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CHOQUET INTEGRAL IN CAPACITY

Abstract

In this paper we introduce and study the new concept of Choquet
integral in capacity, which generalizes the Riemann integral in probabil-
ity and the classical Choquet integral. Properties of this new integral
are proved and some applications are presented.

1 Introduction

Let (E,B, P ) be a field of probability, where E is a nonempty set, B is a field
of subsets of E and P is a composite probability on B. Let us denote by
L(E,B, P ), the space of all real random variables (also called the space of all
real stochastic processes) defined on E and a.e. P -finite.

The stochastic modelling of various processes, in, e.g., nature, economy
and finance, naturally imposes the study of functions with values in the space
L(E,B, P ).

It is well-known the fact that the classical Choquet integral defined for
real-valued functions, has many applications in statistics, economic decisions,
finance, cooperative game theory, image processing and computer vision, pat-
tern recognition (see, e.g., Chapter 15 in [9] and Preface in [3]) or in potential
theory (see, e.g., [1]). In this context, the extension of the classical Choquet
integral to functions with values of real random variables, can present an in-
terest for possible stochastic approaches of these applications (for example, a
stochastic potential theory).

Let us recall the following concept of integral which generalizes the concept
of classical Riemann integral, introduced and studied in [8], p. 50.
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Definition 1. Let a, b ∈ R, a < b. The random function f : [a, b] →
L(E,B, P ) is called Riemann integrable in probability on [a, b], if there ex-
ists a random variable I = I(ω) ∈ L(E,B, P ) with the following property:
for all ε > 0, η > 0, there exists δ = δ(ε, η) > 0, such that for all divisions
d : a = x0 < x1 < ... < xn = b with the norm ν(d) < δ and all ξi ∈ [xi, xi+1],
i ∈ {0, ..., n− 1}, we have

P ({ω ∈ E; |S(f ; d, ξi)(ω)− I(ω)| ≥ ε}) < η,

where ν(d) = max{xi+1 − xi; i = 0, 1, ..., n− 1} and

S(f ; d, ξi)(ω) =

n−1∑
i=0

f(ξi, ω)(xi+1 − xi).

In this case, I(ω) is called the Riemann integral in probability of f on [a, b]

and it is denoted by I(ω) = (P )
∫ b
a
f(t, ω)dt.

Remark 1. By using the method in, e.g., [5], [7], in [4] we have introduced
and studied the concept of Kurzweil-Henstock integral in probability, which gen-
eralizes both the classical Kurzweil-Henstock integral and the above Riemann
integral in probability.

The main purpose of the present paper is to generalize the concept in
Definition 1 to the case of Choquet integral in capacity. Some properties are
proved. The new integral generalizes simultaneously the integral in probability
and the classical Choquet integral.

Section 2 contains preliminaries on capacities and on the classical Choquet
integral. In Section 3 we introduce the concept of the new integral and in
Section 4 we obtain some of its basic properties. At the end, we present some
applications of this new integral.

2 Classical Choquet integral

The aim of this section is to present known concepts and results on the Choquet
integral which are used in the next sections.

Definition 2. Let (Ω, C) be a measurable space, i.e. Ω is a nonempty set and
C is a σ-algebra of subsets in Ω.

(i) (see e.g. [9], p. 63) The set function ν : C → [0,+∞) is called a mono-
tone set function, or a capacity, if ν(∅) = 0 and A,B ∈ C, with A ⊂ B,
implies ν(A) ≤ ν(B). If ν(Ω) = 1, then ν is called normalized.
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(ii) (see [2], or [9], p. 233) Let ν be a normalized, monotone set function
defined on C. Recall that f : Ω→ R is called C-measurable if for any B,
Borelian subset in R, we have f−1(B) ∈ C.

If f : Ω → R is C-measurable, then the Choquet integral of f on A ∈ C,
with respect to the capacity ν is defined by

(C)

∫
A

fdν =

∫ +∞

0

ν(Fα(f)
⋂
A)dα+

∫ 0

−∞
[ν(Fα(f)

⋂
A)− ν(A)]dα,

where Fα(f) = {ω ∈ Ω; f(ω) ≥ α}. If (C)
∫
A
fdν < +∞ then f is called

Choquet integrable on A. Note that if f ≥ 0 on A, then the integral
∫ 0

−∞
in the above formula becomes equal to zero.

