≤ k ≤ N −1, and (ii) ∠eX̃
n
k+1X̃

n
k X̃n

k−1 = 2π
N

+ γ
q

for 0 ≤ k ≤ q − 1 and N − q ≤ k ≤ N − 1. (In the case N ≡ 1 (mod 4)
the angle in (ii) is slightly less than 2π/N + γ/q due to the adjustments in
connection with Claim 7.17.) For 0 ≤ k ≤ q−1 and N − q +1 ≤ k ≤ N −1,

redefine Π̃n
k to be the regular N -gon with chord X̃n

k X̃n
k−1.

Now replace the block B′
n defined earlier by the new collection

B′
n := {Π̃n

k : 1 ≤ k ≤ N − 1}
and set

B′
n+1 := {Π̃n

0}.
Claim 7.23 Π̃n

k+1∩Π̃n
k = {X̃n

k } for 0 ≤ k ≤ q−1 and N−q+1 ≤ k ≤ N−1.

Recall that indices are taken modulo N so Π̃n
N = Π̃n

0 .
Claim 7.23 follows from the definition of the points X̃n

k together with
Lemma 7.8(iii) and Lemma 7.9.

Finally, let
A′

0 := ∪n+1
m=1B′

m

and
A′

j := {e2πij/Nz : z ∈ A′
0}.

The deformed IFS G = {gj} ∪ {hjkm} is defined as follows. Rescale the
polygons Π̃m

k so that the closed convex hull of ∪jA′
j is again equal to the

original polygon Π. Continue to denote the rescaled polygons by Π̃m
k . Let

g0 and h0km map Π onto Π̃n
0 and Π̃m

k respectively preserving the directed
chords. Then define gj and hjkm as

gj(z) = e2πij/Ng0(e
−2πij/Nz)

and
hjkm(z) = e2πij/Nh0km(e−2πij/Nz).

Proposition 7.24 F and G are isomorphic.

This follows from Claims 7.11–7.23 and Proposition 3.29.
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The invariant set for the deformed IFS G is denoted PGn(N). To com-
plete the proof of Theorem 1.4 it suffices to show the following two results.

Proposition 7.25 dim PGn(N) ≤ 1 + C0/ log n, where C0 < ∞ depends
only on N .

Proposition 7.26 For each n ≥ 2 and N ≥ 5, N 
≡ 0 (mod 4), the canon-
ical homeomorphism F : PG(N) → PGn(N) may be extended to a quasi-
conformal map of R2.

Proof of Proposition 7.25. Let λ̃m
k = diam Π̃m

k / diam Π for 1 ≤ k ≤ N−1,
1 ≤ m ≤ n or k = 0, m = n.

Claim 7.27 The contraction ratios λ̃m
k take on only five values when N ≡

2, 3 (mod 4) and six values when N ≡ 1 (mod 4).

In Block 1 there is one value associated with the joints and the bridge
and a second value associated with the sides. In Blocks 2 through n − 1
there is one value associated with the bridge and a second value associated
with the joints, which is the same for the sides when N ≡ 2, 3 (mod 4) and
a third value associated with the sides when N ≡ 1 (mod 4). Finally, in
Blocks n and n + 1 the value associated with the joints and the bridge is
the same as that for Block n− 1, and there is an additional value associated
with the sides and with Block n + 1.

Returning to the proof of Proposition 7.25, there exist constants 0 <
C1 < 1 < C2 < ∞, depending on N but not on n, so that

(7.28)
C1

n
≤ λ̃m

k ≤ C2

n

for all relevant k and m and all n ≥ 0.
Since the deformed IFS G is of gasket type, it satisfies the open set

condition and hence dimPGn(N) =: sn is the unique positive solution to
the equation

(7.29) N
N−1∑
k=1

n∑
m=1

(λ̃m
k )sn + (λ̃n

0 )sn = 1.

Combining (7.28) and (7.29), we find

1 ≤ N2nC2
2(

1

n
)sn

which implies sn ≤ 1 + 2 log(C2N)/ log n as desired. �
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Next, we turn to the proof of Proposition 7.26. In what follows we work
in the extended complex plane Ĉ = C ∪ {∞}. Let U∅ be the component of
Ĉ \ PG(N) which contains the origin, and for each w ∈ W , let Uw be the
component of Ĉ \PG(N) which contains the center of Πw. Furthermore, let
U∞ be the unbounded component of Ĉ \ PG(N). Observe that all of the
domains U∅ and Uw, w ∈ W , are pairwise similar.

