Krzysztof Chris Ciesielski, Department of Mathematics, West Virginia University, Morgantown, WV 26506-6310 and Department of Radiology, MIPG, University of Pennsylvania, Philadelphia, PA 19104-6021. email: KCies@math.wvu.edu

LIPSCHITZ RESTRICTIONS OF CONTINUOUS FUNCTIONS AND A SIMPLE CONSTRUCTION OF ULAM-ZAHORSKI C^{1} INTERPOLATION

Abstract

We present a simple argument that for every continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ its restriction to some perfect set is Lipschitz. We will use this result to provide an elementary proof of the C^{1} free interpolation theorem, that for every continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ there exists a continuously differentiable function $g: \mathbb{R} \rightarrow \mathbb{R}$ which agrees with f on an uncountable set. The key novelty of our presentation is that no part of it, including the cited results, requires from the reader any prior familiarity with the Lebesgue measure theory.

1 Introduction and background

The main result we like to discuss here is the following 1985 theorem of Agronsky, Bruckner, Laczkovich, and Preiss [1]. It implies that every continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ must have some traces of differentiability, even though there exist continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ that are nowhere differentiable (see e.g. [10, 22, 23]) or, even stronger, nowhere approximately and \mathcal{I}-approximately differentiable. In fact, the first coordinate of the classical Peano curve (i.e., $f_{1}:[0,1] \rightarrow[0,1]$, where $f=\left(f_{1}, f_{2}\right):[0,1] \rightarrow[0,1]^{2}$ is a continuous surjection constructed by Peano) has these properties, see [6] or

[^0][7, Example 4.3.8]. Such a function cannot agree with a C^{1} function on a set which is either of second category or of positive Lebesgue measure.

Theorem 1. For every continuous $f: \mathbb{R} \rightarrow \mathbb{R}$ there is a continuously differentiable function $g: \mathbb{R} \rightarrow \mathbb{R}$ such that the set $[f=g]=\{x \in \mathbb{R}: f(x)=g(x)\}$ is uncountable. In particular, $[f=g]$ contains a perfect set P and the restriction $f \upharpoonright P$ is continuously differentiable.

In the statement of Theorem 1 the differentiability of $h=f \upharpoonright P$ is understood as the existence of its derivative, that is, of the function $h^{\prime}: P \rightarrow \mathbb{R}$ defined, for every $p \in P$, as $h^{\prime}(p)=\lim _{x \rightarrow p, x \in P} \frac{h(x)-h(p)}{x-p}$.

The story behind Theorem 1 spreads over a big part of the 20th century and is described in detail in [2] and [16]. Briefly, around 1940 S . Ulam asked, in Scottish Book, Problem 17.1, see [21], whether every continuous $f: \mathbb{R} \rightarrow \mathbb{R}$ agrees with some real analytic function on an uncountable set. Z. Zahorski showed, in his 1948 paper [25], that the answer is no: there exists a C^{∞} (i.e., infinitely many times differentiable) function which can agree with every real analytic function on at most finite set of points. At the same paper Zahorski stated a problem, refereed to as Ulam-Zahorski problem: does every continuous $f: \mathbb{R} \rightarrow \mathbb{R}$ agrees with some C^{∞} (or possibly C^{n} or D^{n}) function on some uncountable set? Clearly, Theorem 1 shows that Ulam-Zahorski problem has an affirmative answer for the C^{1} class of functions. This is the best possible result in this direction, since A. Olevskiǐ constructed, in his 1994 paper [16], a continuous function which can agree with every C^{2} function on at most countable set of points.

The format of our proof of Theorem 1 is relatively straightforward. First we provide a simple argument that for every continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ its restriction to some perfect set $P \subset \mathbb{R}$ is Lipschitz. ${ }^{1}$ Here the key case, presented in Sec. 2, is when f is monotone. Then we will follow an argument of Morayne [15] to show that there is a perfect $Q \subset P$ for which $f \upharpoonright Q$ satisfies the assumptions of Whitney's C^{1} extension theorem [24]. At this point, to make the argument more accessible, we point the reader to a version of Whitney's C^{1} extension theorem from [4], whose proof is elementary and simple.

