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RESTRICTED FAMILIES OF PROJECTIONS
AND RANDOM SUBSPACES

Abstract

We study the restricted families of orthogonal projections in R3.
We show that there are families of random subspaces which admit
Marstrand-Mattila type projection theorem.

1 Introduction

A fundamental problem in fractal geometry is to determine how the projections
affect dimension. Recall the classical Marstrand-Mattila projection theorem:
Let E ⊂ Rn, n ≥ 2, be a Borel set with Hausdorff dimension s.

• (dimension part) If s ≤ m, then the orthogonal projection of E onto
almost all m-dimensional subspaces has Hausdorff dimension s.

• (measure part) If s > m, then the orthogonal projection of E onto al-
most all m-dimensional subspaces has positive m-dimensional Lebesgue
measure.

In 1954 J. Marstand [11] proved this projection theorem in the plane. In
1975 P. Mattila [12] proved this for general dimension via 1968 R. Kaufman’s
[9] potential theoretic methods. We refer to the recent survey of P. Mattila [15],
K. Falconer, J. Fraser, and X. Jin [5] for more backgrounds. For monographs
which are related to orthogonal projections of fractal sets, we refer to K.
Falconer [4], P. Mattila [13], [14].

In this paper, we study the restricted families of projections in Euclidean
spaces. Let G(n,m) denote the collection of all the m-dimensional linear
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subspaces of Rn. For V ∈ G(n,m), let πV : Rn → V stand for the orthogonal
projection onto V . For G ⊂ G(n,m), we call (πV )V ∈G a restricted family
of projections. One of the problems is to look for some “small” subset G ⊂
G(n,m) such that the Marstrand-Mattila type theorem holds for this restricted
family of projections (πV )V ∈G.

The best possible lower bounds for general restricted families of projec-
tions (πV )V ∈G (here G is a smooth subset of G(n,m)) were obtained by E.
Järvenpää, M. Järvenpää, T. Keleti, F. Ledrappier and M. Leikas, see [7] and
[8].

What kind of subset G ⊂ G(n,m) admits a better lower bound or even
more such that the Marstrand-Mattila type theorem holds? K. Fässler and T.
Orponen [6, Conjecture 1.6] conjectured that if G has “curvature condition”
then G admits a Marstrand-Mattila type theorem. The following description
of T. Orponen [19] is helpful. “Informally speaking, one could conjecture that
any (smooth) subset G ⊂ G(n,m) such that no “large part” of G contained in
a single non-trivial subspace, should satisfy the Marstrand-Mattila projection
theorem”. A prototypical example of a curve with curvature condition is given
by

Γ = { 1√
2

(cos θ, sin θ, 1), θ ∈ [0, 2π)}.

Recently, A. Käenmäki, T. Orponen, and L. Venieri [10] proved that the di-
mensional part of Marstrand-Mattila type theorem holds for the restricted
families of projections for the curve Γ, which partially answered a conjecture
of [6, Conjecture 1.6] for the curve Γ. We refer to [10] for more details and
references therein. For the restricted families of projections {πVe

}e∈Γ where
Ve := e⊥ the orthogonal complement space of e, we refer to [22] for more details
and new improvement. We note that D. Oberlin and R. Oberlin [18] applied
the Fourier restricted estimates to these restricted families of projections with
the “curvature condition”.

We note that the subsets G which were mentioned in the former results
are always some smooth subsets of G(n,m). T. Orponen [21] talked about
the restricted families of projections over general subsets of G(n,m) and the
random subsets of G(2, 1). In this paper, inspired by T. Orponen’s talk, we
study the restricted families of projections over a random subset of G(n,m).
We show that there exists non-smooth (fractal) subset of G(3, 1) such that
the Marstrand-Mattila type theorem holds on this restricted family of projec-
tions. Here, the random sets play the same role as the sets with the curvature
condition.

We note that the random sets play the same role as the curvature condition
in some other situations also, e.g., the restricted Fourier transform, see T.
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Mitsis [16] and G. Mockenhaupt [17].

Definition 1 (MMP spaces). Let G ⊂ G(n,m) and γ be a nonzero finite
Borel measure on G. We call the pair ((πV )V ∈G, γ) a MMP space if the
Marstrand-Mattila projection theorem holds for the restricted families of pro-
jections (πV )V ∈G with respect to the measure γ.

