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Some nonexistence results for positive
solutions of elliptic equations

in unbounded domains

Lucio Damascelli and Francesca Gladiali

Abstract

We prove some Liouville type theorems for positive solutions of
semilinear elliptic equations in the whole space R

N , N ≥ 3, and in the
half space R

N
+ with different boundary conditions, using the technique

based on the Kelvin transform and the Alexandrov-Serrin method of
moving hyperplanes. In particular we get new nonexistence results for
elliptic problems in half spaces satisfying mixed (Dirichlet-Neumann)
boundary conditions.

1. Introduction and statement of the results

In a famous paper [15] Gidas and Spruck proved, as a byproduct of much
more general results, a general Liouville type theorem for subcritical elliptic
equations, namely that there are not nontrivial C2 solutions (without any
condition at infinity) of the problem

(1.1)

{
−∆u = up in R

N

u ≥ 0 in R
N

if N ≥ 3 and 1 < p < N+2
N−2

.

As it is well known Liouville type theorems are important in many situ-
ations, for example in proving a priori estimates (see e.g. [16]).

Later Chen and Li [10] found a simple proof of the previous result based
on the Kelvin transform and the Alexandrov-Serrin moving plane method,
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and the same technique also shows that if p = N+2
N−2

the only solutions to (1.1)
are the well known solutions having the form

u(x) =
[N(N − 2)λ2]

N−2
4

(λ2 + |x − x0|2)N−2
2

for some λ > 0 and x0 ∈ R
N . This last result had been proved by Gidas, Ni

and Nirenberg [14] for solutions with some decay at infinity and by Caffarelli,
Gidas and Spruck [8] without any condition at infinity.

The Kelvin transform together with the moving plane method was ex-
ploited also by Gidas and Spruck in another paper [16] to prove that there
are not nontrivial solutions of the corresponding Dirichlet problem in a half
space, namely

(1.2)



−∆u = up in R

N
+ = {x = (x1, . . . , xN ) : xN > 0}

u ≥ 0 in R
N
+

u = 0 on ∂R
N
+

if N ≥ 3 and 1 < p ≤ N+2
N−2

. Using both type of Liouville theorems the
authors prove some general a priori estimates for solutions of subcritical
semilinear elliptic equations.

For what concerns the corresponding problem in a half space with mixed
boundary conditions Berestycki, Grossi and Pacella [7] proved that there are
not nontrivial solutions belonging to the space D1,2(RN

+ ) of the problem

(1.3)




−∆u = up in R
N
+

u ≥ 0 in R
N
+

u = 0 on Γ0 = {x = (x1, . . . , xN ) : xN = 0, x1 > 0}
∂u

∂xN
= 0 on Γ1 = {x = (x1, . . . , xN ) : xN = 0, x1 < 0}

where N ≥ 3, p = N+2
N−2

, using again the Kelvin transform and the moving
plane method.

Since then the technique based on the Kelvin transformation and the
moving plane method has been then used by many authors to prove Liou-
ville type results for nonnegative solutions of different kind of elliptic prob-
lems, in R

N and for Dirichlet or nonlinear Neumann problems in half spaces
(see e.g. [2], [9], [17], [20], [21]).
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In particular Chen and Lin [9] proved that if f : [0,∞) → R satisfies the
following assumptions

(1) f(s) ≥ 0

(2) f is nondecreasing

(3) f is locally Lipschitz

(4) f(t)

t
N+2
N−2

is nonincreasing in (0,+∞).

then there are no nontrivial solutions of the problem

(1.4)

{
−∆u = f(u) in R

N

u ≥ 0 in R
N

unless there exists l ≥ 0 such that f(t) = l t
N+2
N−2 in the range of u. Condition

(2) was then dropped by Bianchi [2] that also treated nonlinearity depending
on |x| and other problems.

Lou and Zhu [17] studied problems in half spaces with nonlinear Neu-
mann boundary conditions and also considered the problem (1.4) when the
nonlinearity has the opposite sign, namely f(u) = −up and proved that
there are no solutions for any p > 1 using the same technique.

In all this papers the classical moving plane method based on pointwise
estimate and the maximum principle was exploited. In particular maximum
principles for singular solutions of differential inequalities (see [19]) were
used to guarantee that positive solutions with a possible isolated singularity
are bounded from below by a positive constant in punctured balls around
the singularity, and this was the condition that allows to start the method.
This is why the condition (1) appears in some of the previous papers and
different kind of maximum principles are needed in treating negative su-
perlinear nonlinearities. This is also the reason why a different technique,
exploiting a Kelvin transform that maps the half space in a ball, is used
in [16] for the Dirichlet problem in R

N
+ : the (singular) solution cannot be

greater than a positive constant in R
N
+∩B(0, r)\{0} because of the boundary

condition.
Another technique used together with the moving plane method to prove

symmetry results is based on integral inequality, as used by Terracini in two
interesting papers [20], [21] where singular elliptic problems in R

N or in
the half space with nonlinear Neumann data on the boundary are treated
(see also [1] and [13] where this technique was used in studying the symme-
try of positive solutions of elliptic problems on manifold and involving the
p-Laplace operator).
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In this paper we get new nonexistence results for a general class of
semilinear elliptic problems in half spaces with mixed (Dirichlet-Neumann)
boundary conditions, i.e. the problem

(1.5)




−∆u = f(u) in R
N
+

u ≥ 0 in R
N
+

u = 0 on Γ0 = {x = (x1, . . . , xN ) : xN = 0, x1 > 0}
∂u

∂xN
= 0 on Γ1 = {x = (x1, . . . , xN ) : xN = 0, x1 < 0}

Here N ≥ 3 and f : [0,+∞) → R is a continuous function.

