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LIPSCHITZ RESTRICTIONS OF
CONTINUOUS FUNCTIONS AND A

SIMPLE CONSTRUCTION OF
ULAM-ZAHORSKI C1 INTERPOLATION

Abstract

We present a simple argument that for every continuous function
f : R → R its restriction to some perfect set is Lipschitz. We will use
this result to provide an elementary proof of the C1 free interpolation
theorem, that for every continuous function f : R → R there exists a
continuously differentiable function g : R → R which agrees with f on
an uncountable set. The key novelty of our presentation is that no
part of it, including the cited results, requires from the reader any prior
familiarity with the Lebesgue measure theory.

1 Introduction and background

The main result we like to discuss here is the following 1985 theorem of
Agronsky, Bruckner, Laczkovich, and Preiss [1]. It implies that every con-
tinuous function f : R → R must have some traces of differentiability, even
though there exist continuous functions f : R → R that are nowhere differ-
entiable (see e.g. [10, 22, 23]) or, even stronger, nowhere approximately and
I-approximately differentiable. In fact, the first coordinate of the classical
Peano curve (i.e., f1 : [0, 1] → [0, 1], where f = (f1, f2) : [0, 1] → [0, 1]2 is a
continuous surjection constructed by Peano) has these properties, see [6] or
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[7, Example 4.3.8]. Such a function cannot agree with a C1 function on a set
which is either of second category or of positive Lebesgue measure.

Theorem 1. For every continuous f : R→ R there is a continuously differen-
tiable function g : R→ R such that the set [f = g] = {x ∈ R : f(x) = g(x)} is
uncountable. In particular, [f = g] contains a perfect set P and the restriction
f � P is continuously differentiable.

In the statement of Theorem 1 the differentiability of h = f � P is un-
derstood as the existence of its derivative, that is, of the function h′ : P → R
defined, for every p ∈ P , as h′(p) = limx→p, x∈P

h(x)−h(p)
x−p .

The story behind Theorem 1 spreads over a big part of the 20th century
and is described in detail in [2] and [16]. Briefly, around 1940 S. Ulam asked,
in Scottish Book, Problem 17.1, see [21], whether every continuous f : R→ R
agrees with some real analytic function on an uncountable set. Z. Zahorski
showed, in his 1948 paper [25], that the answer is no: there exists a C∞

(i.e., infinitely many times differentiable) function which can agree with every
real analytic function on at most finite set of points. At the same paper
Zahorski stated a problem, refereed to as Ulam-Zahorski problem: does every
continuous f : R→ R agrees with some C∞ (or possibly Cn or Dn) function on
some uncountable set? Clearly, Theorem 1 shows that Ulam-Zahorski problem
has an affirmative answer for the C1 class of functions. This is the best possible
result in this direction, since A. Olevskǐı constructed, in his 1994 paper [16],
a continuous function which can agree with every C2 function on at most
countable set of points.

The format of our proof of Theorem 1 is relatively straightforward. First
we provide a simple argument that for every continuous function f : R → R
its restriction to some perfect set P ⊂ R is Lipschitz.1 Here the key case,
presented in Sec. 2, is when f is monotone. Then we will follow an argument
of Morayne [15] to show that there is a perfect Q ⊂ P for which f � Q
satisfies the assumptions of Whitney’s C1 extension theorem [24]. At this
point, to make the argument more accessible, we point the reader to a version
of Whitney’s C1 extension theorem from [4], whose proof is elementary and
simple.

1Of course this result follows immediately from Theorem 1, as g from Theorem 1 is
Lipschitz on any bounded interval. However, we are after a simpler proof of Theorem 1, so
using it to argue for our step to prove it is pointless.
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2 Lipschitz restrictions of monotone continuous maps

In what follows f will always be a continuous function from R into R, ∆ will
stand for the set {〈x, x〉 : x ∈ R}, and q : R2 \∆→ R be the quotient function

for f , that is, defined as q(x, y) = f(x)−f(y)
x−y . For Q ⊂ R we will use the symbol

q � Q2 to denote the restriction of q to the set Q2 \∆.

Theorem 2. Assume that f : R → R is monotone and continuous on a non-
trivial interval [a, b]. For every L > |q(a, b)| there exists a closed uncountable
set P ⊂ [a, b] such that f � P is Lipschitz with constant L.

The difficulty in proving Theorem 2 without measure theoretical tools
comes from the fact that there exist strictly increasing continuous functions
f : R→ R which posses finite or infinite derivative at every point, but that the
derivative of f is infinite on a dense Gδ-set. The first example of such function
was given by Pompeiu in [18]. More recent description of such functions can
be found in [20, sec. 9.7] and [5]. These examples show that a perfect set in
Theorem 2 should be nowhere sense. Thus we will use a measure theoretical
approach, in which the measure theoretical tools will be present only implicitly
or, as in case of Fact 5, given together with a simple proof.

We extract the proof of next theorem from the proof, presented in [8], of
a Lebesgue theorem that every monotone function f : R→ R is differentiable
almost everywhere.