By “mapping” a class of random Cantor sets of P. Shmerkin and V. Suo-
mala [23] onto the sphere S2 and combining some classical potential theoretical
arguments for orthogonal projections, we obtain the following Theorem 2.

Let x 6= 0. Denoted by Lx the line through zero and the point x, and L⊥x
the orthogonal complement of Lx. For convenience, we may identify a subset
of S2 with subset of G(3, 1) which makes no confusion.

Theorem 2. For any 1 < α ≤ 2 there exists an α- Ahlfors regular set G ⊂ S2

such that ((πLx)x∈G,Hα) and ((πL⊥
x

)x∈G,Hα) are MMP spaces.

Recall that E ⊂ Rn is called α-Ahlfors regular for 0 < α ≤ n, if there
exists a positive constant C such that

rα/C ≤ Hα(E ∩B(x, r)) ≤ Crα

for all x ∈ E and 0 < r < diam(E), where diam(E) denotes the diameter of E.
Note that for the case α = 2, Theorem 2 follows from the Marstrand-Mattila
projection theorem. Thus, we only consider the case α ∈ (1, 2).

I thank Tuomas Orponen for pointing out that the technique in the proof
of Theorem 2 and the random sets in papers [1], [20] imply the following result.

Theorem 3. For any 0 < α ≤ 1 there exists a set G ⊂ S2 with 0 < Hα(G) <
∞ such that ((πLx

)x∈G,Hα) admits a (dimension part) Marstrand-Mattila type
theorem i.e., for any subset E ⊂ R3 with dimH E ≤ α,

dimH πLx
(E) = dimH E for Hα a.e. x ∈ G.

We note that there has been a growing interest in studying finite fields
version of some classical problems arising from Euclidean spaces. In [2] the
author studied the projections in vector spaces over finite fields, and obtained
the Marstrand-Mattila type projection theorem in this setting. For finite fields
version of restricted families of projection, the author [3] obtained that a
random collection of subspaces admit a Marstrand-Mattila type theorem with
high probability. For more details see [2] and [3].
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2 Preliminaries

In this section we show some known lemmas for later use. The proofs of
the following lemmas are based on the potential theoretical arguments. For
clearness of our conditions in the following two lemmas, we show the proofs
here. Specially, for Lemma 5, we provide an different approach to [14, Chapter
5]. For more details we refer to [4, Chapter 6], [13, Chapter 9], and [14, Chapter
5].

We write f . g if there is a positive constant C such that f ≤ Cg, f & g
if g . f , and f ≈ g if f . g and f & g.

Lemma 4. Let G ⊂ G(n,m) and γ be a positive finite Borel measure on G.
If for any unit vector ξ ∈ Rn,

γ({V ∈ G : |πV (ξ)| ≤ ρ}) . ρm,

then ((πV )V ∈G, γ) is a MMP space.

Lemma 5. Let G ⊂ G(n,m) and γ be a positive finite Borel measure on G.
If for any unit vector ξ ∈ Rn,

γ({V ∈ G : d(ξ, V ) ≤ ρ}) . ρn−m,

then ((πV )V ∈G, γ) is a MMP space.

The proofs depend on the following energy characterization of Hausdorff
dimension. For a Borel set E ⊂ Rn,

dimH E = sup{s : Is(µ) <∞,
µ is a nonzero Radon measure with compact support on E }

where Is(µ) =
∫ ∫
|x−y|−sdµxdµy. We also need the following identity which

connects the fractal geometry and Fourier analysis,

Is(µ) ≈
∫
Rn

|x|s−n|µ̂(x)|2dx.

Here µ̂(x) =
∫
e−2πi〈x,y〉dµ(y) the Fourier transform of the measure µ at x.

For more connections between fractal geometry and Fourier analysis, we refer
to [14].

Proof of Lemma 4. Let E ⊂ Rn with dimH E ≤ m. Then, for any t with
0 < t < dimH E there exists a Radon measure µ on E with compact support
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and It(µ) <∞. For V ∈ G, let µV be the image measure of µ under the map
πµ, i.e.,

µV (A) = µ(π−1
V (A)) for A ⊂ V .