Let us put A = R
N
+ ∪ Γ1 and W = {ϕ ∈ C1

c (RN
+ ) : supp (ϕ) ⊆ A}.

By a weak solution of (1.5) we mean a function u ∈ W 1,2
loc (RN

+ )∩L∞
loc(R

N
+ )

(i.e. u is bounded in K ∩ R
N
+ for every compact K ⊆ R

N ) such that u = 0
on Γ0 and ∫

RN
+

∇u∇ϕ =

∫
RN

+

f(u)ϕ

for every ϕ ∈ W . Our main result is the following

Theorem 1.1 Let u ∈ W 1,2
loc (RN

+ ) ∩ C0(RN
+ ) be a weak solution of prob-

lem (1.5) in R
N
+ , where N ≥ 3 and f : [0,∞) → R is a continuous function

satisfying

i) g(t) = f(t)

t
N+2
N−2

is nonincreasing in (0,+∞).

ii) f+(t)
t

is bounded for t → 0.

Then u depends only on x1 and xN and is nonincreasing in the x1- direction.

Moreover if f satisfies i), ii) and

iii) f(s) > 0 for every s > 0, lim inft→∞ f(t) > 0

then u ≡ 0 is the only bounded solution of the problem (1.5).

As a particular case we get the nonexistence of nontrivial bounded solu-
tions of the problem (1.3), for any p with 1 < p ≤ N+2

N−2
and without requiring

any condition on the summability of the solution.
We use the technique based on the Kelvin transform together with the

moving plane method, as it was done in previous papers dealing with prob-
lems in R

N or in R
N
+ with Dirichlet conditions, but in developing the method

we use integral inequalities, as used by Terracini in [20], [21], and more re-
cently by one of the authors in [1]. The advantage of this approach is that
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the same method can be applied in different problems, in the whole space as
well as in half spaces under different boundary conditions, and there is not
any more the need for different maximum principles to start the method.

In fact we also get as a byproduct an unified proof of the known results
for problems (1.4) and for the corresponding Dirichlet problem in the half
space (see problem (1.6) that follows) which also gives some improvement of
the known results. In particular we show that only condition (4) above on f
is needed to prove nonexistence for the problem (1.4) in the whole space,
i.e. we prove the following

Theorem 1.2 Let u ∈ W 1,2
loc (RN ) ∩ C0(RN ) be a (weak) solution of prob-

lem (1.4), where N ≥ 3 and f : [0,∞) → R is a continuous function with
the property

i) g(t) = f(t)

t
N+2
N−2

is nonincreasing in (0,+∞).

Then either u ≡ c ∈ [0,+∞) and f(c) = 0, or there exist positive constants
k, h, l such that

u(x) =
k

(h2 + |x − x0|2)
N−2

2

and g(t) = l > 0, i.e. f(t) = l t
N+2
N−2 .

Using the same technique one can consider solutions of the corresponding
problem in the half space with Dirichlet boundary conditions, namely

(1.6)



−∆u = f(u) in R

N
+ = {x = (x1, . . . , xN ) : xN > 0}

u ≥ 0 in R
N
+

u = 0 on ∂R
N
+

and prove the following analogous result.

Theorem 1.3 Let u ∈ W 1,2
loc (RN

+ ) ∩ C0(RN
+ ) be a (weak) solution of prob-

lem (1.6) in R
N
+ , where N ≥ 3 and f : [0,∞) → R is a continuous function

satisfying

i) g(t) = f(t)

t
N+2
N−2

is nonincreasing in (0,+∞).

ii) f+(t)
t

is bounded for t → 0.

Then u depends only on xN . Moreover if f satisfies i), ii) and

iii) f(s) > 0 for every s > 0, lim inft→∞ f(t) > 0

then problem (1.6) admits only the trivial solution u ≡ 0.
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Remark 1.1 Note that theorems 1.1-1.3 lead to a priori estimates in L∞ for
problems in bounded domains with mixed boundary conditions. We refer
to [16] for the corresponding analysis for Dirichlet BVP and to the recent pa-
per [11] for a blow-up analysis for some mixed problems in bounded domains.

In this last paper, that we received after this paper was completed, the
authors reach a priori bounds without using a general Liouville theorem
as the previous one, but only proving that there are no solutions u of the
problem (1.5) in the case when f(t) = tr, 1 < r < N+2

N−2
having the property

that 0 ≤ u ≤ 1 = u((0, 0, . . . , 1)).

The paper is organized as follows. In Section 2 we prove Theorems 1.2
and 1.3 as well as some related result, and show how the technique exploited
permit to treat similarly different problems. We give a fairly detailed proof of
Theorem 1.2, which is of course only a generalization of some known results,
because the structure of the proof can be repeated with natural changes in
the other results that we prove, in particular in the results on the mixed
problem in a half space.

In Section 3 we focus on the mixed BVP in a half space and prove our
main result, namely Theorem 1.1. We profit of the proofs given in Sect.2 to
give a quick proof of the first part of the proof of Theorem 1.1. The proof of
the monotonicity in the x1-direction in the whole half space, which leads to
nonexistence in some cases, is instead not straightforward and requires new
ideas which are explained in detail.

We also state and prove a Liouville type result for nonnegative solutions
belonging to a suitable function space.

Acknowledgements. We would like to thank Prof. Ireneo Peral for many
interesting discussions and for showing us a preliminary version of the pa-
per [11]. We also would like to thank Prof. Yuxin Ge for some useful
suggestions about the manuscript.

2. Proof of Theorems 1.2 and 1.3

The proof of Theorem 1.2 will follow, as in [2] or directly, from the following

Proposition 2.1 Let u and f be as in Theorem 1.2 and suppose that u is
positive in R

N . Let v be the Kelvin transform of u centered in a point P .
Then v is radial around some point Q.