[^1]
2 Lipschitz restrictions of monotone continuous maps

In what follows f will always be a continuous function from \mathbb{R} into \mathbb{R}, Δ will stand for the set $\{\langle x, x\rangle: x \in \mathbb{R}\}$, and $q: \mathbb{R}^{2} \backslash \Delta \rightarrow \mathbb{R}$ be the quotient function for f, that is, defined as $q(x, y)=\frac{f(x)-f(y)}{x-y}$. For $Q \subset \mathbb{R}$ we will use the symbol $q \upharpoonright Q^{2}$ to denote the restriction of q to the set $Q^{2} \backslash \Delta$.

Theorem 2. Assume that $f: \mathbb{R} \rightarrow \mathbb{R}$ is monotone and continuous on a nontrivial interval $[a, b]$. For every $L>|q(a, b)|$ there exists a closed uncountable set $P \subset[a, b]$ such that $f \upharpoonright P$ is Lipschitz with constant L.

The difficulty in proving Theorem 2 without measure theoretical tools comes from the fact that there exist strictly increasing continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ which posses finite or infinite derivative at every point, but that the derivative of f is infinite on a dense G_{δ}-set. The first example of such function was given by Pompeiu in [18]. More recent description of such functions can be found in [20, sec. 9.7] and [5]. These examples show that a perfect set in Theorem 2 should be nowhere sense. Thus we will use a measure theoretical approach, in which the measure theoretical tools will be present only implicitly or, as in case of Fact 5, given together with a simple proof.

We extract the proof of next theorem from the proof, presented in [8], of a Lebesgue theorem that every monotone function $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable almost everywhere.

Our proof of Theorem 2 is based on the following 1932 result of Riesz [19], known as the rising sun lemma. For reader's convenience we include its short proof.

Lemma 3. If g is a continuous function from a non-trivial interval $[a, b]$ into \mathbb{R}, then the set $U=\{x \in[a, b): g(x)<g(y)$ for some $y \in(x, b]\}$ is open in $[a, b)$ and $g(c) \leq g(d)$ for every open connected component (c, d) of U.

Proof. It is clear that U is open in $[a, b)$. To see the other part, let (c, d) be a component of U. By continuity of g, it is enough to prove that $g(p) \leq g(d)$ for every $p \in(c, d)$. Assume by way of contradiction that $g(d)<g(p)$ for some $p \in(c, d)$ and let $x \in[p, b]$ be a point at which $g \upharpoonright[p, b]$ achieves the maximum. Then $g(d)<g(p) \leq g(x)$ and so we must have $x \in[p, d) \subset U$, as otherwise d would belong to U. But $x \in U$ contradicts the fact that $g(x) \geq g(y)$ for every $y \in(x, b]$.

Remark 4. In Lemma 3 we also have $g(c) \geq g(d)$, since $c \in[a, b) \backslash U$. But we do not actually need this fact.

For an interval I let $\ell(I)$ be its length. We need the following simple well-known observations.

Fact 5. Let $a<b$ and \mathcal{J} be a family of open intervals with $\bigcup \mathcal{J} \subset(a, b)$.
(i) If $[\alpha, \beta] \subset \bigcup \mathcal{J}$, then $\sum_{I \in \mathcal{J}} \ell(I)>\beta-\alpha$.
(ii) If the intervals in \mathcal{J} are pairwise disjoint, then $\sum_{I \in \mathcal{J}} \ell(I) \leq b-a$.