Changing variables in integral and applying Fubini’s theorem, we obtain∫
G

It(µV )dγV =

∫
G

∫
Rn

∫
Rn

|πV (x)− πV (y)|−tdµxdµydγV

=

∫
Rn

∫
Rn

∫
G

|πV (
x− y
|x− y|

)|−t|x− y|−tdγV dµxdµy

.
∫
Rn

∫
Rn

|x− y|−tdµxdµy <∞.

The last second estimate holds, since for any unit vector ξ,∫
G

|πV (ξ)|−tdγV =

∫ ∞
0

γ({V ∈ G : |πV (ξ)|−t ≥ u})du

= t

∫ ∞
0

γ{V ∈ G : |πV (ξ)| ≤ ρ}ρ−t−1dρ

.
∫ 1

0

ρm−t−1dρ+ γ(G)

∫ ∞
1

ρ−1−tdρ <∞.

It follows that It(µV ) < ∞, and hence dimH πV (E) ≥ t for γ almost all
V ∈ G. This is true for any t < dimH E, therefore dimH πV (E) ≥ dimH E for
γ almost all V ∈ G.

Now we turn to the “measure part” of Marstrand-Mattila theorem. Let
dimH E > m, then there exists a measure µ on E such that Im(µ) < ∞.
Applying Fatou’s lemma and Fubini’s theorem,∫

G

∫
V

lim inf
ρ→0

µV (B(x, ρ))

ρm
dµV xdγV

≤ lim inf
ρ→0

1

ρm

∫
G

∫
Rn

∫
Rn

1{(u,u′):|πV (u)−πV (u′)|≤ρ}(x, y)dµxdµydγV

. Im(µ) <∞.
(1)

We use the fact that for any x 6= y,∫
G

1{(u,u′):|πV (u)−πV (u′)|≤ρ}(x, y)dγV

= γ({V ∈ G : |πV (x)− πV (y)| ≤ ρ}) .
(

ρ

|x− y|

)m
.
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The estimate (1) implies that for γ almost all V ∈ G,∫
V

lim inf
r→0

µV (B(x, r))

rm
dµV x <∞,

and hence for µV almost all x ∈ V ,

lim inf
r→0

µV (B(x, r))

rm
<∞.

Together with [13, Theorem 2.12 (3)], we obtain that µV is absolutely contin-
uous to Hm (and hence Hm(πV (E)) > 0) for γ almost all V ∈ G.

Proof of Lemma 5. Let dimH E = s ≤ m. Then for any 0 < t < s there
exists a Radon measure µ on E with compact support and

It(µ) ≈
∫
Rn

|µ̂(x)|2|x|t−ndxdγV <∞. (2)

It is sufficient to prove∫
G

∫
V

|µ̂V (x)|2|x|t−mdHmxdγV <∞.

Note that for any V ∈ G(n,m) and x ∈ V ,

µ̂V (x) = µ̂(x).

Since the measure µ is finite, there is a positive constant C such that for any
V ∈ G(n,m), ∫

B(0,1)

|µ̂V (x)|2|x|t−mdHmx ≤ C <∞.

Thus, it is sufficient to prove∫
G

∫
V ∩B(0,1)c

|µ̂(x)|2|x|t−mdHmxdγV <∞,

where B(0, 1)c is the complement set of B(0, 1). Let 0 < ρ < 1/10
√
n. Define

Qρ := {[k1ρ, (k1 + 1)ρ]× · · ·× [knρ, (kn + 1)ρ] : kj ∈ Z, 1 ≤ j ≤ n} = {Qj}∞j=1.

We consider the cubes which intersects B(0, 1)c. Thus, we define

J = {j : Qj ∩B(0, 1)c 6= ∅, Qj ∈ Qρ}.
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Since µ is a Radon measure with compact support, µ̂ is a bounded Lipschitz
continuous function, i.e.,

|µ̂(x)− µ̂(y)| . |x− y|.

It follows that for each Qj , j ∈ J and any x, x′ ∈ Qj ,

|µ̂(x)|2|x|t−m . |µ̂(x′)|2|x′|t−m + ρ|x′|t−m. (3)

For each Qj , j ∈ J let xj ∈ Qj such that

|µ̂(xj)| ≤ |µ̂(x)| for any x ∈ Qj .