Moreover if g is not constant in (0, supx∈RN u(x)) then Q = P , i.e. v is
radial around the pole of the Kelvin transform.

Before giving the proof of Proposition 2.1 let us begin with some notations
and comment. For simplicity of notations we will consider the Kelvin trans-



Nonexistence for elliptic equations 73

form centered at the origin, namely

v(x) =
1

|x|N−2
u
( x

|x|2
)

, x ∈ R
N \ {0}

It satisfies (weakly) in R
N \ {0} the equation

−∆v(x) =
1

|x|N+2
f(|x|N−2v(x))

which can also be written as

−∆v(x) = g(|x|N−2v(x))v(x)
N+2
N−2

where

g(t) =
f(t)

t
N+2
N−2

.

Moreover v is continuous and strictly positive in R
N \ {0}, with a possible

singularity at the origin, and decays at infinity as u(0) |x|2−N , so that v ∈
L2∗ ∩ L∞(RN \ Br(0)) for any r > 0.

To prove that v is radial we use the moving plane method and prove
symmetry in every direction, and for simplicity of notations we choose the
x1-direction. We then set the usual notations of the moving plane method:
if λ ∈ R we define Σλ = [x1 > λ] = {x = (x1, . . . , xN ) : x1 > λ}, Tλ =
∂Σλ = [x1 = λ] = {x = (x1, . . . , xN ) : x1 = λ}, and for x ∈ Σλ we denote
by xλ = Rλ(x) = (2λ − x1, x2, . . . , xN ) the image of x under the reflection
through the hyperplane Tλ and by vλ(x) = v(xλ) the reflected function,
which is singular in the point Pλ = (2λ, 0, . . . , 0).

Finally let Λ be the set of those λ ∈ (0,+∞) such that v ≤ vµ in Σµ \Pµ

for every µ ∈ (λ,+∞).

To prove that v is symmetric with respect to some hyperplane Tλ it
suffices to prove that

Step 1: Λ �= ∅
Putting λ0 = inf Λ then

Step 2: If λ0 > 0 then v ≡ vλ0 in Σλ0 .

In fact if λ0 = 0 then by continuity v ≤ v0 in Σ0. Doing the same
procedure with respect to the opposite direction it is easy to conclude that
either v ≡ vλ0 in Σλ0 for some λ0 < 0 or v ≡ v0 in Σ0.

To handle the (eventual) singularity of vλ in Pλ, we first prove the fol-
lowing lemma, where we exploit a technique based on cut-off functions, as
done by Terracini in [21].
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Lemma 2.1 For any fixed λ > 0 the functions v and (v − vλ)
+ belong to

L2∗ ∩ L∞(Σλ), the function (v − vλ)
+ belongs to W 1,2(Σλ). Moreover if we

put Aλ = {x ∈ Σλ \ Pλ : g(|x|N−2v(x)) > 0 , v(x) ≥ vλ(x)}, there exists
Cλ > 0, nonincreasing in λ, such that

(2.1)

∫
Σλ

|∇(v − vλ)
+|2 ≤ Cλ

(∫
Aλ

1

|x|2N

) 2
N

(∫
Σλ

|∇(v − vλ)
+|2

)

Proof. If λ > 0 then there exists r > 0 such that Σλ ⊆ R
N \ Br(0), so

that v and (v − vλ)
+ ≤ v belong to L2∗ ∩ L∞(Σλ) and the function 1

|x|2N

which appears in (2.1) is integrable in Σλ. The fact that (v − vλ)
+ belongs

to W 1,2(Σλ) will be a consequence of the estimate (2.1).

For ε > 0 small let η = ηε ∈ C1
c (RN ) be a cut-off such that 0 ≤ η ≤ 1,

η(x) = 1 if 2ε ≤ |x − Pλ| ≤ 1
ε
, η(x) = 0 if |x − Pλ| < ε or |x − Pλ| > 2

ε
,

|∇η| ≤ 2
ε

if ε < |x − Pλ| < 2ε, |∇η| ≤ 2ε if 1
ε

< |x − Pλ| < 2
ε
.

We then test the equations

−∆v(x) = g(|x|N−2v(x))v(x)
N+2
N−2 , −∆vλ(x) = g(|xλ|N−2v(xλ))vλ(x)

N+2
N−2

in Σλ \ Pλ with the function ϕ = ϕε = η2
ε(v − vλ)

+, to obtain estimates for
the function ψ = ψε = ηε(v − vλ)

+.
Since |∇ψ|2 = ∇(v − vλ) · ∇ϕ + [(v − vλ)

+]2|∇η|2 it follows, subtracting
the equations, that∫

Σλ∩[2ε≤|x−Pλ|≤ 1
ε
]

|∇ (v − vλ)
+|2 ≤

∫
Σλ

|∇ψ|2 =

∫
Σλ

∇(v − vλ) · ∇ϕ + Iε

=

∫
Σλ

[
g(|x|N−2v(x))vp − g(|xλ|N−2v(xλ))v

p
λ

]
ϕ + Iε

where p = N+2
N−2

, Iε =
∫
Σλ

[(v − vλ)
+]2|∇ηε|2.

Since g is nonincreasing, |x| ≥ |xλ| and v(x) ≥ v(xλ) in the set where
ϕ > 0, we have that −g(|xλ|N−2v(xλ)) ≤ −g(|x|N−2v(x)) there, so that∫

Σλ∩[2ε≤|x−Pλ|≤ 1
ε
]

|∇ (v − vλ)
+|2 ≤

∫
Σλ

[
g(|x|N−2v(x))

]
(vp − vp

λ)ϕ + Iε

≤
∫

Σλ

[
g+(|x|N−2v(x))

]
(vp − vp

λ)ϕ + Iε

=

∫
Aλ

[
g+(|x|N−2v(x))

]
(vp − vp

λ)ϕ + Iε
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Moreover, since u is positive and locally bounded, there exist 0 < a = aλ <
b = bλ < +∞ such that

a < |x|N−2v(x) = u(
x

|x|2 ) < b ∀x ∈ Σλ ⊆ R
N \ Br(0),

so that 0 ≤ g+(|x|N−2v(x)) ≤ g+(aλ) =: Cλ.