Proof. (i) By compactness of $[\alpha, \beta]$ we can assume that \mathcal{J} is finite, say of size n. Then (i) follows by an easy induction on n : if $(c, d)=J \in \mathcal{J}$ contains β, then either $c \leq \alpha$, in which case (i) is obvious, or $\alpha<c$ and, by induction, $\sum_{I \in \mathcal{J}} \ell(I)=\ell(J)+\sum_{I \in \mathcal{J} \backslash\{J\}} \ell(I)>\ell([c, \beta])+\ell([\alpha, c])=\beta-\alpha$.
(ii) Once again, it is enough to show (ii) for finite \mathcal{J}, say of size n, by induction. Then, there is $(c, d)=J \in \mathcal{J}$ to the right of any $I \in \mathcal{J} \backslash\{J\}$. Hence, by induction, $\sum_{I \in \mathcal{J}} \ell(I)=\ell(J)+\sum_{I \in \mathcal{J} \backslash\{J\}} \ell(I) \leq(b-c)+(c-a)=b-a$.

Proof of Theorem 2. If there exists a nontrivial interval $[c, d] \subset[a, b]$ on which f is constant, then clearly $P=[c, d]$ is as needed. So, we can assume that f is strictly monotone on $[a, b]$. Also, replacing f with $-f$, if necessary, we can also assume that f is strictly increasing.

Fix $L>|q(a, b)|=\frac{f(b)-f(a)}{b-a}$ and define $g: \mathbb{R} \rightarrow \mathbb{R}$ as $g(t)=f(t)-L t$. Then $g(a)=f(a)-L a>f(b)-L b=g(b)$. Let $m=\sup \{g(x): x \in[a, b]\}$ and $\bar{a}=\sup \{x \in[a, b]: g(x)=m\}$. Then $f(\bar{a})-L \bar{a}=g(\bar{a}) \geq g(a)>g(b)=$ $f(b)-L b$, so $a \leq \bar{a}<b$ and we still have $L>|q(\bar{a}, b)|=\frac{f(b)-f(\bar{a})}{b-\bar{a}}$. Moreover, \bar{a} does not belong to the set

$$
U=\{x \in[\bar{a}, b): g(y)>g(x) \text { for some } y \in(x, b]\}
$$

from Lemma 3 applied to g on $[\bar{a}, b]$. In particular, U is open in \mathbb{R} and the family \mathcal{J} of all connected components of U contains only open intervals (c, d) for which, by Lemma $3, g(c) \leq g(d)$.

The set $P=[\bar{a}, b] \backslash U \subset[a, b]$ is closed and for any $x<y$ in P we have $f(y)-L y=g(y) \leq g(x)=f(x)-L x$, that is, $|f(y)-f(x)|=f(y)-f(x) \leq$ $L y-L x=L|y-x|$. In particular, f is Lipschitz on P with constant L. It is enough to show that P is uncountable.

To see this notice that for every $J=(c, d) \in \mathcal{J}$ we have $f(d)-L d=g(d) \geq$ $g(c)=f(c)-L c$, that is, $\ell(f[J])=f(d)-f(c) \geq L(d-c)=L \ell(J)$. Since the intervals in the family $\mathcal{J}^{*}=\{f[J]: \mathcal{J} \in \mathcal{J}\}$ are pairwise disjoint and contained in the interval $(f(\bar{a}), f(b))$, by Fact $5($ ii $)$ we have $\sum_{J^{*} \in \mathcal{J}^{*}} \ell\left(J^{*}\right) \leq f(b)-f(\bar{a})$. So, $\sum_{J \in \mathcal{J}} \ell(J) \leq \frac{1}{L} \sum_{J \in \mathcal{J}^{\prime}} \ell(f[J])=\frac{1}{L} \sum_{J^{*} \in \mathcal{J}^{*}} \ell\left(J^{*}\right) \leq \frac{f(b)-f(\bar{a})}{L}<b-\bar{a}$. Thus, by Fact $5(\mathrm{i}), P=[\bar{a}, b] \backslash U=[\bar{a}, b] \backslash \bigcup \mathcal{J} \neq \emptyset$. However, we need more,
that P cannot be contained in any countable set, say $\left\{x_{n}: n \in \mathbb{N}\right\}$. To see this, fix $\delta>0$ such that $\frac{f(b)-f(\bar{a})}{L}+\delta<b-\bar{a}$, for every $n \in \mathbb{N}$ choose an interval $\left(c_{n}, d_{n}\right) \ni x_{n}$ of length $2^{-n} \delta$, and put $\hat{\mathcal{J}}=\mathcal{J} \cup\left\{\left(c_{n}, d_{n}\right): n<\omega\right\}$. Then

