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ON THE GROWTH OF REAL FUNCTIONS
AND THEIR DERIVATIVES

Abstract

We show that for any k-times differentiable function f : [a,∞) −→ R,
any integer q ≥ 0 and any α > 1 the inequality

lim inf
x→∞

xk · log x · log2 x · . . . · logq x · |f (k)(x)|
1 + |f(x)|α = 0

holds and that this result is best possible in the sense that logq x cannot

be replaced by (logq x)β with any β > 1.

1 Introduction and Statement of Results

Many classical and more recent inequalities deal with relations between a
real-valued function and its derivatives, for example the Landau-Hadamard-
Kolmogorov inequalities

‖ f (k) ‖∞≤ Ck,n ‖ f ‖1−k/n∞ · ‖ f (n) ‖k/n∞

for n-times differentiable functions f : R −→ R (where k ∈ {1, . . . , n− 1})
and their numerous variations, see [8, pp. 138-140]. In this paper we prove a
different fundamental growth estimate for real-valued functions on unbounded
intervals which, to our best knowledge, hasn’t been studied so far and which
turns out to be best possible. Here, logq x denotes the q-times iterated natural
logarithm, defined recursively by log0 x := x and logq x := log(logq−1 x) for
q ≥ 1.
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Theorem 1. Let k ≥ 1 and q ≥ 0 be integers, α > 1, a ∈ R and f : [a,∞) −→
R a k-times differentiable function. Then

lim inf
x→∞

xk · log x · log2 x · . . . · logq x · f (k)(x)

1 + |f(x)|α
≤ 0 (1)

and

lim inf
x→∞

xk · log x · log2 x · . . . · logq x · |f (k)(x)|
1 + |f(x)|α

= 0. (2)

(Here, of course, for q = 0, the product log x · log2 x · . . . · logq x is understood
to be the empty product, i.e. 1.)

2 Remarks

(1) This result is best possible in the sense that it is no longer valid if logq x

is replaced by (logq x)β with any β > 1. This can be seen by considering
the function f : [a,∞) −→ R defined by

f(x) := (−1)k−1 ·
∫ x

a

∫ ∞
xk

. . .

∫ ∞
x2

1

xk1 · log x1 · . . . · logq x1
dx1 . . . dxk,

where a > 0 is chosen sufficiently large. (For k = 1 the iterated integral
reduces to the one-dimensional integral from a to x.) Indeed, for x ≥ a
we have

|f(x)|

≤
∫ x

a

1

log xk · . . . · logq xk

(∫ ∞
xk

· · ·
∫ ∞
x2

1

xk1
dx1 . . . dxk−1

)
dxk

=
1

(k − 1)!

∫ x

a

1

log xk · . . . · logq xk
· 1

xk
dxk

=
1

(k − 1)!
·
(
logq+1 x− logq+1 a

)
and of course

f (k)(x) =
1

xk · log x · . . . · logq x
,
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hence for any α, β > 1

xk · log x · log2 x · . . . · (logq x)β · f (k)(x)

1 + |f(x)|α

≥
(logq x)β−1

1 +
(

1
(k−1)! · logq+1 x+ C

)α x→∞−→ ∞,

where C is a constant. So (1) does not hold, and neither does (2).

Another, related counterexample is f(x) := logq+1 x. However, it is more
difficult to verify that it has the desired properties than for the example
given above.

(2) The denominator 1+ |f(x)|α cannot be replaced by |f(x)|α (which might
appear as a more natural choice at first sight), not even if one skips the
term xk and the logarithmic terms and assumes that f (k) and f don’t
have common zeros. This is demonstrated by the functions f(x) := 1

xm ,

where m > k
α−1 ; here, the quotient f(k)(x)

|f(x)|α tends to ∞ if x→∞.

(3) Of course, the appearance of the terms log x·log2 x·. . .·logq x in Theorem

1 and the fact that logq x cannot be replaced by (logq x)β with β > 1
are reminescent of the well-known fact from basic calculus that for any
natural number q the infinite series

∞∑
k=k0

1

k log k · . . . · logq−1 k · (logq k)β

(where k0 is chosen sufficiently large) is convergent for β > 1 and di-
vergent for 0 < β ≤ 1 and that a corresponding result holds for the
improper integral∫ ∞

x0

1

x · log x · . . . · logq−1 x · (logq x)β
dx.