Finally if 0 ≤ vλ ≤ v we have that

v
N+2
N−2 − v

N+2
N−2

λ ≤ N + 2

N − 2
v

4
N−2 (v − vλ) ≤ Cλ

1

|x|4 (v − vλ),

as v ∈ L∞(Σλ), λ > 0, and decays at infinity as 1
|x|N−2 .

From the previous estimate we then get, using Hölder’s inequality,∫
Σλ∩[2ε≤|x−Pλ|≤ 1

ε
]

|∇(v − vλ)
+|2 ≤

∫
Aλ

[
g+(|x|N−2v(x))

]
(vp − vp

λ)ϕ + Iε

≤ Cλ

∫
Aλ

1

|x|4 η2[(v − vλ)
+]2 + Iε

≤ Cλ

(∫
Aλ

1

|x|2N

) 2
N

(∫
Σλ

η2∗[(v − vλ)
+]2

∗
) 2

2∗
+ Iε

We observe now that the term Iε tends to zero as ε → 0.

In fact, if Bε = {x ∈ Σλ : ε < |x − Pλ| < 2ε| or 1
ε

< |x − Pλ| < 2
ε
|},

observe that Bε → ∅ as ε → 0 and (v − vλ)
+ ≤ v ∈ L2∗(Σλ).

Moreover

|∇ηε|N |Bε| ≤ C(
1

εN
εN + εN 1

εN
) = C,

so we get

Iε ≤
∫

Bε

(
[(v − vλ)

+]2
∗
) 2

2∗
(∫

Σλ

|∇η|N
) 2

N ≤ C

∫
Bε

(
[(v − vλ)

+]2
∗
) 2

2∗ → 0

as ε → 0 because (v − vλ)
+ ∈ L2∗(Σλ) .

Letting now ε tend to zero and using monotone and dominated conver-
gence and Sobolev’s inequality, we get∫

Σλ

|∇(v − vλ)
+|2 ≤ Cλ

(∫
Aλ

1

|x|2N

) 2
N

(∫
Σλ

[(v − vλ)
+]2

∗
) 2

2∗

≤ Cλ

(∫
Aλ

1

|x|2N

) 2
N

∫
Σλ

|∇(v − vλ)
+|2

�
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Proof of Proposition 2.1 From the estimate 2.1 we deduce immediately
that if λ > 0 and Cλ(

∫
Aλ

1
|x|2N )

2
N < 1 then

∫
Σλ

|∇(v − vλ)
+|2 = 0, so that

v ≤ vλ in Σλ. This allows to prove the two main steps of the moving plane
method rather easily.

Step 1. Since 1
|x|2N ∈ L1(Σλ1) for every λ1 > 0 and Σλ → ∅ as λ → +∞, it

follows that ∫
Aλ

1

|x|2N
≤

∫
Σλ

1

|x|2N
→ 0 as λ → ∞,

so that Cλ(
∫

Aλ

1
|x|2N )

2
N < 1 for every λ in some interval (λ0,+∞).

Step 2. Let λ0 = inf Λ be positive and suppose by contradiction that v does
not coincide with its reflection vλ0 in Σλ0 . Then we claim that

v < vλ0 in the set Dλ0 = {x ∈ Σλ0 \ Pλ0 : g(|x|N−2v(x)) > 0} ⊃ Aλ0 .

This is not immediate, since f is not supposed to be Lipschitz, but it can
be readily verified as follows.

We know that v ≤ vλ0 in Σλ0 \ Pλ0 by continuity, and |x| > |xλ0| in Σλ0

because λ0 > 0. Let us put O = {x ∈ Dλ0 : |x|N−2v > |xλ0|N−2vλ0} .

If x ∈ Dλ0 \ O then |x|N−2v(x) ≤ |xλ0|N−2vλ0(x) so that

v(x) ≤ (
|xλ0|
|x| )N−2vλ0(x) < vλ0(x) .

From this we get that v < vλ0 in Dλ0 \ O.

In the open set O instead, since g is positive and nonincreasing in Dλ0

and v ≤ vλ0 in Σλ0 , we have that

−∆v(x) = g(|x|N−2v(x))v(x)
N+2
N−2 ≤ g(|xλ0|N−2v(xλ0))vλ0(x)

N+2
N−2 = −∆vλ0 .

Note that the possibility that v ≡ vλ0 in a connected component C of O can
happen only if g = c in C with the constant c > 0 since g(|x|N−2v(x)) > 0 in
O. It is easy to see then that C = O = Σλ0 \Pλ0 , which is not possible since
we are supposing that v does not coincide with its reflection vλ0 in Σλ0 . So
by the classical maximum principle we have that v < vλ0 in O, and since we
already know that v < vλ0 in Dλ0 \ O the claim is true.

This kind of strong comparison principle implies that the function
χAλ

|x|2N ,
where χS stands for the characteristic function of the set S, converges point-
wisely to zero as λ → λ0 in R

N \ (Tλ0 ∪{Pλ0}) and hence almost everywhere.

If 0 < λ0 − δ < λ0 then 1
|x|2N χAλ

≤ 1
|x|2N χΣλ0−δ

∈ L1, and by dominated

convergence
∫

Aλ

1
|x|2N → 0 as λ → λ0, so that Cλ(

∫
Aλ

1
|x|2N )

2
N < 1 for λ in

some interval (λ0 − δ, λ0).
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As before this implies that v ≤ vλ in Σλ for λ < λ0 and close to λ0,
contradicting the inf properties of λ0.

