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SOME APPLICATIONS OF
ORDER-EMBEDDINGS OF COUNTABLE

ORDINALS INTO THE REAL LINE

Abstract

It is a well-known fact that an ordinal α can be embedded into the
real line R in an order-preserving manner if and only if α is countable.
However, it would seem that outside of set theory, this fact has not yet
found any concrete applications. The goal of this paper is to present
some applications. More precisely, we show how two classical results,
one in point-set topology and the other in real analysis, can be proven
by defining specific order-embeddings of countable ordinals into R.

1 Introduction.

Let α be an ordinal. An order-embedding of α into the real line R is defined
as an injective function ι : α ↪→ R such that ι(β) < ι(γ) for all ordinals β, γ
that satisfy β < γ < α.

As the set of rational numbers is countable and dense in R, it is evident
that if an order-embedding of an ordinal α into R exists, then α is countable.
Conversely, if α is a countable ordinal, then there is an order-embedding of α
into R (cf. Theorem 34 in Section 5.3 of [2]).

Before conceiving the idea for this paper, I was unaware of any applications
of the order-embedding result above outside of set theory. While re-visiting
certain classical theorems in point-set topology and real analysis, I discovered
that one could devise alternative proofs using transfinite-recursion arguments.
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These arguments depend subtly upon order-embeddings of countable ordinals
into R, tailored to suit the specific needs of the situation at hand. The goal
of this paper, then, is to explain how this idea works.

In Section 2, we offer an alternative proof of the classical result in topology
that the Sorgenfrey line is hereditarily Lindelöf.

In Section 3, we generalize a result of C. E. Aull on symmetric derivatives
using order-embeddings of countable ordinals into R. Aull’s paper [1] begins
with the Quasi-Rolle’s Theorem, which yields the Quasi-Mean Value Theorem.
The following fact is then proven as a corollary: If the symmetric derivative of
a real-valued function f defined on an open interval exists and is non-negative,
then f is non-decreasing.

Our argument proceeds backward, in the sense that we first prove this fact
as a special case of a more general result, and then derive the Quasi-Rolle’s
Theorem and the Quasi-Mean Value Theorem as corollaries.

Throughout this paper, ω1 denotes the first uncountable ordinal.

2 The Sorgenfrey Line

Definition 1. A topological space (X, τ) is said to be Lindelöf if and only if
every τ -open cover for X has a countable sub-cover. It is said to be hereditarily
Lindelöf if and only if every subspace is Lindelöf.

Definition 2. The Sorgenfrey line Rl is the topological space (R,S), where
S is the topology on R with B := {[a, b) | a, b ∈ R and a < b} as a base.

The Sorgenfrey line is a famous example in topology of a first-countable
and separable topological space that is not second-countable. Another well-
known property is that it is hereditarily Lindelöf, and it would be enlightening
to see how one may prove this using order-embeddings of countable ordinals
into R.

We begin with two lemmas that belong to topological folklore.

Lemma 1. A topological space is hereditarily Lindelöf if and only if each of
its open subspaces is Lindelöf.

Lemma 2. Each element of S is a countable disjoint union of elements of B.

Lemma 1 and Lemma 2 say that to prove that Rl is hereditarily Lindelöf,
it suffices to show that if a, b ∈ R satisfy a < b and U is an S-open cover for
[a, b), then there exists a countable sub-cover of U for [a, b).

Theorem 1. The Sorgenfrey line is hereditarily Lindelöf.
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Proof. Pick a, b ∈ R satisfying a < b, and let U be an S-open cover for [a, b).
Then by the Axiom of Choice, there exists a function f : [a, b) → U such that
x ∈ f(x) for each x ∈ [a, b).

Define a (unique but f -dependent) non-decreasing function ι : ω1 → [a, b]
via transfinite recursion as follows:

• Let ι(0) := a.

• If α < ω1 and ι(α) is defined, then let

ι(α+ 1) :=

{
sup({x ∈ R | x ≤ b and [ι(α), x) ⊆ f(ι(α))}), if ι(α) < b;

b, if ι(α) = b.

• If λ < ω1 is a limit and ι(α) is defined for all α < λ, then let ι(λ) := sup
α<λ

ι(α).