This resemblance seems to be more than coincidence as Case 3 of the
proof of (1) reveals: It makes crucial use of the divergence of

∫∞
x0

(x ·
log x · . . . · logq x)−1 dx.

(4) For k = 1, the geometric idea behind our main result is the following
simple one: If (1) should be violated, then f is growing so rapidly that
it cannot exist on the whole interval [a,∞); it tends to∞ within a finite
time.
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Accordingly, the case k = 1 of assertion (1) can be easily deduced from
a standard comparison principle for differential inequalities. Indeed, if
k = 1 and f is as in Theorem 1 and if (1) does not hold, then there is
an ε > 0 and an a0 ≥ 0 such that

x · log x · log2 x · . . . · logq x · f ′(x) ≥ ε · (1 + |f(x)|α) for all x ≥ a0.

In particular, f ′(x) ≥ ε/(x · log x · log2 x · . . . · logq x) for all x ≥ a0.

In view of the divergence of
∫∞
a0

1/(x · log x · . . . · logq x) dx this implies

limx→∞ f(x) = +∞. Therefore we can conclude that there exists an
x0 ≥ a0 such that for all x ≥ x0 we have f(x) > 0 and

f ′(x) ≥ ε

x · log x · log2 x · . . . · logq x
· fα(x).

However, the solution of the initial value problem

y′(x) =
ε

x · log x · log2 x · . . . · logq x
· yα(x), y(x0) = f(x0)

does not exist on the whole interval [x0,∞); there is some b < +∞
such that limx→b− y(x) = +∞. So by the afore-mentioned comparison
principle (see for example [9, Chapter II.8]) we obtain f(x) ≥ y(x) for
all admissible x ≥ x0, a contradiction. – Without using the comparison
principle the same can be obtained even more immediately by integrating

f ′(x)

fα(x)
≥ ε

x · log x · log2 x · . . . · logq x
.

However, we don’t see a feasible way to extend this reasoning to the case
k ≥ 2.

(5) This paper is related to (and was partially motivated by) our previous
work in [3], [2], [1], [4], [6], [7] and [5] where we had studied differen-
tial inequalities in the context of complex analysis, more precisely with
respect to the question whether they constitute normality (or at least
quasi-normality) in the sense of Montel. In [2] it was shown that a fam-
ily F of meromorphic functions in some domain D in the complex plane
such that

|f (k)|
1 + |f |α

(z) ≥ C for all z ∈ D and all f ∈ F (3)

(where α > 1, C > 0 and k ≥ 1) has to be normal. This doesn’t hold
any longer if α > 1 is replaced by α = 1 as easy examples demonstrate.
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However, for α = 1 condition (3) implies at least quasi-normality [7, 5].
Furthermore, in [1] we had shown that the condition

|f (k)|
1 + |f (j)|α

(z) ≥ C for all z ∈ D (4)

(where k > j ≥ 0 are integers, α > 1 and C > 0) implies quasi-normality.

As to entire functions, it is almost obvious that they cannot satisfy a
differential inequality like (3). Indeed, if f is entire and |f (k)|(z) ≥
C · (1 + |f(z)|α) for all z ∈ C, then in particular |f (k)(z)| ≥ C for all
z ∈ C, so f (k) is constant by Picard’s (or Liouville’s) theorem. But
then f is a non-constant polynomial, and one obtains a contradiction for
z →∞ provided that α > 0.

In view of Theorem 1 and the fact that the exponential function grows
larger than every polynomial, the following fact certainly doesn’t come as a
big surprise:

For every continuously differentiable function g : [a,∞) −→ R we have

lim inf
x→∞

g′(x)

eg(x)
≤ 0. (5)

Indeed, otherwise there would be an ε > 0 and an x0 ≥ a such that
g′(x) ≥ ε · eg(x) for all x ≥ x0. In particular, g′ is positive on [x0,∞), so
g is increasing there, hence g′(x) ≥ ε · eg(x0) for all x ≥ x0, which implies

limx→∞ g(x) = ∞. This enables us to conclude that eg(x)

g2(x) → ∞ for x → ∞.