To prove the last assertion suppose that λ0 > 0, so that v ≡ vλ0 as we just
proved. This implies that v is regular at the origin, i.e. u is regular at infinity.
For any x ∈ Σλ0 we have |x| > |xλ0| and −∆v(x) = −∆vλ0(x), which
implies that g(|x|N−2v(x)) = g(|xλ0|N−2v(xλ0)) because v ≡ vλ0 . Since g is
nonincreasing this implies that g(t) is constant in a left neighborhood of t
for any t of the form

t = |x|N−2v(x) = u(
x

|x|2 ), x1 > λ0.

Analogously g is constant in any right neighborhood of any t = u( x
|x|2 ),

x1 < λ0, in particular for any t close to 0, since u tends to 0 at infinity. It
is easy then to conclude that if λ0 > 0 then g is constant in u(RN). �

Proof of Theorem 1.2 First of all if (i) holds then either u ≡ 0 or u is
positive in R

N . In fact if u0 > 0 in the open set O where 0 ≤ u < u0 we
have that

−∆u = f(u) = g(u)u
N+2
N−2 ≥ g(u0)u

N+2
N−2

so that −∆u + cu
N+2
N−2 ≥ 0, which guarantees the validity of the strong

maximum principle (see [22] and [18]).

If u ≡ 0 the theorem is proved, otherwise u > 0 and by Proposition 2.1
the Kelvin transform v of u centered in any point P is radially symmetric
around some point Q. Moreover if g is not constant on the values of u then
Q = P , which implies that also u is radially symmetric around P . Since P
is arbitrary it follows that u is constant.

If instead g is constant then f(t) = l t
N+2
N−2 for every t ∈ u(RN) and some

l ∈ R. Then either for every choice of the pole we have λ0 = 0, in which
case u is constant, as we just proved, or there exists some pole P for which
λ0 > 0. In this case v ≡ vλ0 in Σλ0 , so that 0 is not a singular point and u
is regular at infinity, i.e. decays at infinity as 1

|x|N−2 .

Then necessarily l > 0 (otherwise u would be subharmonic with the
maximum at some point) and by classical results (see [14], [8]) u has the
form indicated by the theorem. �
Remark 2.1 Let us observe that once Proposition 2.1 is proved Theorem 1.2
follows immediately from the beautiful geometrical arguments of Bianchi
(see Lemma 7 in [2]). In other situations however it is necessary to discuss
separately the cases when g is constant, as in the case of some problems in
half spaces.
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As it is usual when proving nonexistence results with the aid of the
Kelvin transformations and the moving plane method, the same technique
can be exploited to prove symmetry results for singular solutions, as well
as symmetry or nonexistence results for problems similar to (1.4) where the
nonlinearity depends on r = |x|. As an example the following result can be
proved by the same techniques. We refer to [2] and the references therein
for other results of this type.

Theorem 2.1 Let u ∈ W 1,2
loc (RN \{0})∩C0(RN \{0}) be a (weak) solution of

problem (1.4) in R
N \{0}, where N ≥ 3, f : [0,∞) → R is as in Theorem 1.2

and 0 is a non removable singularity. Then u is radial around the origin.

Proof. Let 0 be a non removable singularity of u and let us consider the
Kelvin transform v of u centered in a point P = (P 1, . . . , PN) different from 0
but with P 1 = 0. Then v is singular in two points which belong to the same
central hyperplane T0 = [x1 = 0]. Then a slight modification of Proposition 1
(2 singularities instead of 1 but both on the same central hyperplane) allows
to conclude that v is symmetric w.r.t. some hyperplane Tλ0 = [x1 = λ0],
and since at least one singularity is non removable, necessarily λ0 = 0.

So v is symmetric w.r.t. to T0 = [x1 = 0], which implies that u is also
symmetric w.r.t. T0. (The only difference with Theorem 1.2 is that now the
symmetry of the Kelvin transform can be proved only if the pole is choosen
in a particular way and cannot be arbitrary).

Repeating the procedure with respect to the other directions we con-
clude that u is radially symmetric around the origin, i.e. the essential sin-
gularity point. �

Let us now consider the case of the Dirichlet problem in a half space. We
begin by observing that Theorem 1.3 deals with solutions that are not nec-
essarily bounded, but for bounded solutions of (1.6) Theorem 1.2 and some
known results by Dancer and Berestycki, Caffarelli and Nirenberg imply a
general nonexistence result which we now describe.

Dancer [12] proved that if f : [0,∞) → R is a C1 function satisfy-
ing f(0) = 0, f ′(0) ≥ 0, then any bounded solution u of (1.6) is mono-
tone increasing in the xN -direction and the function z(x1, . . . , xN−1) =
limxN→∞ u(x1, . . . , xN ) satisfies the same equation in R

N−1.

Later Berestycki, Caffarelli and Nirenberg proved the monotonicity in
the xN−direction of any bounded solution under the hypothesis that f is
locally Lipschitz continuous in [0,∞) and f(0) ≥ 0 if N > 2 (see [6]). They
actually consider solutions not necessarily bounded by supposing f globally
Lipschitz continuous and prove many other results on qualitative properties
of positive solutions to elliptic problems in several unbounded domains in
the series of papers [3]–[6].



Nonexistence for elliptic equations 79

A consequence of these results and Theorem 1.2 is the following

Corollary 2.1 Suppose that N ≥ 3, f : [0,∞) → R is a locally Lipschitz
function with f(0) ≥ 0, and u is a bounded solution of (1.6). Then neces-
sarily u ≡ 0 if either u tends to zero at infinity or f satisfies

i) f(s) > 0 if s > 0;

ii) if N > 3, g(t) = f(t)

t
N+1
N−3

is nonincreasing in (0,+∞) and non constant

in any interval.