It is clear from the definition of ι that there exists an α < ω1 such that ι(α) = b,
otherwise ι would be an order-embedding of ω1 into R, which contradicts the
order-embedding result. Therefore, {f(ι(β)) | β < α} is a countable sub-cover
of U for [a, b).

An advantage of this approach is that it offers a very efficient construction
of countable sub-covers for elements of B.

3 Generalized Symmetric Derivatives

Definition 3. Let I be a non-degenerate interval of R, and let f : I → R.
The symmetric derivative of f , denoted by f∗, is the function with domain

D :=

{
x ∈ I◦

∣∣∣∣ lim
h→0+

f(x+ h)− f(x− h)

2h
exists

}
such that

∀x ∈ D : f∗(x) := lim
h→0+

f(x+ h)− f(x− h)

2h
.

Note: I◦ denotes the interior of I, which is non-empty as I is non-degenerate.

Let a, b ∈ R satisfy a < b, and let f : [a, b] → R be a continuous function.
Then the following results were proven by C. E. Aull in [1].

Theorem 2 (The Quasi-Rolle’s Theorem). If f(a) = f(b) and f∗ is defined
everywhere on (a, b), then there exist points x1, x2 ∈ (a, b) such that

f∗(x1) ≤ 0 ≤ f∗(x2).
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From this, it is relatively easy to deduce the Quasi-Mean Value Theorem.

Theorem 3 (The Quasi-Mean Value Theorem). If f∗ is defined everywhere
on (a, b), then there exist points x1, x2 ∈ (a, b) such that

f∗(x1) ≤
f(b)− f(a)

b− a
≤ f∗(x2).

This readily yields the following corollary.

Corollary 1. If f∗ is defined and non-negative everywhere on (a, b), then f
is non-decreasing on [a, b].

By defining an order-embedding of a countable limit ordinal into R that
possesses very specific properties, we can actually establish the corollary from
first principles and then obtain from it Theorem 2 and Theorem 3.

In fact, we can prove something more, but first, we require a definition of
the generalized symmetric derivative.

Definition 4. Let I be a non-degenerate interval of R, and let f : I → R.
Given p, q ∈ R>0, we define the (p, q)-generalized symmetric derivative of f ,
denoted by fp,q, as the function with domain

D :=

{
x ∈ I◦

∣∣∣∣ lim
h→0+

f(x+ qh)− f(x− ph)

(p+ q)h
exists

}
such that

∀x ∈ D : fp,q(x) := lim
h→0+

f(x+ qh)− f(x− ph)

(p+ q)h
.

Fix p, q ∈ R>0. As before, let a, b ∈ R satisfy a < b, and let f : [a, b] → R
be a continuous function.

Proposition 1. If fp,q is defined and non-negative everywhere on (a, b), then
f is non-decreasing on [a, b].

The proof that we are about to furnish is interesting because it summons
a property of the ordinals that is seldom applied to results in real analysis,
namely, that there does not exist an infinite descending chain of ordinals.

We first give some motivation for the proof in the case p = q = 1, which is
exactly Corollary 1. Let f∗ be defined and non-negative everywhere on (a, b).
Fix ϵ > 0. Then for each x ∈ (a, b), there exist points s, t ∈ (a, b), symmetric
about x and satisfying s < t, such that

f(t)− f(s)

t− s
≥ −ϵ, or equivalently, f(t)− f(s) ≥ −ϵ(t− s).
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If one can “link” an increasing sequence (xn)
N
n=1 of points in (a, b) so that

∀n ∈ N≤N−1 : f(xn+1)− f(xn) ≥ −ϵ(xn+1 − xn),

then a telescoping sum yields

f(xN )− f(x1) ≥ −ϵ(xN − x1).

Let a′, b′ ∈ (a, b) satisfy a′ < b′. If x1 can be chosen arbitrarily close to a′ and
xN arbitrarily close to b′, then

f(b′)− f(a′) ≥ −ϵ(b′ − a′).

As ϵ is arbitrary, it follows that f(b′)− f(a′) ≥ 0, so f is non-decreasing.
We will now give a rigorous realization of this idea in the general case.