A topological circle Γ ⊂ Ĉ is said to satisfy the Ahlfors three-point con-
dition with constant a < ∞ if for each pair of points z, z′ ∈ Γ, one of the
two components of Γ \ {z, z′} has diameter at most a|z − z′|.

Lemma 7.30 There exists a constant a = a(N) < ∞ so that the bound-
ary of each of the complementary components of the N-gasket satisfies the
Ahlfors condition with constant a.

Proof. It suffices to verify that ∂U∅ and ∂U∞ satisfy the Ahlfors condition
with some constant a < ∞. For simplicity we only consider ∂U∅; the other
case is virtually identical.

Let δ and θ be the geometric data associated with the polygasket as in
(3.20) and (3.21).

For each w ∈ W , Πw ∩ ∂U∅ is either empty or is a topological arc. Let
z, z′ ∈ ∂U∅ and let w be the longest word in W for which Πw � z, z′. Then
z ∈ Πwi and z′ ∈ Πwj for some i 
= j. There is a component γ of ∂U∅\{z, z′}
contained in Πw. We break the proof into two cases:

Case (i): Πwi and Πwj are disjoint. In this case |z−z′| ≥ dist(Πwi, Πwj) ≥
δ diam Πw ≥ δ diam γ, and the Ahlfors condition holds with a = 1/δ.

Case (ii): Πwi and Πwj are adjacent. Let Πwi ∩ Πwj = {ζ}. Choose σ, τ
such that z, ζ ∈ Πwσ, z′, ζ ∈ Πwτ , |z−ζ| � diam Πwσ and |z′−ζ| � diam Πwτ .
Since γ ⊂ Πwσ ∪ Πwτ we conclude that

diam γ ≤ diam Πwσ + diam Πwτ � |z − ζ| + |z′ − ζ| � |z − z′|

by Lemma 3.23. This completes the proof of Lemma 7.30. �

Proof of Theorem 7.26. Let F : PG(N) → PGn(N) be the canonical
map. By Proposition 7.24 and Theorem 1.7, F is quasisymmetric. By
Lemma 7.30 and a theorem of Ahlfors [1], each component of Ĉ \ PG(N) is
a K-quasidisc with K < ∞ depending on a(N) only. It follows from another
theorem of Ahlfors [1] that F can be extended to a function F̃ , continuous
on Ĉ and K1-quasiconformal on each component of Ĉ \ PG(N), with K1

depending only K and the quasisymmetry data of F on PG(N). A theorem
of Väisälä [29, Theorem 3.3] guarantees that F̃ is quasiconformal in Ĉ. �
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8. Appendix

In this appendix, we give the proof of Proposition 5.10.
Let F and G be IFS’s as in the statement of the proposition, and assume

that the maps in G are ordered so that D(F ,G) = maxi∈A D(fi, gi). Recall
that

D(f, g) = |λ − λ′| + |a − a′| + ||A − A′||,
where f = (I − λA)a + λA and g = (I − λ′A′)a′ + λ′A′. Let i, j, k, l ∈ A
satisfy πF(ik) = πF(jl), let n ∈ N be arbitrary, and set

τ = i k · · · k︸ ︷︷ ︸
n

, η = j l · · · l︸ ︷︷ ︸
n

and
Φ = g−1

η ◦ gτ ◦ f−1
τ ◦ fη.

The proof of the proposition consists in estimating |z−Φ(z)|, for z ∈ K, by
a series of terms involving the data λi, ai, Ai and λ′

i, a
′
i, A

′
i. To this end we

first collect several lemmas providing estimates for terms of this form. In all
of these lemmas, we assume the hypotheses of Proposition 5.10.

To ease notation we write D = D(F ,G).
In our first lemma, we estimate the operator norm of Bτ − B′

τ , where
Bτ := Id − λτAτ and B′

τ := Id − λ′
τA

′
τ .

Lemma 8.1

||Bτ − B′
τ || ≤

2

1 − λmax

D.

Proof. Since λτ = λiλ
n
∂ , Aτ = Ai, etc. (recall that boundary mappings have

trivial rotation matrix A∂), we find

||Bτ − B′
τ || = ||λτAτ − λ′

τA
′
τ || ≤ (n + 2) max{λmax, λmax(G)}nD

≤ 2(n + 1)(
1 + λmax

2
)nD ≤ 2

1 − λmax

D

by repeated applications of the triangle inequality. Here we used the ele-
mentary estimate 2(n + 1)xn ≤ 1/(1 − x), n ≥ 1, 0 < x < 1. �

Remark 8.2 In a similar manner, we can prove

||Bw − B′
w|| ≤

2

1 − λmax
D

for any w ∈ W , where Bw = Id − λwAw, etc.
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Since Φ is a similarity, Φ = Φ(0)+λΦAΦ for some λΦ > 0 and AΦ ∈ O(d).
Our next lemma estimates the operator norm of BΦ := Id − λΦAΦ.