Combining this with the fact that lim infx→∞
g′(x)

1+|g(x)|2 ≤ 0 by Theorem 1 gives

the assertion.
However, it might be a bit surprising that this no longer holds if g′ is

replaced by higher derivatives of g, i.e. for k ≥ 2 in general the estimate

lim infx→∞
g(k)(x)
eg(x)

≤ 0 does not hold. This is demonstrated by the function

g(x) := −xk−3/2 which satisfies

g(k)(x)

eg(x)
= C · x−3/2

exp(−xk−3/2)
−→∞ for x→∞

with some C > 0.
On the other hand, for every k times continuously differentiable function

g : [a,∞) −→ R (k ≥ 1) we have

lim inf
x→∞

g(k)(x)

1 + eg(x)
≤ 0 and lim inf

x→∞

g(k)(x)

e|g(x)|
≤ 0.
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Both inequalities are proved by a similar reasoning as in the proof of (5),
applying Theorem 1 with (for example) α = 2 and keeping in mind that
g(k)(x) ≥ ε for all x ≥ x0 would imply g(x) −→ ∞ for x → ∞ resp. that

x 7→ e|g(x)|

1+|g(x)|2 is bounded away from zero.

3 Proof of Theorem 1

Our main efforts are required to prove (1). Then (2) will be an easy conse-
quence from (1).

We want to prove (1) by induction w.r.t. q. However, the start of our

induction is to consider f(k)(x)
1+|f(x)|α rather than xk·f(k)(x)

1+|f(x)|α (which would be the

case q = 0). So we have to introduce a unifying notation first. For given k ≥ 1,
we set

P−1(x) := 1, P0(x) := xk and Pq(x) := xk ·
q∏
j=1

logj x for q ≥ 1.

Then our assertion (1) has the form

lim inf
x→∞

Pq(x) · f (k)(x)

1 + |f(x)|α
≤ 0. (6)

First we consider the case q = −1 in (6). Let’s assume the assertion is
wrong. Then there is an ε > 0 and an a0 ≥ 0 such that

f (k)(x) ≥ ε · (1 + |f(x)|α) for all x ≥ a0. (7)

From f (k)(x) ≥ ε for all x ≥ a0 one easily sees that there is some a1 ≥ a0 such
that

f (k)(x) > 0, f (k−1)(x) > 0, . . . , f ′(x) > 0, f(x) > 0 for all x ≥ a1.

In particular, f is strictly increasing (i.e. one-to-one) on [a1,∞) and
limx→∞ f(x) =∞. We choose a natural number n such that (α−1)·n > k−1.
Then there is a natural number j0 such that f([a1,∞)) contains the interval
[jn0 ,∞). For j ≥ j0 we set

rj := f−1(jn).

Then (rj)j is strictly increasing and unbounded, and by the mean value the-
orem, applied to ϕ(t) := tn, we have

f(rj+1)− f(rj) = (j + 1)n − jn ≤ n · (j + 1)n−1 for all j ≥ j0. (8)



Growth of Real Runctions and their Derivatives 339

On the other hand, for j ≥ j0 we deduce from the fundamental theorem of
calculus

f(rj+1)− f(rj) =

∫ rj+1

rj

f ′(x1) dx1

=

∫ rj+1

rj

(
f ′(rj) +

∫ x1

rj

f ′′(x2) dx2

)
dx1

≥
∫ rj+1

rj

∫ x1

rj

f ′′(x2) dx2 dx1

≥ . . .

≥
∫ rj+1

rj

∫ x1

rj

. . .

∫ xk−2

rj

f (k−1)(xk−1) dxk−1 . . . dx2dx1;

here again in the case k = 1 the iterated integrals are understood to reduce to
a one-dimensional integral. From (7) we obtain

f (k−1)(x) ≥ f (k−1)(rj) + ε ·
∫ x

rj

(1 + fα(t)) dt

for all x ≥ rj and j ≥ j0. (Observe that this cannot be deduced from the
fundamental theorem of calculus since f (k) might be not integrable. However
it follows by an easy monotonicity argument.) Therefore we arrive at

f(rj+1)− f(rj) ≥ ε ·
∫ rj+1

rj

∫ x1

rj

. . .