Let us only observe that if N = 3 the results follows from the fact
that the function z(x1, x2) = limx3→∞ u(x1, x2, x3) is superharmonic and
bounded in R

2, so that it must be constant and by the positivity hypothesis
on f it must vanish. If instead N > 3, the function z(x1, . . . , xN−1) =
limxN→∞ u(x1, . . . , xN ) satisfy the same problem in RN−1, so it must vanish
by Theorem 1.2, and this implies that u vanishes in R

N
+ because of the

monotonicity in the xN -direction.

Let us now prove Theorem 1.3.

Proof of Theorem 1.3. The proof is similar to that of Theorem 1.2. We
consider the Kelvin transform v of u centered at a generic point P ∈ ∂R

N
+ ,

i.e. with PN = 0, and prove that it is symmetric w.r.t. some hyperplane
Tλ0 = [x1 = λ0], λ0 ≥ 0, with λ0 = 0 if g is not constant on the values of

u. If instead g is constant then f(t) = l t
N+2
N−2 for some l ≥ 0, but the case

λ0 > 0 cannot occur, unless u vanishes identically, since in this case v is
regular in 0, so u is bounded and tends to zero at infinity. But then by the
preceeding corollary u vanishes identically.

Then we repeat the procedure with respect to all the directions orthog-
onal to the xN -direction.

The proof of the symmetry of the Kelvin transforms of u is essentially
the same, with the test function and the solutions considered in spaces of
functions defined in the half space of course, but with a main difference
which is the following. In the case of the whole space the solution u is
positive in compact sets, so that in the proof of Lemma 2.1 we deduced that
if λ > 0 then for any x ∈ Σλ the value |x|N−2v(x) = u( x

|x|2 ) belongs to some

interval (a, b) for some a, b depending on λ, 0 < a < b < ∞.

In the present case instead u( x
|x|2 ) approaches 0 in compact sets, because

of the boundary conditions, and this is the reason for the other condition ii).

This condition guarantees that g+(t)t
4

N−2 = f+(t)
t

is bounded in any in-
terval (0, b) and allows to get the main estimate used in Lemma 2.1, namely
if |x|N−2v(x) = u( x

|x|2 ) is bounded from above, which is the case if λ > 0 and
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x ∈ Σλ, then

g+(|x|N−2v)v
4

N−2 =
g+(|x|N−2v)(|x|N−2v)

4
N−2

|x|4 ≤ C
1

|x|4
Repeating the same prove we get that if v is the Kelvin transform of u
centered at P ∈ ∂R

N
+ , then v(. , xN) is radial around P , which implies that

u has the same property and, since P is arbitrary, u depends only on the
xN -variable.

If we have in addition the hypothesis iii) it is easy to prove that neces-
sarily u ≡ 0 generalizing as follows the arguments used in [16] for the case
f(t) = tp.

Suppose by contradiction that u does not vanish identically, then by the
strong maximum principle and Hopf’s lemma u(t) > 0 if t > 0 with u(0) = 0,
u′(0) > 0, u′′(t) = −f(u(t)) < 0 for any t > 0. Then the hypotheses imply
that there exists t0 > 0 such that u′(t0) < 0.

In fact if this is not true then for any t1 > 0 and t ≥ t1, u(t) ≥ a = u(t1) >
0, and since f is continuous, positive in (0,∞) and lim inft→∞ f(t) > 0, there
exists m > 0 such that f(s) ≥ m ∀ s ≥ a, in particular u′′(t) = −f(u(t)) ≤
−m < 0 for all t ≥ t1. By Taylor’s theorem this implies that u(t) ≤
u(t1)+u′(t1)(t−t1)− 1

2
m(t−t1)

2 so that limt→∞ u(t) = −∞, a contradiction.
On the other hand if u′(t0) < 0, since u′′ ≤ 0 we get again by Taylor’s

formula that u(t) ≤ u(t0) + u′(t0)(t − t0) → −∞ as t → ∞. �

3. Nonexistence results for Problem (1.5)

We begin by proving the following theorem which is a first generalization

of the nonexistence result in [7] (where the nonlinearity f(t) = t
N+2
N−2 was

studied and nonexistence in D1,2(RN
+ ) was proved) and will be needed in the

subsequent proof of the main theorem (Theorem 1.1).

As in Section 1, let us put A = R
N
+ ∪ Γ1 and W = {ϕ ∈ C1

c (RN
+ ) :

supp (ϕ) ⊆ A}. Let V be the completion of W under the norm ‖ϕ‖ =∫
R

N
+
|∇ϕ|2. Then V = {u ∈ D1,2(RN

+ ) : u = 0 on Γ0} where D1,2(RN
+ ) =

{u ∈ L2∗(RN
+ ) : |∇u| ∈ L2(RN

+ )}.
Theorem 3.1 Suppose that f(0) ≥ 0 and there exist C,α > 0 such that if
0 ≤ a < b then

(3.1)

∣∣∣∣f(b) − f(a)

b − a

∣∣∣∣ ≤ C(a + b)α

Then there are not nonzero weak solutions of (1.5) that belongs to V ∩Lα N
2 ∩

C0(RN
+ )
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Remark 3.1 In the critical case, i.e. when α = 2∗− 2 = 4
N−2

, we have that

αN
2

= 2N
N−2

= 2∗, and the hypothesis reduces to u ∈ L2∗ .