Our proof of Theorem 2 is based on the following 1932 result of Riesz [19],
known as the rising sun lemma. For reader’s convenience we include its short
proof.

Lemma 3. If g is a continuous function from a non-trivial interval [a, b] into
R, then the set U = {x ∈ [a, b) : g(x) < g(y) for some y ∈ (x, b]} is open in
[a, b) and g(c) ≤ g(d) for every open connected component (c, d) of U .

Proof. It is clear that U is open in [a, b). To see the other part, let (c, d) be
a component of U . By continuity of g, it is enough to prove that g(p) ≤ g(d)
for every p ∈ (c, d). Assume by way of contradiction that g(d) < g(p) for some
p ∈ (c, d) and let x ∈ [p, b] be a point at which g � [p, b] achieves the maximum.
Then g(d) < g(p) ≤ g(x) and so we must have x ∈ [p, d) ⊂ U , as otherwise d
would belong to U . But x ∈ U contradicts the fact that g(x) ≥ g(y) for every
y ∈ (x, b].

Remark 4. In Lemma 3 we also have g(c) ≥ g(d), since c ∈ [a, b) \ U . But
we do not actually need this fact.
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For an interval I let `(I) be its length. We need the following simple
well-known observations.

Fact 5. Let a < b and J be a family of open intervals with
⋃
J ⊂ (a, b).

(i) If [α, β] ⊂
⋃
J , then

∑
I∈J `(I) > β − α.

(ii) If the intervals in J are pairwise disjoint, then
∑
I∈J `(I) ≤ b− a.

Proof. (i) By compactness of [α, β] we can assume that J is finite, say of
size n. Then (i) follows by an easy induction on n: if (c, d) = J ∈ J contains
β, then either c ≤ α, in which case (i) is obvious, or α < c and, by induction,∑
I∈J `(I) = `(J) +

∑
I∈J\{J} `(I) > `([c, β]) + `([α, c]) = β − α.

(ii) Once again, it is enough to show (ii) for finite J , say of size n, by
induction. Then, there is (c, d) = J ∈ J to the right of any I ∈ J \{J}. Hence,
by induction,

∑
I∈J `(I) = `(J)+

∑
I∈J\{J} `(I) ≤ (b−c)+(c−a) = b−a.

Proof of Theorem 2. If there exists a nontrivial interval [c, d] ⊂ [a, b] on
which f is constant, then clearly P = [c, d] is as needed. So, we can assume
that f is strictly monotone on [a, b]. Also, replacing f with −f , if necessary,
we can also assume that f is strictly increasing.

Fix L > |q(a, b)| = f(b)−f(a)
b−a and define g : R → R as g(t) = f(t) − Lt.

Then g(a) = f(a) − La > f(b) − Lb = g(b). Let m = sup{g(x) : x ∈ [a, b]}
and ā = sup{x ∈ [a, b] : g(x) = m}. Then f(ā) − Lā = g(ā) ≥ g(a) > g(b) =

f(b)− Lb, so a ≤ ā < b and we still have L > |q(ā, b)| = f(b)−f(ā)
b−ā . Moreover,

ā does not belong to the set

U = {x ∈ [ā, b) : g(y) > g(x) for some y ∈ (x, b]}

from Lemma 3 applied to g on [ā, b]. In particular, U is open in R and the
family J of all connected components of U contains only open intervals (c, d)
for which, by Lemma 3, g(c) ≤ g(d).

The set P = [ā, b] \ U ⊂ [a, b] is closed and for any x < y in P we have
f(y)− Ly = g(y) ≤ g(x) = f(x)− Lx, that is, |f(y)− f(x)| = f(y)− f(x) ≤
Ly − Lx = L|y − x|. In particular, f is Lipschitz on P with constant L. It is
enough to show that P is uncountable.

To see this notice that for every J = (c, d) ∈ J we have f(d)−Ld = g(d) ≥
g(c) = f(c)−Lc, that is, `(f [J ]) = f(d)− f(c) ≥ L(d− c) = L`(J). Since the
intervals in the family J ∗ = {f [J ] : J ∈ J } are pairwise disjoint and contained
in the interval (f(ā), f(b)), by Fact 5(ii) we have

∑
J∗∈J ∗ `(J∗) ≤ f(b)−f(ā).

So,
∑
J∈J `(J) ≤ 1

L

∑
J∈J `(f [J ]) = 1

L

∑
J∗∈J ∗ `(J∗) ≤ f(b)−f(ā)

L < b − ā.
Thus, by Fact 5(i), P = [ā, b] \ U = [ā, b] \

⋃
J 6= ∅. However, we need more,
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that P cannot be contained in any countable set, say {xn : n ∈ N}. To see

this, fix δ > 0 such that f(b)−f(ā)
L + δ < b − ā, for every n ∈ N choose an

interval (cn, dn) 3 xn of length 2−nδ, and put Ĵ = J ∪ {(cn, dn) : n < ω}.
Then ∑

J∈Ĵ

`(J) =
∑
J∈J

`(J) +
∑
n∈N

`((cn, dn)) ≤ f(b)− f(ā)

L
+ δ < β − α

so, by Fact 5(i), U ∪
⋃
n∈N(cn, dn) ⊃ U ∪ {xn : n ∈ N} does not contain [ā, b].