When ν is countably additive, then the Choquet integral (C)
∫
A
Xdν re-

duces to the Lebesgue type integral with respect to ν.

(iii) Given (Ω, C) a measurable space and ν : C → R+ a capacity on C, we
denote by C(Ω, C, ν) the space of all C-measurable functions g : Ω → R,
ν-a.e. finite, that is ν({ω ∈ Ω; |g(ω)| = +∞}) = 0.

(iv) f, g : Ω→ R are called comonotonic, if

[f(ω1)− f(ω2)] · [g(ω1)− g(ω2)] ≥ 0, for all ω1, ω2 ∈ Ω.

Let, e.g., Ω ⊂ R. It easily follows that if both f, g are nondecreasing func-
tions or both nonincreasing functions, then f and g are comonotonic functions.

In what follows, we list some known properties.

Remark 2. Let us suppose that ν is a monotone set function. Then, we have:

(i) For any a ≥ 0, we have (C)
∫
A
afdν = a · (C)

∫
A
fdν (see, e.g., [3], p.

64, Proposition 5.1, (ii)).

(ii) If f ≤ g on A then (C)
∫
A
fdν ≤ (C)

∫
A
gdν (see, e.g., [9]).

(iii) If f ≥ 0 and ν is subadditive, then by definition it is immediate that

(C)

∫
A

⋃
B

fdν ≤ (C)

∫
A

fdν + (C)

∫
B

fdν.

(iv) If f, g : Ω→ R+ are comonotonic, then

(C)

∫
Ω

[f(ω) + g(ω)]dν(ω) = (C)

∫
Ω

f(ω)dν(ω) + (C)

∫
Ω

g(ω)dν(ω),

(see e.g. [3], p. 82, Corollary 6.7).
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(v) Simple concrete examples of monotone and subadditive set functions ν,
can be obtained from a probability measure M , by the formula ν(A) =
γ(M(A)), where γ : [0, 1]→ [0, 1] is an increasing and concave function,
with γ(0) = 0, γ(1) = 1 (see, e.g., [3], pp. 16-17, Example 2.1).

3 Choquet integral in capacity

Analysing Definition 2, (ii), it is clear that the Choquet integral is an improper
Riemann-kind integral and could be equivalently expressed as follows.

Definition 3. Let (Λ,B, ν) be with (Λ,B) a measurable space and ν : B → R+

a capacity.
For ϕ : Λ→ R, B-measurable and A ∈ B, denote

FA,ν(ϕ)(t) = ν({λ ∈ Λ
⋂
A;ϕ(λ) ≥ t}),

which is a nonincreasing function of t ∈ R.
We say that ϕ is Choquet ν-integrable on A, if there exist finite the limits

L1 = lim
k→∞

(R)

∫ k

0

FA,ν(ϕ)(t)dt,

L2 = lim
k→∞

(R)

∫ 0

−k
[FA,ν(ϕ)(t)− ν(A)]dt.

In this case, by definition, we take (C)
∫
A
ϕ(t)dν(t) = L1 + L2.

Let us observe that if the Riemann integrals above are replaced by Kurz-
weil-Henstock integrals, then we don’t get a more general concept. Indeed, as
function of t, FA,ν(ϕ)(t) is nonincreasing and therefore is Riemann integrable
on any compact subinterval of R.

The Choquet integral in Definition 3 however can be generalized in the
spirit of Definition 1, as follows :

Definition 4. Let (Λ,B), (Ω, C) be two measurable spaces and ν : B → R+,
µ : C → R+ two capacities with the additional properties that ν is normalized
and µ is countably subadditive.

Given a property P on Ω, everywhere in this paper we will say that P
holds µ-a.e. on Ω if µ({ω ∈ Ω;P(ω) does not hold }) = 0. Note that the
subadditivity of µ implies that µ({ω ∈ Ω;P(ω) holds }) = µ(Ω).

Now, for f : Λ→ C(Ω, C, µ) and A ∈ B, let us define

FA,ν(f)(t, ω) = ν({λ ∈ Λ
⋂
A; f(λ, ω) ≥ t}),
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for all t ∈ R and ω ∈ Ω.
We say that f is Choquet ν-integrable on A ∈ B in the capacity µ, if

for any k > 0, there exist finite the (µ) integrals of the type in Definition

1 (with P replaced by µ), i.e., I
(1)
k (ω) =(µ)

∫ k
0
FA,ν(f)(t, ω)dt and I

(2)
k (ω) =

(µ)
∫ 0

−k[FA,ν(f)(t, ω)− ν(A)]dt, and the finite limits µ-a.e. ω ∈ Ω

I1(ω) = lim
k→∞

I
(1)
k (ω),

I2(ω) = lim
k→∞

I
(2)
k (ω).