∫ xk−1

rj

(1 + fα(xk)) dxk . . . dx2dx1

≥ ε ·
∫ rj+1

rj

∫ x1

rj

. . .

∫ xk−1

rj

fα(rj) dxk . . . dx2dx1

= ε · jαn · 1

k!
· (rj+1 − rj)k.

Combining this estimate with (8) yields

n · (j + 1)n−1 ≥ ε

k!
· jαn · (rj+1 − rj)k,

hence

rj+1 − rj ≤
(
n · k!

ε
· (j + 1)n−1

jαn

)1/k

≤
(
n · k! · 2n−1

ε

)1/k

· 1

j((α−1)·n+1)/k
.
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Here, by our choice of n, ((α − 1) · n + 1)/k > 1 which ensures that
the series

∑∞
j=j0

1/j((α−1)·n+1)/k converges. Hence also the telescope series∑∞
j=j0

(rj+1− rj) = limj→∞ rj − rj0 converges, contradicting limj→∞ rj =∞.
This proves (1) for q = −1.

Now let some q ≥ 0 be given and assume that (1) is true for q − 1 instead
of q and for all k-times differentiable functions f : [a,∞) −→ R. We assume
there is a k-times differentiable function f : [0,∞) −→ R and an ε > 0 such
that

Pq(x) · f (k)(x) ≥ ε · (1 + |f(x)|α) (9)

holds for all x large enough. Then in particular f (k)(x) > 0 for all large
enough x, so f (k−1) is increasing, and we easily see by induction that
f (k−1), f (k−2), . . . , f ′, f are strictly monotonic on an appropriate interval
[a2,∞) where a2 is large enough. So the limits

Lj := lim
x→∞

f (j)(x) (j = 0, . . . , k − 1)

exist. (They might be +∞ or −∞.)
In the following we will apply the induction hypothesis to the function

g(t) := f(et)

and will use that

g(k)(t) = f (k)(et) · ekt +

k−1∑
j=1

cjf
(j)(et) · ejt (10)

for certain constants cj ≥ 0. (This is easily seen by induction.)
By the mean value theorem, for all n ∈ N there is a ζn ∈ [n, 2n] such that

n · |f (k)(ζn)| = |f (k−1)(2n)− f (k−1)(n)|. (11)

Here of course we have limn→∞ ζn =∞.
Now we consider several cases.

Case 1: Lk−1 6= 0.
Since f (k−1) is increasing, we either have Lk−1 ∈ R or Lk−1 = +∞.

Case 1.1: Lk−1 ∈ R, w.l.o.g. Lk−1 > 0.
Then we have

1

2
· Lk−1 ≤ f (k−1)(x) ≤ 2Lk−1 for large enough x,

hence

1

3(k − 1)!
· Lk−1 · xk−1 ≤ f(x) ≤ 3

(k − 1)!
Lk−1 · xk−1 for large enough x.
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Using the lower estimate, we conclude that for large enough x

0 ≤ Pq(x) · 1

x
· 1

1 + |f(x)|α
≤ x(k−1)(1+α)/2

1 + |f(x)|α
−→ 0 (x→∞). (12)

(Here it is crucial that 1 < 1
2 · (1 + α) < α.) Furthermore,

0 ≤ ζn · |f (k)(ζn)| ≤ 2n · |f (k)(ζn)| = 2 · |f (k−1)(2n)− f (k−1)(n)| n→∞−→ 0 (13)

since Lk−1 is finite. Multiplying (12) and (13) gives

0 ≤ Pq(ζn) · |f
(k)(ζn)|

1 + |f(ζn)|α
−→ 0 (n→∞).

This is a contradiction to (9).
Case 1.2: Lk−1 = +∞.