$$
\sum_{J \in \hat{\mathcal{J}}} \ell(J)=\sum_{J \in \mathcal{J}} \ell(J)+\sum_{n \in \mathbb{N}} \ell\left(\left(c_{n}, d_{n}\right)\right) \leq \frac{f(b)-f(\bar{a})}{L}+\delta<\beta-\alpha
$$

so, by Fact $5(\mathrm{i}), U \cup \bigcup_{n \in \mathbb{N}}\left(c_{n}, d_{n}\right) \supset U \cup\left\{x_{n}: n \in \mathbb{N}\right\}$ does not contain $[\bar{a}, b]$. In other words, $P=[\bar{a}, b] \backslash U$ is uncountable, as needed.

Remark 6. A presented proof of Theorem 2 actually gives a stronger result, that the set $[a, b] \backslash P$ can have arbitrary small Lebesgue measure.

3 Perfect set on which the difference quotient map is uniformly continuous

The next proposition is a version of a theorem of Morayne [15], which implies that the conclusion of Proposition 7 holds when f, defined on a perfect subset of \mathbb{R}, is Lipschitz (i.e., the quotient map for such f has bounded range). The key innovation in Proposition 7 is that we prove this result without assuming that f, or some restriction of it, is Lipschitz.

Proposition 7. For every continuous $f: \mathbb{R} \rightarrow \mathbb{R}$ there exists a perfect set $Q \subset$ \mathbb{R} such that the quotient map $q \upharpoonright Q^{2}$ is bounded and uniformly continuous.

Proof. If f is monotone on some non-trivial interval $[a, b]$, then, by Theorem 2, there exists a perfect set $P \subset \mathbb{R}$ such that $f \upharpoonright P$ is Lipschitz. Thus, by Morayne's theorem applied to $f \upharpoonright P$, there exists a perfect $Q \subset P$ for which the quotient map q is as needed. On the other hand, if f is monotone on no non-trivial interval, then, by a 1953 theorem of Padmavally [17] (compare also $[14,13,9])$ there exists a perfect set $Q \subset \mathbb{R}$ on which f is constant. Of course, the quotient map on such Q is as desired.

4 The main result

The following theorem is a restatement of Theorem 1 in a slightly different language.

Theorem 8. For every continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ there exists a perfect set $Q \subset \mathbb{R}$ such that $f \upharpoonright Q$ can be extended to C^{1} function $F: \mathbb{R} \rightarrow \mathbb{R}$.

Let $Q \subset \mathbb{R}$ be as Proposition 7. It is well known, see e.g. [12], that uniform continuity of $q \upharpoonright Q^{2}$ implies that the assumptions of the Whitney's C^{1} extension theorem (see [24]) are satisfied, that is, $f \upharpoonright Q$ has a desired C^{1} extension $F: \mathbb{R} \rightarrow \mathbb{R}$. The problem with the citation [12], and many other papers containing needed extension result, is that the proofs presented there can hardly be considered simple. Thus, we like conclude the extendability of $f \upharpoonright Q$, having uniformly continuous $q \upharpoonright Q^{2}$, to C^{1} extension $F: \mathbb{R} \rightarrow \mathbb{R}$ from the following recent result of Ciesielska and Ciesielski [4] which has simple elementary proof.

For a bounded open interval J let I_{J} be the closed middle third of J and for a perfect set $Q \subset \mathbb{R}$ let

$$
\hat{Q}=Q \cup \bigcup\left\{I_{J}: J \text { is a bounded connected component of } \mathbb{R} \backslash Q\right\} .
$$

Proposition 9. [4] Let $f: Q \rightarrow \mathbb{R}$, where Q is a perfect subset of \mathbb{R}, and put $\hat{f}=\bar{f} \upharpoonright \hat{Q}$, where $\bar{f}: \mathbb{R} \rightarrow \mathbb{R}$ is a linear interpolation of $f \upharpoonright Q$. If $f \upharpoonright Q$ is differentiable, then there exists a differentiable extension $F: \mathbb{R} \rightarrow \mathbb{R}$ of \hat{f}. Moreover, F is C^{1} if, and only if, \hat{f} is continuously differentiable.