For any R > 1 let ρ = ρR = R−m. Then the estimate (3) implies that for
any V ∈ G(n,m),∫

V ∩B(0,1)c∩B(0,R)

|x|t−m|µ̂(x)|2dHmx

.
∑
j∈J
|µ̂(xj)|2|xj |t−mHm(V ∩Qj ∩B(0, R)) + ρHm(V ∩B(0, R))

.
∑
j∈J
|µ̂(xj)|2|xj |t−mHm(V ∩Qj) + 1.

(4)

For any Qj , j ∈ J, we have∫
G

Hm(V ∩Qj)dγV

. diam(Qj)
mγ({V ∈ G : d(xj , V ) ≤ diam(Qj)})

. diam(Qj)
m

(
diam(Qj)

|xj |

)n−m
. diam(Qj)

n|xj |m−n.

(5)

Combining with the estimates (4), (5), and the condition (2), we obtain∫
G

∫
V ∩B(0,1)c∩B(0,R)

|x|t−m|µ̂(x)|2dHmxdγV

.
∫
G

∑
j∈J
|xj |t−m|µ̂(xj)|2Hm(Qj ∩ V )dγV + 1

.
∑
j∈J
|xj |t−m|µ̂(xj)|2

∫
G

Hm(V ∩Qj)dγV + 1

.
∑
j∈J
|xj |t−n|µ̂(xj)|2diam(Qj)

n + 1

. It(µ) + 1 <∞.
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Together with Fatou’s lemma, we obtain∫
G

∫
V ∩B(0,1)c

|x|t−m|µ̂(x)|2dHmxdγV

=

∫
G

∫
V ∩B(0,1)c

lim
R→∞

1B(0,R)(x)|x|t−m|µ̂(x)|2dHmxdγV

≤ lim inf
R→∞

∫
G

∫
V ∩B(0,1)c

1B(0,R)(x)|x|t−m|µ̂(x)|2dHmxdγV

. It(µ) + 1 <∞.

Thus, we complete the proof of the dimension part of Marstrand-Mattila type
theorem.

Now we turn to the measure part of Marstrand-Mattila type theorem. Let
dimH E = s > m, then there exists a Radon measure µ on E with compact
support Im(µ) < ∞. A variant of the former argument implies that (using
the same notation as above)∫

G

∫
V ∩B(0,1)c∩B(0,R)

|µ̂(x)|2dHmxdγV

.
∫
G

∑
j∈J
|µ̂(xj)|2Hm(Qj ∩ V )dγV + 1

.
∑
j∈J
|µ̂(xj)|2

∫
G

Hm(V ∩Qj)dγV + 1

.
∑
j∈J
|µ̂(xj)|2|xj |m−ndiam(Qj)

n + 1

. Im(µ) + 1 <∞.

It follows that ∫
G

∫
V ∩B(0,1)c

|µ̂V (x)|2dHmxdγV <∞.

Recall that if
∫
Rn |µ̂(x)|2dx < ∞, then µ is absolutely continuous to Hn, see

[14, Theorem 3.3]. Thus, we obtain that µV is absolutely continuous to Hm
for γ almost all V ∈ G, and hence Hm(πV (E)) > 0 for γ almost all V ∈ G.

3 Proofs of Theorems 2-3

P. Shmerkin and V. Suomala [23] constructed the following sets. A tube
T ⊂ R2 with width δ is a δ neighborhood of some line in R2.
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Theorem 6. For any α ∈ (1, 2) there exists an α-Ahlfors regular compact set
E ⊂ R2, such that for any tube T with width w(T ),

Hα(E ∩ T ) . w(T ). (6)

By “mapping” the sets in Theorem 6 to sphere S2, we obtain the following
Lemma 7.

Lemma 7. For any α ∈ (1, 2) there exists an α-Ahlfors regular compact set
G ⊂ S2, such that for any unit vector ξ ∈ R3 and ρ > 0,

Hα({L ∈ G : |πL(ξ)| ≤ ρ}) . ρ. (7)

It follows that for any unit vector ξ ∈ R3 and ρ > 0,

Hα({L ∈ G : d(ξ, L⊥) ≤ ρ}) . ρ. (8)

Proof. By Theorem 6 there exists an α-Ahlfors regular compact set E ⊂
[−1/10, 1/10]2 such that for any tube T ,

Hα(E ∩ T ) . w(T ).