Proof. Fix ϵ, δ > 0 arbitrarily. According to the hypotheses, there exists a
function N : (a, b) → N such that for each x ∈ (a, b), we have

N(x) = min

({
n ∈ N

∣∣∣∣ 1

2n
< δ and f(x+ qh)− f(x− ph)

(p+ q)h
> −ϵ

for all h ∈
(
0,

1

2n

)})
.

Let a′, b′ ∈ (a, b) satisfy a′ < b′. It suffices by the continuity of f to show that
f(a′) ≤ f(b′).

Construct a function ι : ω1 → [a′, b′] via transfinite recursion as follows:

• Let ι(0) := a′ < b′.

• Let ι(1) := a′ +
1

2n
< b′, where n := min

({
m ∈ N

∣∣∣∣ 1

2m
< b′ − a′, δ

})
.

• Suppose that k ∈ [1, ω) and ι(k − 1), ι(k) are defined.

– If ι(k − 1) < ι(k) < b′, then let ι(k + 1) := ι(k) +
1

2n
< b′, where

n := min

({
m ∈ N

∣∣∣∣ 1

2m
< min

(
b′ − ι(k),

q

2N(ι(k))
,

q

p
[ι(k)− ι(k − 1)]

)})
.

(1)

– Otherwise, let ι(k + 1) := b′.
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• For a limit λ < ω1, if ι(α) is defined for all α < λ, then let ι(λ) := sup
α<λ

ι(α).

– If ι(α) < ι(λ) < b′ for all α < λ, then, with γλ denoting the ordinal

min

({
β ∈ [0, λ)

∣∣∣∣ 0 < ι(λ)− ι(β + 1) < min

(
p

q
[b′ − ι(λ)],

p

2N(ι(λ))

)})
,

let

ι(λ+ 1) :=

(
1 +

q

p

)
ι(λ)− q

p
ι(γλ + 1) < b′, (2)

ι(λ+ 2) := ι(λ+ 1) +
1

2n
< b′, (3)

where

n := min

({
m ∈ N

∣∣∣∣ 1

2m
< min

(
b′ − ι(λ+ 1),

q

2N(ι(λ+1))
,

q

p
[ι(λ+ 1)− ι(λ)],

q2

p2
[ι(γλ + 2)− ι(γλ + 1)]

)})
.

(4)

– Otherwise, let ι(λ+ 1), ι(λ+ 2) := b′.

• Suppose that λ < ω1 is a limit, k ∈ [2, ω) and ι(λ+ k − 1), ι(λ+ k) are
defined.

– If ι(λ+ k − 1) < ι(λ+ k) < b′, then let ι(λ+ k + 1) := ι(λ+ k) +
1

2n
<

b′, where

n := min

({
m ∈ N

∣∣∣∣ 1

2m
< min

(
b′ − ι(λ+ k),

q

2N(ι(λ+k))
,

q

p
[ι(λ+ k)− ι(λ+ k − 1)]

)})
.

(5)

– Otherwise, let ι(λ+ k + 1) := b′.

There exists an ordinal α < ω1 such that ι(α) = b′, otherwise ι would be an
order-embedding of ω1 into R, which contradicts the order-embedding result.
Let Λ denote the smallest such α. Then Λ is clearly a limit ordinal, and ι|Λ is
an order-embedding of Λ into [a′, b′].

Given x ∈ R, define a “skewed-reflection” map Rp,q
x : [x,∞) → (−∞, x] by

∀y ∈ R : Rp,q
x (y) := x− p

q
(y − x).

For p = q = 1, Rp,q
x is ordinary reflection from the right of x to the left of x.
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Claim 1. For each α < Λ, we have

s ∈ (ι(α+ 1), ι(α+ 2)) =⇒ Rp,q
ι(α+1)(s) ∈ (ι(α), ι(α+ 1)).

Proof of Claim 1. Firstly, the map Rp,q
ι(α+1) behaves so that

ι(α+ 1) < s < ι(α+ 2)

=⇒ Rp,q
ι(α+1)(ι(α+ 2)) < Rp,q

ι(α+1)(s) < ι(α+ 1)

⇐⇒ ι(α+ 1)− p

q
[ι(α+ 2)− ι(α+ 1)] < Rp,q

ι(α+1)(s) < ι(α+ 1). (6)

Secondly, (1), (4) and (5) ensure that

ι(α+ 2)− ι(α+ 1) <
q

p
[ι(α+ 1)− ι(α)]. (7)

After rearranging terms in (7) and then applying (6), we obtain

ι(α) < ι(α+ 1)− p

q
[ι(α+ 2)− ι(α+ 1)] < Rp,q

ι(α+1)(s).