In this case, I(ω) = I1(ω) + I2(ω) is called the Choquet ν-integral of f on A
in the capacity µ and it is denoted by

I(ω) = (C, µ)

∫
A

f(t, ω)dν(t).

Remark 3.

(i) If the above (µ) integrals on [0, k] and [−k, 0] are well defined, then the
(C,µ)

∫
A
f(t, ω)dν(t) integral is well defined. Indeed, by Theorem 2.2 in

[4], if P is a probability (i.e. countably additive), then the (P) integral
of f on [a, b] is well defined. Therefore, if I1(ω), I2(ω) are integrals in
probability P of f on [a, b], then P ({ω ∈ E; I1(ω) 6= I2(ω)}) = 0. But
analysing the proof of Theorem 2.2 mentioned above, it is easily seen that
the monotonicity and the countably subadditivity of P are enough for its
validity (see the last part of the proof, where with the notations used
there, in fact we have P (An) = 0 for all n ∈ N.) Therefore, we conclude
that the (C,µ)

∫
A
f(t, ω)dν(t) integral in Definition 4 is well defined.

(ii) The Choquet ν-integral on A ∈ B in the capacity µ in Definition 4,
generalizes both integrals in Definition 1 and in Definition 3. Indeed, if
f(t, ω) = f(t), for all t ∈ Λ and ω ∈ Ω, then the (C, µ)

∫
A
f(t, ω)dν(t)

integral one reduces to the classical Choquet integral (C)
∫
A
f(t)dν(t) in

Definition 3. Also, if µ and ν are both normalized and countably additive,
then the (C, µ)

∫
A
f(t, ω)dν(t) integral becomes, in essence, the integral

in probability in Definition 1.

(iii) Let us consider that ν is normalized and µ is countably subadditive and
continuous by decreasing sequences of sets, that is E1 ⊇ E2 ⊇ ... ⊇
En ⊇ .... and µ(E1) <∞, implies limn→∞ µ(En) = µ(

⋂∞
n=1En). If f is

Choquet ν integrable in the capacity µ, then for all ω ∈ Ω we have

(C, µ)

∫
A

f(t, ω)dν(t) = (C)

∫
A

f(t, ω)dν(t).
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Indeed, let k > 0 be fixed, arbitrary. Since FA,ν(f)(t, ω) is bounded and
nondecreasing as function of t ∈ [−k, 0] and t ∈ [0, k], for all ω ∈ Ω,
there exists finite the Riemann integrals∫ 0

−k
[FA,ν(f)(t, ω)− ν(A)]dt and

∫ k

0

FA,ν(f)(t, ω)dt.

Let us consider a sequence (dn)n of divisions of [0, k] with the norm
tending to zero. It follows that if n→∞, then for the integral sums we

have limn→∞ S(FA,ν(f); dn, ξi)(ω) →
∫ k

0
FA,ν(f)(t, ω)dt, pointwise for

all ω ∈ Ω. A similar relationship holds if we make the above consider-
ations on the interval [−k, 0]. Now, since µ is continuous from above,
by Theorem 7.9, p. 159 in [9], it follows that the corresponding inte-

gral sums converge in the ”measure” µ to
∫ 0

−k[FA,ν(f)(t, ω) − ν(A)]dt

and
∫ k

0
FA,ν(f)(t, ω)dt, respectively. This immediately implies that for

all ω ∈ Ω we have

(C, µ)

∫
A

f(t, ω)dν(t)

=

∫ 0

−∞
[FA,ν(f)(t, ω)− ν(A)]dt+

∫ +∞

0

FA,ν(f)(t, ω)dt

= (C, ν)

∫
A

f(t, ω)dt.

4 Properties of the (C, µ)-integral

In this section, we will prove some properties of the (C, µ) integral in capacity.
The first result is the following.

Theorem 1. Let (Λ,B), (Ω, C) be two measurable spaces, ν : B → R+ a
normalized capacity, µ : C → R+ a countably subadditive capacity and let
f, g : Λ→ C(Ω, C, µ) be Choquet ν-integrable on A ∈ B in the capacity µ.