In other words, P = [ā, b] \ U is uncountable, as needed.

Remark 6. A presented proof of Theorem 2 actually gives a stronger result,
that the set [a, b] \ P can have arbitrary small Lebesgue measure.

3 Perfect set on which the difference quotient map is
uniformly continuous

The next proposition is a version of a theorem of Morayne [15], which implies
that the conclusion of Proposition 7 holds when f , defined on a perfect subset
of R, is Lipschitz (i.e., the quotient map for such f has bounded range). The
key innovation in Proposition 7 is that we prove this result without assuming
that f , or some restriction of it, is Lipschitz.

Proposition 7. For every continuous f : R→ R there exists a perfect set Q ⊂
R such that the quotient map q � Q2 is bounded and uniformly continuous.

Proof. If f is monotone on some non-trivial interval [a, b], then, by Theo-
rem 2, there exists a perfect set P ⊂ R such that f � P is Lipschitz. Thus, by
Morayne’s theorem applied to f � P , there exists a perfect Q ⊂ P for which
the quotient map q is as needed. On the other hand, if f is monotone on no
non-trivial interval, then, by a 1953 theorem of Padmavally [17] (compare also
[14, 13, 9]) there exists a perfect set Q ⊂ R on which f is constant. Of course,
the quotient map on such Q is as desired.

4 The main result

The following theorem is a restatement of Theorem 1 in a slightly different
language.

Theorem 8. For every continuous function f : R → R there exists a perfect
set Q ⊂ R such that f � Q can be extended to C1 function F : R→ R.
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Let Q ⊂ R be as Proposition 7. It is well known, see e.g. [12], that
uniform continuity of q � Q2 implies that the assumptions of the Whitney’s
C1 extension theorem (see [24]) are satisfied, that is, f � Q has a desired C1

extension F : R → R. The problem with the citation [12], and many other
papers containing needed extension result, is that the proofs presented there
can hardly be considered simple. Thus, we like conclude the extendability of
f � Q, having uniformly continuous q � Q2, to C1 extension F : R → R from
the following recent result of Ciesielska and Ciesielski [4] which has simple
elementary proof.

For a bounded open interval J let IJ be the closed middle third of J and
for a perfect set Q ⊂ R let

Q̂ = Q ∪
⋃
{IJ : J is a bounded connected component of R \Q}.

Proposition 9. [4] Let f : Q → R, where Q is a perfect subset of R, and

put f̂ = f̄ � Q̂, where f̄ : R → R is a linear interpolation of f � Q. If f � Q
is differentiable, then there exists a differentiable extension F : R → R of f̂ .
Moreover, F is C1 if, and only if, f̂ is continuously differentiable.

Proof of Theorem 8. If Q ⊂ R is from Proposition 7, then q � Q2, defined
on Q2 \∆, can be extended to uniformly continuous q̄ on Q2 and f : Q → R
is continuously differentiable with (f � Q)′(x) = q̄(x, x) for every x ∈ Q.

By Proposition 9, f̂ is differentiable (as a restriction of differentiable F ). In

particular, f̂ ′(x) = F ′(x) = (f � Q)′(x) for every x ∈ Q and f̂ ′(x) = q̄(c, d)
whenever x ∈ IJ , where J = (c, d) is a bounded connected component of R\Q.

By Proposition 9, we need to show that f̂ ′ is continuous. Clearly f̂ ′ is
continuous on Q̂ \Q, as it is locally constant on this set. So, let x ∈ Q and let

ε > 0. We need to find an open U containing x such that |f̂ ′(x) − f̂ ′(y)| < ε
whenever y ∈ Q̂ ∩ U . Since q̄ is continuous, there exists an open V ∈ R2

containing 〈x, x〉 such that |f̂ ′(x)− q̄(y, z)| = |q̄(x, x)− q̄(y, z)| < ε whenever
〈y, z〉 ∈ Q2 ∩ V . Let U0 be open interval containing x such that U2

0 ⊂ V and
let U ⊂ U0 be an open set containing x such that: if U ∩ IJ 6= ∅ for some
bounded connected component J = (c, d) of R \Q, then c, d ∈ U0. We claim
that U is as needed. Indeed, let y ∈ Q̂ ∩ U . If y ∈ Q, then 〈y, y〉 ∈ U2 ⊂ V

and |f̂ ′(x)− f̂ ′(y)| = |q̄(x, x)− q̄(y, y)| < ε. Also, if y ∈ IJ for some bounded
connected component J = (c, d) of R \ Q, then 〈c, d〉 ∈ U2

0 ⊂ V and, once

again, |f̂ ′(x)− f̂ ′(y)| = |q̄(x, x)− q̄(c, d)| < ε.
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