This concludes the proof of the claim.

Claim 2. For each limit λ < Λ, we have

s ∈ (ι(λ+ 1), ι(λ+ 2)) =⇒ Rp,q
ι(λ)

(
Rp,q

ι(λ+1)(s)
)
∈ (ι(γλ + 1), ι(γλ + 2)).

Proof of Claim 2. Firstly, the maps Rp,q
ι(λ) and Rp,q

ι(λ+1) behave so that

ι(λ+ 1) < s < ι(λ+ 2)

=⇒ Rp,q
ι(λ+1)(ι(λ+ 2)) < Rp,q

ι(λ+1)(s) < ι(λ+ 1)

⇐⇒ ι(λ+ 1)− p

q
[ι(λ+ 2)− ι(λ+ 1)] < Rp,q

ι(λ+1)(s) < ι(λ+ 1)

=⇒ ι(λ) < ι(λ+ 1)− p

q
[ι(λ+ 2)− ι(λ+ 1)]︸ ︷︷ ︸

As a consequence of (3) and (4).

< Rp,q
ι(λ+1)(s) < ι(λ+ 1)
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=⇒
Rp,q

ι(λ)(ι(λ+ 1)) < Rp,q
ι(λ)

(
Rp,q

ι(λ+1)(s)
)

and

Rp,q
ι(λ)

(
Rp,q

ι(λ+1)(s)
)
< Rp,q

ι(λ)

(
ι(λ+ 1)− p

q
[ι(λ+ 2)− ι(λ+ 1)]

)
⇐⇒

ι(λ)− p

q
[ι(λ+ 1)− ι(λ)] < Rp,q

ι(λ)

(
Rp,q

ι(λ+1)(s)
)

and

Rp,q
ι(λ)

(
Rp,q

ι(λ+1)(s)
)
< ι(λ)− p

q

[
ι(λ+ 1)− p

q
[ι(λ+ 2)− ι(λ+ 1)]− ι(λ)

]
.

Secondly, (2) says that

ι(λ)− p

q
[ι(λ+ 1)− ι(λ)] = ι(λ)− p

q

[(
1 +

q

p

)
ι(λ)− q

p
ι(γλ + 1)− ι(λ)

]
= ι(γλ + 1).

Thirdly, observe that

ι(λ)− p

q

[
ι(λ+ 1)− p

q
[ι(λ+ 2)− ι(λ+ 1)]− ι(λ)

]
= ι(λ)− p

q
[ι(λ+ 1)− ι(λ)] +

p2

q2
[ι(λ+ 2)− ι(λ+ 1)]

= ι(γλ + 1) +
p2

q2
[ι(λ+ 2)− ι(λ+ 1)] (By (2).)

< ι(γλ + 1) +
p2

q2
· q

2

p2
[ι(γλ + 2)− ι(γλ + 1)] (By (4).)

= ι(γλ + 2).

Therefore, Rp,q
ι(λ)

(
Rp,q

ι(λ+1)(s)
)
∈ (ι(γλ + 1), ι(γλ + 2)).

If s is a point in R such that s ∈ (ι(α), ι(α+ 1)) for some α < Λ, then we
call s a legitimate point and the map Rp,q

ι(α) a legitimate reflection of s.
By Claim 1 and Claim 2, applying successive legitimate reflections to any

legitimate point s ∈ (ι(α+ 1), ι(α+ 2)), with α < Λ, yields a legitimate point.
As an infinite descending chain of ordinals does not exist, a terminal point
r ∈ (ι(0), ι(1)) ⊆ (a′, a′ + δ) will be attained after applying a finite number of
successive legitimate reflections.
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Now, let (xk)
N
k=1 denote the maximal finite sequence obtainable from s

by applying successive legitimate reflections, so that x1 = s and xN = r.
Suppose k ∈ N≤N−1, and β ∈ (0,Λ) satisfies xk ∈ (ι(β), ι(β + 1)). Then as
xk+1 := Rp,q

ι(β)(xk),

h :=
ι(β)− xk+1

p
=

xk − ι(β)

q
<

ι(β + 1)− ι(β)

q
.