(i) If f(λ, ω) ≤ g(λ, ω) for all λ ∈ Λ and µ-a.e. ω ∈ Ω, then

(C, µ)

∫
A

f(λ, ω)dν(λ) ≤ (C, µ)

∫
A

g(λ, ω)dν(λ), µ− a.e. ω ∈ Ω.

(ii) If a ≥ 0, then µ - a.e. ω ∈ Ω, we have

(C, µ)

∫
A

a · f(λ, ω)dν(λ) = a · (C, µ)

∫
A

f(λ, ω)dν(λ).
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(iii) Suppose, in addition, that ν is finitely subadditive. Then µ-a.e. ω ∈ Ω

(C, µ)

∫
A

[f(λ, ω) + g(λ, ω)]dν(λ)

≤ 2 ·
{

(C, µ)

∫
A

f(λ, ω)dν(λ) + (C, µ)

∫
A

g(λ, ω)dν(λ)

}
.

Moreover, if in addition, f(λ, ω), g(λ, ω) ≥ 0, for all λ ∈ Λ, µ-a.e. ω ∈ Ω
and {λ ∈ Λ; f(λ, ω) > 0}

⋂
{λ ∈ Λ; g(λ, ω) > 0} = ∅, µ-a.e. ω ∈ Ω, then

(C, µ)

∫
A

[f(λ, ω) + g(λ, ω)]dν(λ)

≤ (C, µ)

∫
A

f(λ, ω)dν(λ) + (C, µ)

∫
A

g(λ, ω)dν(λ),

µ-a.e. ω ∈ Ω.

(iv) For any constant c > 0 such that f(λ, ω) + c ≥ 0, for all λ ∈ Λ, µ-a.e.
ω ∈ Ω, we have

(C, µ)

∫
A

[f(λ, ω) + c]dν(λ) = (C, µ)

∫
A

f(λ, ω)dν(λ) + c · ν(A),

µ-a.e. ω ∈ Ω.

Proof. (i) With the notations in Definition 4, the monotonicity of ν imme-
diately implies FA,ν(f)(t, ω) ≤ FA,ν(g)(t, ω), for all t ∈ Λ, µ-a.e. ω ∈ Ω.
Then, with the notations for the integral sum and for the division in
Definition 1, we immediately get

S1(FA,ν(f); d(1), ξi)(ω) ≤ S1(FA,ν(g); d(1), ξi)(ω),

and

S2(FA,ν(f)− ν(A); d(2), ζi)(ω) ≤ S2(FA,ν(g)− ν(A); d(2), ζi)(ω),

µ-a.e. ω ∈ Ω. Here recall that d(1) represents a division of [0, k] and d(2)

represents a division of [−k, 0].

Let us fix k ∈ N, arbitrary and let us consider the divisions d(1)(n) (of
[0, k]) and d(2)(n) (of [−k, 0]), n ∈ N, with the norms tending to zero
and their corresponding intermediary points denoted by ξi,n and ζi,n,
respectively.
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According to Definition 4 (and Definition 1), we have the following con-
vergences (for n→∞) in the monotone and countable subadditive ”mea-
sure”, µ:

S1(FA,ν(f); d(1)(n), ξi,n)(ω)
µ→ I

(1)
k (ω)(f),

S1(FA,ν(g); d(1)(n), ξi,n)(ω)
µ→ I

(1)
k (ω)(g),

S2(FA,ν(f)− ν(A); d(2)(n), ζi,n)(ω)
µ→ I

(2)
k (ω)(f),

S2(FA,ν(g)− ν(A); d(2)(n), ζi,n)(ω)
µ→ I

(2)
k (ω)(g).

But since the Borel-Cantelli Lemma holds for µ monotone and countably
subadditive (see, e.g., the proof in [6], p. 111) and reasoning exactly as
in the proof of Theorem, page 112 in [6], it follows the Riesz’s result for µ
too, that is S1(FA,ν(f); d(1)(n), ξi,n)(ω), n ∈ N, contains a subsequence,

pointwise convergent to I
(1)
k (ω)(f), µ-a.e. ω ∈ Ω. Then, since for the

sequence of divisions corresponding to this subsequence, we also have

S1(FA,ν(g); ·, ·)(ω)
µ→ I

(1)
k (ω)(g),

this immediately implies that for each k ∈ N, there is a set A
(1)
k with

µ(A
(1)
k ) = 0, such that I

(1)
k (ω)(f) ≤ I

(1)
k (ω)(g), for all ω ∈ Ω \ A(1)

k .