Lemma 8.3 ||BΦ|| ≤ 10
λmin

D.

Proof. Since the contraction ratio and rotation matrix for a composition
of similarities are the product of the corresponding quantities for the com-
posands,

(8.4) λΦ = (λ′
η)

−1λ′
τλ

−1
τ λη =

λjλ
′
i

λ′
jλi

and

(8.5) AΦ = (A′
η)

−1 · A′
τ · A−1

τ · Aη = (A′
j)

−1 · A′
i · A−1

i · Aj.

Here we have used the boundary congruence to observe that the contribu-
tions to λΦ from the boundary similarities fk, fl, gk, gl vanish. Observe that
λk = λl = λ∂ and λ′

k = λ′
l = λ′

∂.

From (8.4) and (8.5) we estimate

λΦ ≤
(

1 +
|λi − λ′

i|
λi

) (
1 − |λj − λ′

j|
λj

)−1

≤
(

1 +
D

λmin

) (
1 − D

λmin

)−1

≤ 1 +
4

λmin

D ≤ 3.

and

||Id − AΦ|| = ||A′
j · A−1

j − A′
i · A−1

i || ≤ ||Aj − A′
j|| + ||Ai − A′

i|| ≤ 2D.

Combining these inequalities gives

||BΦ|| ≤ |λΦ − 1| + λΦ||Id − AΦ|| ≤ 10

λmin

D.

�

Next, we estimate |v − v′|, where

v = fi(ak) = fj(al) and v′ = gi(a
′
k) = gj(a

′
l).

Lemma 8.6 |v − v′| ≤ 7D.

Proof. This is an easy consequence of the representations

v = Biai + λiAiak and v′ = B′
ia

′
i + λ′

iA
′
ia

′
k,

where Bi := Id − λiAi and B′
i := Id − λ′

iA
′
i. �
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For our final lemma, we estimate the distance between the fixed points
aτ and a′

τ for fτ and gτ .

Lemma 8.7

|aτ − a′
τ | ≤

36

(1 − λmax)3
D.

Proof. The fixed point for fτ = fi ◦ f
(n)
k is

aτ = B−1
τ · (Biai + (Bτ − Bi)ak).

Thus

|aτ −a′
τ | ≤ |B−1

τ Biai − (B′
τ )

−1B′
ia

′
i|+ |B−1

τ (Bτ −Bi)ak − (B′
τ )

−1(B′
τ −B′

i)a
′
k|.

In the first term, we use the triangle inequality together with the estimates

||Bi|| ≤ 2, ||B′
i|| ≤ 2, ||Bi − B′

i|| ≤ 2D

to deduce

|B−1
τ Biai − (B′

τ )
−1B′

ia
′
i| ≤ 2 · ||B−1

τ − (B′
τ )

−1|| + ||(B′
τ )

−1|| · 4D.

In a similar manner, we use the above estimates together with ||Bτ−Bi|| ≤ 2,
||B′

τ − B′
i|| ≤ 2 and Lemma 8.1 to control the second term:

|B−1
τ (Bτ − Bi)ak − (B′

τ )
−1(B′

τ − B′
i)a

′
k|

≤ ||B−1
τ − (B′

τ )
−1|| · ||Bτ − Bi|| + ||(B′

τ )
−1||

· (||Bτ − B′
τ || + ||Bi − B′

i|| + ||B′
τ − B′

i||D)

≤ 2 · ||B−1
τ − (B′

τ )
−1|| + ||(B′

τ )
−1|| · 6

1 − λmax

D.

Finally, we use Lemma 8.1 and (5.14) to get

||B−1
τ − (B′

τ )
−1|| ≤ ||B−1

τ || · ||B′
τ − Bτ || · ||(B′

τ )
−1||

≤ 2

(1 − λmax)2(1 − λmax(G))
D ≤ 4

(1 − λmax)3
D

and

||(B′
τ )

−1|| ≤ 1

1 − λmax(G)
≤ 2

1 − λmax

.