In the case that β is a limit ordinal, it is a consequence of (2) that

h <
ι(β + 1)− ι(β)

q
=

1

q
· q
p
[ι(β)− ι(γβ + 1)] <

1

q
· q
p
· p

2N(ι(β))
=

1

2N(ι(β))
.

If β is a successor, then

h <
ι(β + 1)− ι(β)

q
<

1

q
· q

2N(ι(β))
=

1

2N(ι(β))
.

Hence, in all cases, h <
1

2N(ι(β))
, so by the definition of the function N ,

f(xk)− f(xk+1)

xk − xk+1
=

f(ι(β) + qh)− f(ι(β)− ph)

(p+ q)h
≥ −ϵ,

or equivalently,
f(xk)− f(xk+1) ≥ −ϵ(xk − xk+1).

As a consequence,

f(s)− f(r) =

N−1∑
k=1

[f(xk)− f(xk+1)] ≥ −ϵ

N−1∑
k=1

(xk − xk+1) = −ϵ(s− r). (8)

Let (δn)n∈N be a sequence of positive real numbers decreasing to 0. This
yields a corresponding sequence (ιn : ω1 → [a′, b′])n∈N of functions, given by
the recursive construction earlier on, and a corresponding sequence (Λn)n∈N
of ordinals < ω1 such that Λn for each n ∈ N is the largest limit Λ for which
ιn|Λ is an order-embedding of Λ into [a′, b′].

Define a sequence (αn)n∈N of ordinals < ω1 by

∀n ∈ N : αn := min

({
α ∈ [0,Λn)

∣∣∣∣ b′ − 1

2n
< ιn(α) < b′

})
+ 1.

Then define a sequence (sn)n∈N in (a′, b′) of legitimate points by

∀n ∈ N : sn :=
ιn(αn) + ιn(αn + 1)

2
,
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which produces, by successive legitimate reflections, a corresponding sequence
(rn)n∈N of terminal points, so that rn ∈ (a′, a′ + δn) for each n ∈ N. Invoking
(8), we get

∀n ∈ N : f(sn)− f(rn) ≥ −ϵ(sn − rn).

However, lim
n→∞

rn = a′ and lim
n→∞

sn = b′, so by the continuity of f ,

f(b′)− f(a′) ≥ −ϵ(b′ − a′).

Therefore, as ϵ is arbitrary, we conclude that f(b′)− f(a′) ≥ 0.

Notice that we have not used the Axiom of Choice anywhere in the proof.
We can now prove the generalized Quasi-Mean Value Theorem, of which the
generalized Quasi-Rolle’s Theorem is just a special case.

Corollary 2. If fp,q is defined everywhere on (a, b), then there exist points
x1, x2 ∈ (a, b) such that

fp,q(x1) ≤
f(b)− f(a)

b− a
≤ fp,q(x2).

Proof. Define a continuous function g : [a, b] → R by

∀x ∈ [a, b] : g(x) := f(x)−
[
f(b)− f(a)

b− a
· (x− a) + f(a)

]
.

Then gp,q is defined on (a, b); indeed,

∀x ∈ (a, b) : gp,q(x) = fp,q(x)−
f(b)− f(a)

b− a
.

Suppose that fp,q(x) >
f(b)− f(a)

b− a
for all x ∈ (a, b). Then gp,q is positive on

(a, b), so by Proposition 1, we find that g is non-decreasing on [a, b]. However,

g(a) = 0 = g(b), which yields g(x) = 0 and therefore fp,q(x) =
f(b)− f(a)

b− a
,

for all x ∈ (a, b). Hence, our earlier hypothesis is contradicted.

Similarly, assuming that fp,q(x) <
f(b)− f(a)

b− a
for all x ∈ (a, b) produces

a contradiction. The proof is therefore complete.
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4 Conclusion

Although the embedding technique presented in this paper may not necessarily
be the most elegant approach toward solving those problems to which it may
be adapted, it supports the idea that order-embeddings of countable ordinals
into R can play an important role in areas of mathematics outside of set theory.
We hope that more substantial applications of the technique will be found.
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