Then, for A(1) =
⋃∞
k=1A

(1)
k , we get 0 ≤ µ(A(1)) ≤

∑∞
k=1 µ(A

(1)
k ) = 0

and for all ω ∈ Ω \A(1) we have I1(ω)(f) ≤ I1(ω)(g).

Since for S2(FA,ν(f)− ν(A); d(2), ζi)(ω), S2(FA,ν(g)− ν(A); d(2), ζi)(ω),
similar results hold, this finally leads to the first inequality in the state-
ment.

(ii) For a = 0, the equality in the statement is trivial. Let us suppose that
a > 0. We immediately can write

S1(FA,ν(a·f); d(1), ξi)(ω) = a·
n−1∑
i=0

FA,ν(f)(d(1)/a, ξi/a)(ω)(xi+1/a−xi/a),

where d(1)/a denotes a corresponding division of [0, k/a]. Since k > 0 is
arbitrary, by applying Definition 4 we easily get that for any sequence
of divisions (d(1)(n))n with the norms tending to zero, we have that

n−1∑
i=0

FA,ν(f)(d(1)/a, ξi/a)(ω)(xi+1/a− xi/a)
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converges in the ”measure” µ to I
(1)
k/a(ω). Since limk→∞ I

(1)
k/a = I1(ω),

applying similar reasonings for I2(ω), we easily arrive at the desired
formula.

(iii) For the first part of (iii), it easily follows

{λ ∈ Λ ∩A; f(λ, ω) + g(λ, ω) ≥ t}

⊂ {λ ∈ Λ ∩A; f(λ, ω) ≥ t/2}
⋃
{λ ∈ Λ ∩A; g(λ, ω) ≥ t/2}.

Applying ν, we get FA,ν(f+g)(t, ω) ≤ FA,ν(f)(t/2, ω)+FA,ν(g)(t/2, ω).
Now, for a division d(1) of [0, k], of norm < δε,η,k, we obtain

S1(FA,ν(f + g); d(1), ξi)(ω) ≤ S1(FA,ν(f); d(1), ξi/2)(ω)

+S1(FA,ν(g); d(1), ξi/2)(ω)

= 2[S1(FA,ν(f); d(1)/2, ξi/2)(ω)

+S1(FA,ν(g); d(1)/2, ξi/2)(ω)],

where d(1)/2 denotes a division of the interval [0, k/2], of norm value of
< δε,η,k(ξ/2). Therefore, the hypothesis in Definition 4 for f and g are

fulfilled, with I
(1)
k replaced there by I

(1)
k/2. Since k > 0 is arbitrary and

I
(1)
k/2(ω) converges, as k → ∞, to I1(ω), µ-a.e. ω ∈ Ω, reasoning exactly

as at the above point (i), we immediately obtain that I1(ω)(f + g) ≤
2[I1(ω)(f) + I1(ω)(g)].

A similar inequality holds for I2(ω) too, which leads to the required
inequality.

For the second part of (iii), from the hypothesis on f and g and on ν,
we easily get

{λ ∈ Λ ∩A; f(λ, ω) + g(λ, ω) ≥ t}

⊂ {λ ∈ Λ ∩A; f(λ, ω) ≥ t}
⋃
{λ ∈ Λ ∩A; g(λ, ω) ≥ t}.

Consequently,

FA,ν(f + g)(t, ω) = ν({λ ∈ Λ ∩A; f(λ, ω) + g(λ, ω) ≥ t})
≤ FA,ν(f)(t, ω) + FA,ν(g)(t, ω),

S1(FA,ν(f + g); d(1), ξi)(ω)

≤ S1(FA,ν(f); d(1), ξi)(ω) + S1(FA,ν(g); d(1), ξi)(ω).
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Since a similar inequality holds in the case of S2(FA,ν(f + g) − ν(A);
d(2), ζi)(ω), we immediately get the required conclusion.