Combining these estimates gives the desired conclusion. �
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Remark 8.8 A similar proof shows that |aw − a′
w| ≤ CD for any w ∈ W ,

where aw and a′
w denote the fixed points for fw and gw, respectively and C

denotes a constant depending only on λmin and λmax. Since the collection of
fixed points for the maps fw, w ∈ W , is dense in K, it follows that

||πF − πG||L∞(Σ) ≤ CD(F ,G)

for any isomorphic, boundary congruent, gasket type IFS’s F and G.

Proof of Proposition 5.10. For any z ∈ Π = Π(F), we have

(8.9) |z − Φ(z)| ≤ |Φ(0)| + |BΦ(z)| ≤ |Φ(0)| + ||BΦ||.

Since the second term was bounded in Lemma 8.3, it suffices to provide an
estimate for |Φ(0)|. To this end, we calculate

Φ(0) = (Id − 1

λ′
η

A′−1
η )a′

η +
1

λ′
η

A′−1
η (Id − λ′

τA
′
τ )a

′
τ

+
λ′

τ

λ′
η

A′−1
η A′

τ (Id − 1

λτ

A−1
τ )aτ +

λ′
τ

λ′
ηλτ

A′−1
η A′

τA
−1
τ (Id − ληAη)aη

= − 1

λ′
η

A′−1
η B′

η(a
′
η − v′) +

1

λ′
η

A′−1
η B′

τ (a
′
τ − v′)

− λ′
τ

λ′
ηλτ

A′−1
η A′

τA
−1
τ Bτ (aτ − v) +

λ′
τ

λ′
ηλτ

A′−1
η A′

τA
−1
τ Bη(aη − v)

+ (Id − λ′
τ

λ′
η

(A′
η)

−1A′
τ )(v

′ − v) + BΦ(v)

Since v = fτ (ak) = fη(al) we see that aτ − v = λτAτ (aτ − ak), etc. Hence

Φ(0) = −B′
η(a

′
η − a′

l) +
λ′

τ

λ′
η

A′−1
η A′

τB
′
τ (a

′
τ − a′

k) −
λ′

τ

λ′
η

A′−1
η A′

τBτ (aτ − ak)

+ λΦAΦBη(aη − al) + (Id − λ′
τ

λ′
η

A′−1
η A′

τ )(v
′ − v) + BΦ(v)

= −B′
η(a

′
η − aη + al − a′

l) +
λ′

τ

λ′
η

A′−1
η A′

τB
′
τ (a

′
τ − aτ + ak − a′

k)

+
λ′

τ

λ′
η

A′−1
η A′

τ (B
′
τ − Bτ )(aτ − ak) +

(
Bη − B′

η − BηBΦ

)
(aη − al)

+ (Id − λ′
τ

λ′
η

A′−1
η A′

τ )(v
′ − v) + BΦ(v)

= I + II + III + IV + V + V I.
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Using the lemmas, we estimate

|I| ≤ 2(|aη − a′
η| + |al − a′

l|) ≤
74

(1 − λmax)3
D,

|II| ≤ 2

λ′
min

(|aτ − a′
τ | + |ak − a′

k|) ≤
296

λmin(1 − λmax)3
D,

|III| ≤ 1

λ′
min

||Bτ − B′
τ || ≤

4

λmin(1 − λmax)
D,

|IV | ≤ ||Bη − B′
η|| + 2||BΦ|| ≤ 22

λmin(1 − λmax)
D,

|V | ≤
(

1 +
1

λ′
min

)
|v′ − v| ≤ 21

λmin

D,

and

|V I| ≤ ||BΦ|| ≤ 10

λmin
D.

Thus

(8.10) |Φ(0)| ≤ 427

λmin(1 − λmax)3
D.

Using (8.10) and Lemma 8.3 in (8.9) completes the proof of Proposition 5.10.
�
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[29] Väisälä, J.: Quasisymmetry and unions. Manuscripta Math. 68 (1990),
101–111.

Recibido: 3 de 0ctubre de 2003
Revisado: 14 de marzo de 2005

Jeremy T. Tyson
Department of Mathematics

University of Illinois
1409 West Green Street

Urbana, IL 61801
tyson@math.uiuc.edu

Jang-Mei Wu
Department of Mathematics

University of Illinois
1409 West Green Street

Urbana, IL 61801
wu@math.uiuc.edu

J.T.T. supported by the National Science Foundation under Award No. DMS-0228807
and the University of Berne, Switzerland. J.-M.W. supported by the National Science
Foundation under Award No. DMS-0070312.