Proof of Theorem 3.1. We use the same notations as in the proof of
Proposition 2.1 with the obvious modifications, e.g. Σλ consists of the points
x belonging to R

N
+ such that x1 > λ. We want to prove that the set Λ of

those λ ∈ R such that u ≤ uµ in Σµ for every µ ∈ (λ,+∞) coincides in fact
with R, i.e. the solution u is monotone decreasing in the x1- direction, which
is impossible if u belongs to some Lp space, unless u vanishes identically.

First of all the strong maximum principle holds, because f(0) ≥ 0 and
the hypotheses imply that f is locally Lipschitz continuous, so that if u does
not vanish identically then u is positive in R

N
+ .

Next to prove that λ0 = inf Λ = −∞ it suffices to prove that if λ0 is
finite then u must coincide with reflection uλ0.

In fact this last possibility cannot hold due to the boundary conditions:
if for a nontrivial solution u and some λ > 0 u ≡ uλ in Σλ, then u would be
a nontrivial solution of the Dirichlet BVP (1.6) and would be C1 up to the
boundary with ∂u

∂xN > 0 on the boundary hyperplane by the Hopf’ s Lemma,
contradicting the boundary condition on Γ1 (recall that f(0) ≥ 0 and f is
locally Lipschitz continuous by the hypotheses).

So the proof consists in the two usual steps in the moving plane method,
and it will be completely analogous to that of Proposition 2.1 once we prove
the analogue of Lemma 2.1, namely the following

Claim. There exists C1 > 0, depending on the constant C in (3.1) and on
the dimension N , such that for each λ ∈ R the following holds

(3.2)

∫
Σλ

|∇(u − uλ)
+|2 dx ≤ C1

(∫
Aλ

uα N
2 dx

) 2
N

∫
Σλ

|∇(u − uλ)
+|2 dx

where now Aλ = {x ∈ Σλ : u(x) ≥ uλ(x)}.
To prove the Claim we observe that if λ ∈ R and u ∈ V weakly

solves (1.5), the reflected function uλ weakly solves the problem

−∆uλ = f(uλ) in Σλ

uλ = 0 on Σλ ∩ Rλ(Γ0)
∂uλ

∂xN = 0 on Σλ ∩ Rλ(Γ1)

So a test functions for this problem must vanish on Σλ∩Rλ(Γ0), if nonempty,
while a test function for the problem (1.5) must vanish on Σλ ∩ Γ0. In
particular for any λ ∈ R the function (u − uλ)

+ vanishes in those sets.
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Since u ∈ V there exists a sequence ϕj ⊂ W such that{
ϕj → u in L2∗(RN

+ )
∇ϕj → ∇u in L2(RN

+ )

and up to a subsequence ϕj → u and ∇ϕj → ∇u almost everywhere in R
N
+ .

Let ψj = f1/j (ϕj − (ϕj)λ) where fε ∈ C1(R) is e.g.

fε(t) =

{
(t2 + ε2)

1
2 − ε ift > 0

0 if t ≤ 0

Then ψj is a good test function both for u and uλ in Σλ as it is immediate
to see, for every λ ∈ R. Testing the equations for u and uλ in Σλ with ϕ,
subtracting the equations and passing to the limit as j → ∞ we get, using
the hypothesis, that∫

Σλ

|∇(u − uλ)
+|2 dx =

∫
Σλ

[f(u) − f(uλ)](u − uλ)
+ dx

≤ C

∫
Aλ

(uλ + u)α(u − uλ)(u − uλ)
+ dx ≤ C ′

∫
Aλ

uα[(u − uλ)
+]2 dx

Using Holder and Sobolev inequalities as in Section 2 we get

∫
Σλ

|∇(u − uλ)
+|2 dx ≤ C ′

(∫
Aλ

uα N
2 dx

) 2
N

(∫
Σλ

[(u − uλ)
+]2

∗
dx

) 2
2∗

≤ C1

(∫
Aλ

uα N
2 dx

) 2
N

∫
Σλ

|∇(u − uλ)
+|2 dx

Proceeding as in the proof of Proposition 2.1 it is easy to conclude. �
Let us finally come to the proof of the main result.

Proof of Theorem 1.1. The proof of the fact that u depends only on
x1 and xN is similar to the proof of Theorem 1.3 and consists in proving
the symmetry of the Kelvin transforms of u centered at any point P with
P 1 = PN = 0 and with respect to any direction orthogonal to the x1 and
xN - directions.

To this end we observe that the Kelvin transforms v of the solution u, as
well as their reflections with respect to the directions in the subspace spanned
by e2, . . . , eN−1, satisfy the same mixed BVP as the solution u. Therefore
it suffices to change the allowed test function to follow the preceding proofs
closely in the case where g is not constant on the values of u. In the case

when f(t) = l t
N+2
N−2 , the case λ0 > 0 cannot occur, for the original solution u

would be regular at infinity and Theorem 3.1 shows that there are not such
solutions.
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Since the center of the Kelvin transform is an arbitrary point P with
P 1 = PN = 0, and u is symmetric with respect to the hyperplanes through P
and orthogonal to any direction orthogonal to the x1 and xN - directions,
it follows that u does not depend on x2, . . . xN−1.

For what concerns the monotonicity in the x1-direction we proceed at first
in the same way, by considering the Kelvin transform v of u centered at the
origin, which satisfies the same boundary value problem, and proving that
the inequality v < vλ holds true in Σλ provided λ > 0 (the only difference is
that now we cannot start moving the hyperplanes in the opposite direction).
By continuity we get that v ≤ v0 in Σ0 = {x ∈ R

N
+ : x1 > 0}. Recalling the

definition of v(x) = 1
|x|N−2 u( x

|x|2 ) and observing that |xλ| = |x| for λ = 0, we
get that u ≤ u0 in Σ0.