(iv) For k > 0, let us consider d(1) a division of [0, k] such that c is an interior
point of that division, that is there is i0 ∈ {1, ..., n−2} such that xi0 = c.
We can write

S1(FA,ν(f + c); d(1), ξi)(ω)

=

i0−1∑
i=0

ν({λ ∈ Λ
⋂
A; f(λ, ω) ≥ ξi − c})(xi+1 − xi)

+

n−1∑
i=i0

ν({λ ∈ Λ
⋂
A; f(λ, ω) ≥ ξi − c})[(xi+1 − c)− (xi − c)]

= ν(A) · c+ S1(FA,ν(f); d̃(1), ξi)(ω),

where d̃(1) is a division of [0, k−c], consisting in n− i0 points and having
the same norm with d(1). Since a similar formula holds for S2(FA,ν(f +
c) − ν(A); d(2), ζi)(ω), taking into account Definition 4, from this point
the required equality is immediate.

Also, we have:

Theorem 2. Let (Λ,B), (Ω, C) be two measurable spaces, ν : B → R+ a
normalized capacity, µ : C → R+ a countably subadditive capacity, continuous
by decreasing sequences of sets (that is, if Am+1 ⊂ Am for all m ∈ N, then
limm→∞ µ(Am) = µ(M), where M =

⋂∞
m=1Am).

If α ∈ C(Ω, C, µ) satisfies α(ω) > 0, µ-a.e. on Ω and g : Λ→ R is Choquet
ν- integrable on A ∈ B, then f(λ, ω) = g(λ) · α(ω) is Choquet ν-integrable on
A in the capacity µ and we have

(C, µ)

∫
A

f(t, ω)dν(t) = α(ω) · (C)

∫
A

g(t)dν(t).

Proof. Denoting H = {ω ∈ Ω;α(ω) > 0}, by hypothesis and by the mono-
tonicity and subadditivity of µ we easily get that µ(H) = µ(Ω).

Let us keep the notations in Definitions 1 and 4. If d(1) is the division

0 = x0 < ... < xn = k with ξi ∈ [xi, xi+1], xi+1 − xi < δ
(1)
ε,η,k, i = 0, ..., n − 1,

and if d(2) is the division −k = y0 < ... < yn = 0 with ζi ∈ [yi, yi+1],

yi+1 − yi < δ
(2)
ε,η,k, i = 0, ..., n− 1, then it is easy to see that for any ω ∈ H we
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have:

S1(FA,ν(f); d(1), ξi)(ω)

= α(ω) ·
n−1∑
i=0

ν

({
λ ∈ Λ

⋂
A; g(λ) >

ξi
α(ω)

})
·
(
xi+1

α(ω)
− xi
α(ω)

)
= α(ω) · S1(FA,ν(g); d(1)/α(ω), ξi/α(ω)),

where
d(1)/α(ω) : 0 = x0/α(ω) < ... < xn/α(ω) = k/α(ω),

ξi/α(ω) ∈ [xi/α(ω), xi+1/α(ω)]

with xi+1/α(ω)− xi/α(ω) < δ
(1)
ε,η,k/α(ω), i = 0, ..., n− 1.

Analogously, for any ω ∈ H we have

S2(FA,ν(f)− ν(A); d(2), ζi)(ω)

= α(ω) ·
n−1∑
i=0

[
ν

({
λ ∈ Λ

⋂
A; g(λ) >

ζi
α(ω)

})
− ν(A)

]
·
(
yi+1

α(ω)
− yi
α(ω)

)
= α(ω) · S2(FA,ν(g)− ν(A); d(2)/α(ω), ζi/α(ω)),

where

d(2)/α(ω) : −k/α(ω) = y0/α(ω) < ... < yn/α(ω) = 0/α(ω),

ζi/α(ω) ∈ [yi/α(ω), yi+1/α(ω)],

with yi+1/α(ω)− yi/α(ω) < δ
(2)
ε,η,k(ζi)/α(ω), i = 0, ..., n− 1.

Let us denote I = (C)
∫
A
g(t)dν(t) = I1 + I2, where I1 = limk→+∞ I

(1)
k ,

I2 = limk→+∞ I
(2)
k and Am = {ω ∈ Ω; |α(ω)| ≥ m}. Obviously, Am+1 ⊂ Am,

m ∈ N. Denoting M =
⋂∞
m=1Am, since α ∈ C(Ω, C, µ) we get µ(M) = 0 and

by µ continuous by decreasing sequences of sets, it follows limm→∞ µ(Am) =
µ(M) = 0.