Then for large enough x we have f (k−1)(x) ≥ 1, f (k−2)(x) ≥ 1, . . . , f ′(x) ≥
1, f(x) ≥ 1 (and Lk−2 = · · · = L1 = L0 = +∞). By applying the induction
hypothesis to g, using (10) and substituting t = log x we obtain for q ≥ 1

0 ≥ lim inf
t→+∞

Pq−1(t) · |g
(k)(t)|

1 + |g(t)|α

= lim inf
t→+∞

q−1∏
j=1

logj t · tk ·
f (k)(et) · ekt +

∑k−1
j=1 cjf

(j)(et) · ejt

1 + |f(et)|α

= lim inf
x→+∞

q−1∏
j=1

logj+1 x · (log x)k ·
f (k)(x) · xk +

∑k−1
j=1 cjf

(j)(x) · xj

1 + |f(x)|α

≥ lim inf
x→+∞

q∏
j=2

logj x · log x · f
(k)(x) · xk

1 + |f(x)|α

= lim inf
x→+∞

Pq(x) · f (k)(x)

1 + |f(x)|α
,

as desired. This remains valid for q = 0 if we replace
∏q−1
j=1 logj t ·tk by 1 in the

second line of this calculation and make similar modifications in the following
lines.
Case 2: Lk−1 = · · · = Lm+1 = 0, but Lm 6= 0 for some integer m ≥ 0,
m ≤ k − 2. (In particular, this case can occur only for k ≥ 2.)

Then for j = k − 1, k − 2, . . . ,m + 1 and all large enough x by the mean
value theorem we find a ζx ∈ [x, 2x] such that

x · |f (j)(2x)| ≤ x · |f (j)(ζx)| = |f (j−1)(2x)− f (j−1)(x)| ≤ |f (j−1)(x)|; (14)
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here we have used that |f (j)| is decreasing (since f (j) is monotonic and Lj = 0)
and that f (j−1)(2x) and f (j−1)(x) have the same sign forlarge enough x.

By induction we obtain for all x large enough

xk−1 · |f (k−1)(2k−1−mx)| ≤ 1

2(k−1−m)(k−2−m)/2
· xm · |f (m)(x)|

≤ xm · |f (m)(x)| (15)

Case 2.1: Lm 6= ±∞, i.e. Lm ∈ R.
Then for all x large enough we have

|f(x)| ≥ xm

2 ·m!
· Lm,

hence

0 ≤
q∏
j=1

logj x ·
xm

1 + |f(x)|α
≤

q∏
j=1

logj x ·
xm

1 +
(
xm

2m! · Lm
)α x→∞−→ 0. (16)

From (11) and (15) we conclude that for all n large enough

nk · |f (k)(ζn)| = nk−1|f (k−1)(2n)− f (k−1)(n)|
≤ nk−1|f (k−1)(n)|

= 2(k−1−m)(k−1) ·
( n

2k−1−m

)k−1
|f (k−1)(n)|

≤ 2(k−1−m)(k−1) ·
( n

2k−1−m

)m
|f (m)

( n

2k−1−m

)
|.

If we combine this estimate with (16) and observe that f (m) is bounded (since

Lm ∈ R), we obtain (with Cm := 2(k−1−m)2+k)

0 ≤
q∏
j=1

logj ζn ·
ζkn · |f (k)(ζn)|
1 + |f(ζn)|α

≤
q∏
j=1

logj ζn · 2k ·
nk · |f (k)(ζn)|
1 + |f(ζn)|α

≤ Cm ·
q∏
j=1

logj ζn ·
nm

1 + |f(ζn)|α
· |f (m)

( n

2k−1−m

)
|

≤ Cm ·
q∏
j=1

logj ζn ·
ζmn

1 + |f(ζn)|α
· |f (m)

( n

2k−1−m

)
| −→ 0 (n→∞)
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for all n large enough. This settles Case 2.1.

Case 2.2: Lm = ±∞, w.l.o.g. Lm = +∞.

Then for all x large enough we have

f (m)(x) ≥ m! + 1, f (m−1)(x) ≥ m! · x+ 1, . . . , f ′(x) ≥ m · xm−1 + 1

and finally

f(x) ≥ xm, (17)

hence
q∏
j=1

logj x ·
xm

1 + |f(x)|α
−→ 0 (x→∞).

