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LIPSCHITZ RESTRICTIONS OF
CONTINUOUS FUNCTIONS AND A
SIMPLE CONSTRUCTION OF
ULAM-ZAHORSKI C! INTERPOLATION

Abstract

We present a simple argument that for every continuous function
f: R — R its restriction to some perfect set is Lipschitz. We will use
this result to provide an elementary proof of the C! free interpolation
theorem, that for every continuous function f: R — R there exists a
continuously differentiable function g: R — R which agrees with f on
an uncountable set. The key novelty of our presentation is that no
part of it, including the cited results, requires from the reader any prior
familiarity with the Lebesgue measure theory.

1 Introduction and background

The main result we like to discuss here is the following 1985 theorem of
Agronsky, Bruckner, Laczkovich, and Preiss [1]. It implies that every con-
tinuous function f: R — R must have some traces of differentiability, even
though there exist continuous functions f: R — R that are nowhere differ-
entiable (see e.g. [10, 22, 23]) or, even stronger, nowhere approximately and
T-approximately differentiable. In fact, the first coordinate of the classical
Peano curve (i.e., f1: [0,1] — [0,1], where f = (f1, f2): [0,1] — [0,1]* is a
continuous surjection constructed by Peano) has these properties, see [6] or
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[7, Example 4.3.8]. Such a function cannot agree with a C* function on a set
which is either of second category or of positive Lebesgue measure.

Theorem 1. For every continuous f: R — R there is a continuously differen-
tiable function g: R — R such that the set [f = g] = {x € R: f(x) = g(x)} is
uncountable. In particular, [f = g] contains a perfect set P and the restriction
f I P is continuously differentiable.

In the statement of Theorem 1 the differentiability of h = f | P is un-
derstood as the existence of its derivative, that is, of the function A’': P — R

defined, for every p € P, as h/(p) = lim,—, zep %}’3(1’).

The story behind Theorem 1 spreads over a big part of the 20th century
and is described in detail in [2] and [16]. Briefly, around 1940 S. Ulam asked,
in Scottish Book, Problem 17.1, see [21], whether every continuous f: R — R
agrees with some real analytic function on an uncountable set. Z. Zahorski
showed, in his 1948 paper [25], that the answer is no: there exists a C*
(i.e., infinitely many times differentiable) function which can agree with every
real analytic function on at most finite set of points. At the same paper
Zahorski stated a problem, refereed to as Ulam-Zahorski problem: does every
continuous f: R — R agrees with some C* (or possibly C™ or D™) function on
some uncountable set? Clearly, Theorem 1 shows that Ulam-Zahorski problem
has an affirmative answer for the C! class of functions. This is the best possible
result in this direction, since A. Olevskii constructed, in his 1994 paper [16],
a continuous function which can agree with every C? function on at most
countable set of points.

The format of our proof of Theorem 1 is relatively straightforward. First
we provide a simple argument that for every continuous function f: R — R
its restriction to some perfect set P C R is Lipschitz.! Here the key case,
presented in Sec. 2, is when f is monotone. Then we will follow an argument
of Morayne [15] to show that there is a perfect @ C P for which f [ @
satisfies the assumptions of Whitney’s C! extension theorem [24]. At this
point, to make the argument more accessible, we point the reader to a version
of Whitney’s C! extension theorem from [4], whose proof is elementary and
simple.

LOf course this result follows immediately from Theorem 1, as g from Theorem 1 is
Lipschitz on any bounded interval. However, we are after a simpler proof of Theorem 1, so
using it to argue for our step to prove it is pointless.
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2 Lipschitz restrictions of monotone continuous maps

In what follows f will always be a continuous function from R into R, A will
stand for the set {(z,z): z € R}, and ¢: R?\ A — R be the quotient function

for f, that is, defined as g(x,y) = %ﬁy) For Q C R we will use the symbol

q | Q? to denote the restriction of g to the set Q2% \ A.

Theorem 2. Assume that f: R — R is monotone and continuous on a non-
trivial interval [a,b]. For every L > |q(a,b)| there exists a closed uncountable
set P C [a,b] such that f | P is Lipschitz with constant L.

The difficulty in proving Theorem 2 without measure theoretical tools
comes from the fact that there exist strictly increasing continuous functions
f: R — R which posses finite or infinite derivative at every point, but that the
derivative of f is infinite on a dense Gs-set. The first example of such function
was given by Pompeiu in [18]. More recent description of such functions can
be found in [20, sec. 9.7] and [5]. These examples show that a perfect set in
Theorem 2 should be nowhere sense. Thus we will use a measure theoretical
approach, in which the measure theoretical tools will be present only implicitly
or, as in case of Fact 5, given together with a simple proof.