Proof of Theorem 8. If $Q \subset \mathbb{R}$ is from Proposition 7 , then $q \upharpoonright Q^{2}$, defined on $Q^{2} \backslash \Delta$, can be extended to uniformly continuous \bar{q} on Q^{2} and $f: Q \rightarrow \mathbb{R}$ is continuously differentiable with $(f \upharpoonright Q)^{\prime}(x)=\bar{q}(x, x)$ for every $x \in Q$. By Proposition 9, \hat{f} is differentiable (as a restriction of differentiable F). In particular, $\hat{f}^{\prime}(x)=F^{\prime}(x)=(f \upharpoonright Q)^{\prime}(x)$ for every $x \in Q$ and $\hat{f}^{\prime}(x)=\bar{q}(c, d)$ whenever $x \in I_{J}$, where $J=(c, d)$ is a bounded connected component of $\mathbb{R} \backslash Q$.

By Proposition 9, we need to show that \hat{f}^{\prime} is continuous. Clearly \hat{f}^{\prime} is continuous on $\hat{Q} \backslash Q$, as it is locally constant on this set. So, let $x \in Q$ and let $\varepsilon>0$. We need to find an open U containing x such that $\left|\hat{f}^{\prime}(x)-\hat{f}^{\prime}(y)\right|<\varepsilon$ whenever $y \in \hat{Q} \cap U$. Since \bar{q} is continuous, there exists an open $V \in \mathbb{R}^{2}$ containing $\langle x, x\rangle$ such that $\left|\hat{f}^{\prime}(x)-\bar{q}(y, z)\right|=|\bar{q}(x, x)-\bar{q}(y, z)|<\varepsilon$ whenever $\langle y, z\rangle \in Q^{2} \cap V$. Let U_{0} be open interval containing x such that $U_{0}^{2} \subset V$ and let $U \subset U_{0}$ be an open set containing x such that: if $U \cap I_{J} \neq \emptyset$ for some bounded connected component $J=(c, d)$ of $\mathbb{R} \backslash Q$, then $c, d \in U_{0}$. We claim that U is as needed. Indeed, let $y \in \hat{Q} \cap U$. If $y \in Q$, then $\langle y, y\rangle \in U^{2} \subset V$ and $\left|\hat{f}^{\prime}(x)-\hat{f}^{\prime}(y)\right|=|\bar{q}(x, x)-\bar{q}(y, y)|<\varepsilon$. Also, if $y \in I_{J}$ for some bounded connected component $J=(c, d)$ of $\mathbb{R} \backslash Q$, then $\langle c, d\rangle \in U_{0}^{2} \subset V$ and, once again, $\left|\hat{f}^{\prime}(x)-\hat{f}^{\prime}(y)\right|=|\bar{q}(x, x)-\bar{q}(c, d)|<\varepsilon$.