The same trick works when considering the Kelvin transform vµ(y) =
vPµ(y) = 1

|y|N−2 u(Pµ+ y
|y|2 ) centered at a point P = Pµ with P 2 = · · · = P N =

0, P 1 = µ ≥ 0. It satisfies a Dirichlet condition in the part of the boundary
consisting of points y with yN = 0, y1 > 0 and this is enough to prove as
before that for any λ > 0 the inequality vµ ≤ vµ

λ holds in Σλ. Since λ > 0
is arbitrary we get vµ ≤ vµ

0 in Σ0, i.e. vµ(y1, y′) ≤ vµ
0 (y) = vµ(−y1, y′) for

every y = (y1, y′) with y1 > 0. In terms of u this means that the inequality
u ≤ uµ holds in Σµ for each µ ≥ 0, and in particular u is nonincreasing in
the x1-direction in the part of the half space where x1 > 0.

The proof of the monotonicity in the x1-direction in the whole half space
instead requires new ideas, since the preceeding technique does not work.
In fact we would like to prove that the relation u ≤ uµ holds in Σµ also
when µ < 0, but here there is a problem in using the Kelvin transform
vµ(y) = 1

|y|N−2 u(P + y
|y|2 ) centered at P = Pµ = (µ, . . . , 0): it is impossible to

start the moving plane method for this transform from λ = +∞ since if λ is
big there are points where the Neumann condition holds, and therefore the
solution is positive, which are reflected in points where the function vanishes.
In terms of test function, for λ big the function (v − vλ)

+ is not allowed as
a test function for the problem satisfied by the reflected function vλ, since
it does not vanish in points where the Dirichlet condition for vλ holds.

Nevertheless the main estimate used in all the preceeding theorems holds
if λ is close to zero, so the idea is to continue the inequality vµ(y) < vµ(yλ)
for every λ > 0 fixed, moving µ from µ = 0, where the strict inequality is
true (since λ > 0), down to µ = −1

2λ
.

Let us now make precise these considerations.
If µ ≤ 0 let vµ be the Kelvin transform of the solution centered at the

point Pµ = (µ, 0, . . . , 0), i.e. vµ(y) = 1
|y|N−2 u(Pµ+ y

|y|2 ). It satisfies a Dirichlet

boundary condition in points y with yN = 0, 0 < y1 < −1/µ (0 < y1 < ∞
if µ = 0) and a Neumann condition in the remaining part of the boundary.
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If 0 < λ < −1
2µ

then vµ, and therefore also (vµ − vµ
λ)+, vanishes not only

where the Dirichlet condition holds for v = vµ, but also where the Dirichlet
condition holds for the reflected function vµ

λ . Therefore we can take, as in
Lemma 2.1, the function ϕ = ϕε = η2

ε(v
µ − vµ

λ)+ as a test function in the
problems satisfied by vµ and vµ

λ . Proceeding exactly as in the lemma we get
the main estimate, namely

(3.3)

∫
Σλ

|∇(vµ − vµ
λ)+|2 ≤ Cλ

(∫
Aµ

λ

1

|y|2N

)2/N (∫
Σλ

|∇(vµ − vµ
λ)+|2

)

where Cλ depends on N , λ, is nonincreasing in λ and Aµ
λ = {y ∈ Σλ \ Pλ :

g(|y|N−2vµ(y)) > 0 , vµ(y) ≥ vµ
λ(y)}.

If we now fix λ > 0, then the previous estimate holds for every µ ∈
(−1

2λ
, 0). Moreover the function 1

|y|2N χAµ
λ
, where χS stands for the charac-

teristic function of the set S, converges pointwisely to zero as µ → 0 in
R

N \ (Tλ ∪ {Pλ}) (recall that Pλ = (2λ, 0, . . . , 0) is the reflected point of the
origin, which is the singular point of every transform vµ).

Proceeding exactly as in the proof of Proposition 2.1 we deduce that
the inequality vµ ≤ vµ

λ holds in Σλ for µ < 0 and close to 0, and the same
arguments permit to continue downto µ = −1

2λ
.

So we get that for every λ > 0 and every µ ≥ −1
2λ

the inequality vµ ≤ vµ
λ

holds in Σλ. Put in another form for each fixed µ < 0 the inequality holds for
every λ with 0 < λ < −1

2µ
. Letting λ → 0 we get that vµ ≤ vµ

0 in Σ0, i.e.

vµ(y1, y′) ≤ vµ
0 (y) = v(−y1, y′) for every y = (y1, y′) with y1 > 0. This

implies as before that the inequality u ≤ uµ holds in Σµ, and since µ < 0
is arbitrary we get that u is nonincreasing in the x1- direction in the whole
half space.

Finally suppose that u is bounded and f satisfies iii). Since u depends
only on x1 and xN and it is decreasing in the x1-direction, for every t ≥ 0
there exists the limit z(t) = limx1→−∞ u(x1, t) and it is easy to see that z
satisfies the same equation in R+ (see e.g. [12]), with a Neumann condition
in 0. Then proceeding as in the final part of Theorem 1.3 we conclude easily
that z ≡ 0 and therefore, by monotonicity, u ≡ 0. �
Remark 3.2 Suppose that ( f(0) ≥ 0, which is a consequence of the hy-
pothesis (i) and that ) f is the sum of a Lipschitz function and a nonde-
creasing function. As in Theorem 3.1 if u is a nontrivial solution the equality
u ≡ uλ cannot hold in Σλ for any λ ∈ R because of the boundary condi-
tions. Then by the strong comparison principle and the Hopf’s Lemma we
get u < uλ in Σλ and (u − uλ)x1 = 2ux1 < 0 on Tλ ∩ R

N
+ . Since λ ≥ 0

is arbitrary we get that u depends only on x1 and xN and ux1(x) < 0 for
every x ∈ R

N
+ .
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