We extract the proof of next theorem from the proof, presented in [8], of
a Lebesgue theorem that every monotone function f: R — R is differentiable
almost everywhere.

Our proof of Theorem 2 is based on the following 1932 result of Riesz [19],
known as the rising sun lemma. For reader’s convenience we include its short
proof.

Lemma 3. If g is a continuous function from a non-trivial interval [a, b] into
R, then the set U = {x € [a,b): g(x) < g(y) for some y € (x,b]} is open in
[a,b) and g(c) < g(d) for every open connected component (¢, d) of U.

PROOF. It is clear that U is open in [a,b). To see the other part, let (¢, d) be
a component of U. By continuity of g, it is enough to prove that g(p) < g(d)
for every p € (¢,d). Assume by way of contradiction that g(d) < g(p) for some
p € (¢,d) and let = € [p, b] be a point at which g [ [p, b] achieves the maximum.
Then ¢(d) < g(p) < g(z) and so we must have = € [p,d) C U, as otherwise d
would belong to U. But x € U contradicts the fact that g(x) > g(y) for every
y € (x,b]. O

Remark 4. In Lemma 3 we also have g(¢) > ¢(d), since ¢ € [a,b) \ U. But
we do not actually need this fact.
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For an interval I let ¢(I) be its length. We need the following simple
well-known observations.

Fact 5. Let a < b and J be a family of open intervals with |JJ C (a,b).
(i) If [, Bl CUJT, then Y, , €(I) > B — a.

(ii) If the intervals in J are pairwise disjoint, then ;. , £(I) < b — a.

PRrOOF. (i) By compactness of [a, 8] we can assume that J is finite, say of
size n. Then (i) follows by an easy induction on n: if (¢,d) = J € J contains
B, then elther c < «, in which case (i) is obvious, or a < ¢ and, by induction,
ZIGJ (1) )+Zlej\{J} o(I) > {([c ,ﬁ])—l—@([a,c]) B—a.

(ii) Once again, it is enough to show (ii) for finite J, say of size n, by
induction. Then, thereis (¢,d) = J € J to the right of any I € J\{J}. Hence,
by induction, 3 ;¢ 7 €(1) = L(J)+ X ey () < (b—c)+(c—a) =b—a. O

PROOF OF THEOREM 2. If there exists a nontrivial interval [¢,d] C [a,b] on
which f is constant, then clearly P = [¢,d] is as needed. So, we can assume
that f is strictly monotone on [a,b]. Also, replacing f with —f, if necessary,
we can also assume that f is strictly increasing.

Fix L > |q(a,b)] = W and define g: R — R as g(t) = f()
Then g(a) = f(a) — La > f(b) — Lb = g(b). Let m = sup{g(x): = € [a, ]}
and @ = sup{z € [a,5]: g() = m}. Then f(a) — La = g(a) > g(a) > g(b) =
f(b) — Lb, so a < a < b and we still have L > |¢(a,b)| = (b) f(i). Moreover,
a does not belong to the set

U={z€lab): g(y) > g(zx) for some y € (z,b]}

from Lemma 3 applied to g on [a,b]. In particular, U is open in R and the
family J of all connected components of U contains only open intervals (¢, d)
for which, by Lemma 3, g(c) < g(d).

The set P = [a,b] \ U C |a,b] is closed and for any = < y in P we have
fy) — Ly = g(y) < g(x) = f(x) — La, that is, [f(y) — f(2)] = f(y) — fz) <
Ly — Lz = L|y — x|. In particular, f is Lipschitz on P with constant L. It is
enough to show that P is uncountable.

To see this notice that for every J = (¢,d) € J we have f(d)—Ld = g(d) >
g(c) = f(c) — Le, that is, £(f[J]) = f(d) — f(c) > L(d — ¢) = L{(J). Since the
intervals in the family J* = {f[J]: J € J} are pairwise disjoint and contained
in the interval (f(a), f(b)), by Fact 5(ii) we have ) ;.. ;. £(J*) < f(b) — f(a).
S0, ey U7) < 1 X geq UIUD) = £ 5 geege (7)) < HOTHD < b —a
Thus, by Fact 5(i), P = [a,b] \ U = [a,b] \ |JJ # 0. However, we need more,
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that P cannot be contained in any countable set, say {z,: n € N}. To see
this, fix 6 > 0 such that M + 0 < b—a, for every n € N choose an
interval (c,,d,) 3 x, of length 2774, and put J = J U {(cn,dp): n < w}.
Then

S )= )+ 3 ten ) < TOZID 5 g

Jed JET neN

so, by Fact 5(i), U U, en(Cn, dn) D U U{zy,: n € N} does not contain [a, b].
In other words, P = [a, b] \ U is uncountable, as needed. O

Remark 6. A presented proof of Theorem 2 actually gives a stronger result,
that the set [a,b] \ P can have arbitrary small Lebesgue measure.