References

[1] S. Agronsky, A.M. Bruckner, M. Laczkovich, and D. Preiss, Convexity conditions and intersections with smooth functions, Trans. Amer. Math. Soc., 289 (1985), 659-677.
[2] J.B. Brown, Restriction theorems in real analysis, Real Anal. Exchange, 20(1) (1994/1995), 510-526.
[3] J.B. Brown, Differentiable restrictions of real functions, Proc. Amer. Math. Soc., 108(2) (1990), 391-398.
[4] M. Ciesielska and K.C. Ciesielski, Differentiable extension theorem; a lost proof of V. Jarnik, J. Math. Anal. Appl., 454(2) (2017), 883-890. http://dx.doi.org/10.1016/j.jmaa.2017.05.032.
[5] K.C. Ciesielski, Monsters in calculus, Amer. Math. Monthly, to appear; www.math. wvu.edu/~kcies/prepF/131.DifferentiableMonster.pdf.
[6] K. Ciesielski and L. Larson, The Peano curve and I-approximate differentiability, Real Anal. Exchange, 17(2) (1991/1992), 608-621.
[7] K. Ciesielski, L. Larson, and K. Ostaszewski, I-density continuous functions, Mem. Amer. Math. Soc., 107 (515) (1994).
[8] C.-A. Faure, The Lebesgue differentiation theorem via the rising sun lemma, Real Anal. Exchange, 29(2) (2003), 947-951.
[9] K.M. Garg, On level sets of a continuous nowhere monotone function, Fund. Math., 52 (1963), 60-68.
[10] M. Jarnicki and P. Pflug, Continuous Nowhere Differentiable Functions, Springer Monographs in Mathematics, New York, 2015.
[11] Y. Katznelson and K. Stromberg, Everywhere differentiable, nowhere monotone, functions, Amer. Math. Monthly, 81(4) (1974), 349-354.
[12] M. Koc and L. Zajíček, A joint generalization of Whitney's C^{1} extension theorem and Aversa-Laczkovich-Preiss' extension theorem, J. Math. Anal. Appl., 388 (2012), 1027-1039.
[13] S. Marcus, Sur les fonctions continues qui ne sont monotones en acun intervalle, Rev. Math. Pures Appl., 3 (1958), 101-105.
[14] S. Minakshisundaram, On the roots of a continuous non-differentiable function, J. Indian M. Soc., 4 (1940), 31-33.
[15] M. Morayne, On continuity of symmetric restrictions of Borel functions, Proc. Amer. Math. Soc, 93 (1985), 440-442.
[16] A. Olevskiǐ, Ulam-Zahorski problem on free interpolation by smooth functions, Trans. Amer. Math. Soc., 342(2) (1994), 713-727.
[17] K. Padmavally, On the roots of equation $f(x)=\xi$ where $f(x)$ is real and continuous in (a, b), but monotonic in no subinterval of (a, b), Proc. Amer. Math. Soc., 4 (1953), 839-841.
[18] D. Pompeiu, Sur les fonctions dérivées, Math. Ann., 63(3) (1907), 326332.
[19] F. Riesz, Sur un Thérème de Maximum de Mm. Hardy et Littlewood, J. Lond. Math. Soc., 7(1) (1932), 10-13.
[20] B. S. Thomson, J. B. Bruckner, and A. M. Bruckner, Elementary Real Analysis, 2008.
[21] S. Ulam, A Collection of Mathematical Problems, Interscience, New York, 1960.
[22] B. L. van der Waerden, Ein einfaches Beispiel einer nicht-differenzierbare Stetige Funktion, Math. Z., 32 (1930), 474-475.
[23] K. Weierstrass, Über continuirliche Funktionen eines reellen Arguments, die für keinen Werth des letzteren einen bestimmten Differentialquotienten besitzen, Gelesen Akad. Wiss. 18 Juli 1872; English translation: On continuous functions of a real argument that do not possess a well-defined derivative for any value of their argument, in: G.A. Edgar, Classics on Fractals, Addison-Wesley Publishing Company, 1993, 3-9.
[24] H. Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc., 36 (1934), 63-89.
[25] Z. Zahorski, Sur l'ensamble des points singuliére d'une fonction d'une variable réele admettand des dérivées des tous orders, Fund. Math., 34 (1947), 183-245.

[^0]: Mathematical Reviews subject classification: Primary: 26A24; Secondary: 26B05
 Key words: differentiation of partial functions, extension theorems, Whitney extension theorem

 Received by the editors June 28, 2017
 Communicated by: Paul Humke

[^1]: ${ }^{1}$ Of course this result follows immediately from Theorem 1 , as g from Theorem 1 is Lipschitz on any bounded interval. However, we are after a simpler proof of Theorem 1, so using it to argue for our step to prove it is pointless.