Let Ẽ = E + (0, 0, 1/2) and G := { x|x| : x ∈ Ẽ}. We intend to prove that G

satisfy our need. Note that G is the image of Ẽ under the map F : x → x
|x|

for x 6= 0. In the following, we restrict the map F to the set [−1/10, 1/10]2 +
(0, 0, 1/2) := S. Then F is a bi-Lipschitz map, i.e.,

|F (x)− F (y)| ≈ |x− y|, x, y ∈ S.

Furthermore, F−1 maps the “big circle” to some “segment” on S, i.e., for any
plane W ∈ G(3, 2) there exists a line `W such that

F−1(W ∩ S2) = `W ∩ S.

Combining with the bi-Lipschitz of the map F , we conclude that

F−1({L ∈ G : |πL(ξ)| ≤ ρ}) ⊂ {x ∈ Ẽ : d(x, `ξ⊥) . ρ}

where `ξ⊥ = F−1(ξ⊥). Therefore,

Hα({L ∈ G : |πL(ξ)| ≤ ρ}) ≈ Hα(F−1({L ∈ G : |πL(ξ)| ≤ ρ})) . ρ.

The estimate (8) follows by d(ξ, L⊥) = πL(ξ), as required.
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Then Theorem 2 follows by combining Lemma 7 with Lemmas 4-5. More
precisely, the estimate (7) and the Lemma 4 imply that ((πLx)x∈G,Hα) is a
MMP space. The estimate (8) and the lemma 5 imply that ((πL⊥

x
)x∈G,Hα)

is a MMP space.
Now we turn to the proof of Theorem 3. The method is similar to the

proof of Theorem 2. We “map” some random sets of the plane to the sphere
S2, and then we apply the classical potential theoretical arguments for these
restricted families of projections. First note that the classical potential the-
oretical arguments imply the following Lemma 8, see the proof of Lemma 4.
For more details we refer to [5, Section 3], [14, Theorem 5.1].

Lemma 8. Let G ⊂ G(n,m) and γ be a positive finite Borel measure on G.
If for any unit vector ξ ∈ Rn,

γ({V ∈ G : |πV (ξ)| ≤ ρ}) . ρα,

where α is a positive constant, then ((πV )V ∈G, γ) admits a (dimension part)
Marstrand-Mattila type theorem i.e., for any subset E ⊂ Rn with dimH E ≤
min{α,m}, we have

dimH πV (E) = dimH E for γ a.e. V ∈ G.

T. Orponen [20] constructed the following sets.

Theorem 9. For any 0 < α < 1 there exists a compact set E ⊂ [0, 1]2 with
0 < Hα(E) <∞, such that such that for any tube T with width w(T ),

Hα(E ∩ T ) . w(T )α.

Note that for any subset E ⊂ R2 with 0 < H1(E) <∞,

sup
T

H1(E ∩ T )

w(T )
=∞

where the supremum is over all tubes T with width w(T ) > 0. For more details,
see [20]. For the case α = 1, the author [1] constructed the following set which
settles a question of T. Orponen. There exists a compact set E ⊂ [0, 1]2 with
0 < H1(E) <∞ such that for any s < 1, and for any tube T with width w(T ),

H1(E ∩ T ) .s w(T )s. (9)

Here .s means that the constant depends on s.
We map the above sets to the sphere S2 in the same way as Lemma 7, and

the similar arguments imply the following result.
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Corollary 10. For any 0 < α ≤ 1 there exists a compact set G ⊂ S2 with
0 < Hα(G) <∞, such that for any s < α, and for any unit vector ξ ∈ R3,

Hα({L ∈ G : |πL(ξ)| ≤ ρ}) .s ρs.

Note that for the case 0 < α < 1, we have the following stronger estimate

Hα({L ∈ G : |πL(ξ)| ≤ ρ}) . ρα.

Theorem 3 follows by combining Corollary 10 and Lemma 8.

Acknowledgements. I am grateful to Tuomas Orponen for pointing out The-
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[8] E. Järvenpää, M. Järvenpää, F. Ledrappier, and M. Leikas, One-
dimensional families of projections, Nonlinearity, 21, (2008), 453-463.

[9] R. Kaufman, On Hausdorff dimension of projections, Mathematika, 15
(1968), 153-155.



358 C. Chen
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