3 Perfect set on which the difference quotient map is
uniformly continuous

The next proposition is a version of a theorem of Morayne [15], which implies
that the conclusion of Proposition 7 holds when f, defined on a perfect subset
of R, is Lipschitz (i.e., the quotient map for such f has bounded range). The
key innovation in Proposition 7 is that we prove this result without assuming
that f, or some restriction of it, is Lipschitz.

Proposition 7. For every continuous f: R — R there exists a perfect set Q C
R such that the quotient map q | Q% is bounded and uniformly continuous.

PRrROOF. If f is monotone on some non-trivial interval [a,b], then, by Theo-
rem 2, there exists a perfect set P C R such that f [ P is Lipschitz. Thus, by
Morayne’s theorem applied to f | P, there exists a perfect Q C P for which
the quotient map ¢ is as needed. On the other hand, if f is monotone on no
non-trivial interval, then, by a 1953 theorem of Padmavally [17] (compare also
[14, 13, 9]) there exists a perfect set @ C R on which f is constant. Of course,
the quotient map on such @ is as desired. O

4 The main result

The following theorem is a restatement of Theorem 1 in a slightly different
language.

Theorem 8. For every continuous function f: R — R there exists a perfect
set @ C R such that f | Q can be extended to C' function F: R — R.
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Let @ C R be as Proposition 7. It is well known, see e.g. [12], that
uniform continuity of ¢ [ Q? implies that the assumptions of the Whitney’s
C! extension theorem (see [24]) are satisfied, that is, f | @ has a desired C*
extension F': R — R. The problem with the citation [12], and many other
papers containing needed extension result, is that the proofs presented there
can hardly be considered simple. Thus, we like conclude the extendability of
f I @, having uniformly continuous g [ Q?, to C' extension F: R — R from
the following recent result of Ciesielska and Ciesielski [4] which has simple
elementary proof.

For a bounded open interval J let I; be the closed middle third of J and
for a perfect set Q C R let

Q=Qu U{IJ: J is a bounded connected component of R\ Q}.

Proposition 9. [4] Let f: Q — R, where Q is a perfect subset of R, and
put f = f | Q, where f: R — R is a linear interpolation of f | Q. If f | Q

is differentiable, then there exists a differentiable extension F': R — R of f.
Moreover, F is C' if, and only if, f is continuously differentiable.

PRrROOF OF THEOREM 8. If Q@ C R is from Proposition 7, then ¢ | @2, defined
on %\ A, can be extended to uniformly continuous g on Q2 and f: Q — R
is continuously differentiable with (f | Q) (z) = g(z,x) for every z € Q.
By Proposition 9, f is differentiable (as a restriction of differentiable F'). In
particular, f'(z) = F'(z) = (f | Q)'(x) for every z € Q and f'(z) = g(c, d)
whenever © € Iy, where J = (¢, d) is a bounded connected component of R\ Q.

By Proposition 9, we need to show that f’ is continuous. Clearly f’ is
continuous on Q \ @, as it is locally constant on this set. So, let x € @ and let
e > 0. We need to find an open U containing 2 such that |f'(z) — f'(y)| < ¢
whenever y € Q NU. Since g is continuous, there exists an open V € R?
containing (x,z) such that |f'(z) — q(y, 2)| = |g(z, z) — q(y, z)| < € whenever
(y,2) € @*NV. Let Uy be open interval containing = such that U C V and
let U C Uy be an open set containing x such that: if U N1T; # ( for some
bounded connected component J = (¢,d) of R\ @, then ¢,d € Uy. We claim
that U is as needed. Indeed, let y € QN U. If y € Q, then (y,y) eU? CV
and |f'(z) — f'(y)| = |g(z, x) — q(y,y)| < e. Also, if y € I; for some bounded
connected component J = (c,d) of R\ Q, then {¢,d) € U} C V and, once
again, |f'(z) — f'(y)| = q(z, ) — q(c.d)| <e. O
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