For j = 1, . . . ,m and all x large enough there are numbers ζx ∈ [x, 2x] such
that

f (j−1)(2x) = f (j−1)(x) + x · f (j)(ζx) ≥ 0 + x · f (j)(x),

and by induction we conclude that

f(2mx) ≥ 2m(m−1)/2xm · f (m)(x) ≥ xm · f (m)(x), (18)

provided that x is large enough. On the other hand, f (m+1) is positive and
decreases to 0, so for a suitably chosen a3 ≥ 0 and all x ≥ 2a3 we obtain

f (m)(2mx) ≤ f (m)(a3 + 2mx) = f (m)(a3) +

∫ a3+2m+1· x2

a3

f (m+1)(t) dt

≤ f (m)(a3) + 2m+1 ·
∫ a3+

x
2

a3

f (m+1)(t) dt

= 2m+1 · f (m)
(
a3 +

x

2

)
− (2m+1 − 1) · f (m)(a3)

≤ 2m+1 · f (m)(x) + 0.

From this estimate and (18) we conclude that for all x large enough

2m+1 · f(2mx) ≥ xm · f (m)(2mx),

hence (by replacing 2mx with x)

2m
2+m+1 · f(x) ≥ xm · f (m)(x). (19)
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If we combine this estimate with (11), (15) and (17), as in Case 2.1 we obtain

0 ≤ Pq(ζn) · |f
(k)(ζn)|

1 + |f(ζn)|α

≤ Cm ·
q∏
j=1

logj ζn ·
nm ·

∣∣f (m)
(

n
2k−1−m

)∣∣
1 + |f(ζn)|α

(19)

≤ C ′m ·
q∏
j=1

logj ζn ·
∣∣f ( n

2k−1−m

)∣∣
1 + |f(ζn)|α

≤ C ′m ·
q∏
j=1

logj ζn · |f(ζn)|1−α

(17)

≤ C ′m ·
q∏
j=1

logj ζn · ζm(1−α)
n −→ 0 (n→∞),

where C ′m is an appropriate constant. This settles this case as well.
Case 3: Lk−1 = · · · = L0 = 0

In this case, (15) holds as well (with m = 1), i.e.

|f ′(x)| ≥ xk−2 · |f (k−1)
(
2k−2x

)
|

for all x large enough. Now we use

|f (k)(x)| ≥ ε

xk
∏q
j=1 logj x

(which is valid for all large enough x) and once more the mean value theorem
to deduce for all large enough x

|f ′(x)| ≥ xk−2 · |f (k−1)(2k−2x)− f (k−1)(2k−1x)|

= 2k−2 · xk−1 · |f (k)(ζx)| (where 2k−2x ≤ ζx ≤ 2k−1x)

≥ 2k−2 · xk−1 · ε
ζkx ·

∏q
j=1 logj ζx

≥ 2k−2 · xk−1 · ε
(2k−1x)k ·

∏q
j=1 logj(2

k−1x)

≥ c · 1

x ·
∏q
j=1 logj x

with a suitable constant c > 0, hence by integration

|f(x)| ≥ c · logq+1 x+ d→∞ (x→∞)
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for some d > 0, since f ′(x) doesn’t change its sign for x large enough. This
contradicts L0 = 0, i.e. this case cannot occur.

This completes the proof of (1).
In fact, Case 3 is the only part of the proof where it is crucial that in the

assertion only the factor logq x and not (logq x)β with β > 1 occurs. It would
fail for β > 1 since the improper integral

∞∫
x0

1/(x log x · . . . · logq−1 x · (logq x)β) dx (with x0 large enough)

converges.
Now (2) is an easy consequence from (1) and from Darboux’ intermediate

value theorem for derivatives. Indeed, if there exists an x0 such that f (k)(x) ≥
0 for all x ≥ x0 or f (k)(x) ≤ 0 for all x ≥ x0, (2) follows immediately from
(1), applied to either f or −f . Otherwise, by Darboux’s theorem there is a
sequence {xn}n tending to ∞ such that f (k)(xn) = 0 for all n, and (2) holds
as well.
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