Consequently, if η > 0, there exists N(η) ∈ N, such tat for all m ∈ N,m ≥
N(η), we have

µ({ω ∈ H; |α(ω)| ≥ m}) < η.

For fixed m ≥ N(η), ω ∈ H, let us consider ε > 0, such that 1/ε ≥ m.
Consider ε2 > 0. Because g is Choquet ν-integrable on A (see Definitions

1 and 3), there exist δ
(1)
ε2,k/α(ω) > 0, δ

(2)
ε2,k/α(ω) > 0, such that for any division
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d(1)/α(ω) : 0 = x0/α(ω) < ... < xn/α(ω) = k/α(ω) of [0, k/α(ω)], ξi/α(ω) ∈
[xi/α(ω), xi+1/α(ω)], xi+1/α(ω)− xi/α(ω) < δ

(1)
ε2,k/α(ω), i = 0, ..., n− 1, and

any division d(2)/α(ω) : −k/α(ω) = y0/α(ω) < ... < yn/α(ω) = 0, ζi/ω(ω) ∈
[yi/α(ω), yi+1/α(ω)] and

yi+1/α(ω)− yi/α(ω) < δ
(2)
ε2,k/α(ω), i = 0, ..., n− 1,

we have
|S1(FA,ν(g); d(1)/α(ω), ξi/α(ω))− I(1)

k | < ε2,

|S2(FA,ν(g)− ν(A); d(2)/α(ω), ζi/α(ω))− I(2)
k | < ε2,

where FA,ν(g)(t) = ν({λ ∈ Λ
⋂
A; g(λ) ≥ t}).

We have

{ω ∈ Ω; |S1(FA,ν(f); d(1), ξi)(ω)− α(ω) · I(1)
k | ≥ ε}

= {ω ∈ Ω; |α(ω)| · |S1(FA,ν(g); d(1)/α(ω), ξ/α(ω))− I(1)
k | ≥ ε}

⊂ {ω ∈ Ω; |α(ω)| ≥ 1/ε} ⊂ {ω ∈ Ω; |α(ω)| ≥ m},

i.e. µ({ω ∈ Ω; |S1(FA,ν(f); d(1), ξi)(ω)−α(ω) · I(1)
k | ≥ ε}) < η, for any division

d(1) : 0 = x0 < ... < xn = k, ξi ∈ [xi, xi+1] with xi+1 − xi < δ
(1)
ε,η,k, i =

0, ..., n−1 (in fact, ε depends on m, which depends on η, therefore δε2 depends
on η too).

Analogously we get

µ({ω ∈ Ω; |S2(FA,ν(f)− ν(A); d(2), ζi)(ω)− α(ω) · I(2)
k | ≥ ε}) < η,

for any division d(2) : −k = y0 < ... < yn = 0, ζi ∈ [yi, yi+1] with yi+1 − yi <
δ

(2)
ε,η,k, i = 0, ..., n− 1.

Then, by Definition 4, f is Choquet ν-integrable on A in the capacity µ
and we have

(C, µ)

∫
A

f(t, ω)dν(t) = α(ω) · (C)

∫
A

g(t)dν(t),

which proves the theorem.

Remark 4. Since the Choquet integrability of a function g : [a, b]→ R is more
general than the Riemann integrability, Theorem 2 furnishes simple examples
of random functions which are integrable in the sense of Defintion 4, but which
are not integrable in the senses of Definitions 1 and 3.
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The following Fubini-type result holds.

Theorem 3. Let (Λ,B), (Ω, C) be two measurable spaces, ν : B → R+ a
normalized capacity, µ : C → R+ a countably subadditive capacity and let
f : Λ → C([a, b], C, µ) be Choquet ν-integrable on A ∈ B in the capacity µ,
with the property

0 ≤ f(λ, ω) ≤M, for all λ ∈ Λ, ω ∈ [a, b]. (1)

Suppose also that f(λ, ·) is nondecreasing on [a, b] for any λ ∈ Λ fixed (or
f(λ, ·) is nonincreasing on [a, b] for any λ ∈ Λ fixed). Then, with the notation
for FA,ν(f)(t, ω) in Definition 4, we have

(C)

∫
[a,b]

[
(C, µ)

∫
A

f(λ, ω)dν(λ)

]
dµ(ω)

= (R)

∫ ∞
0

[
(C)

∫
[a,b]

FA,ν(f)(t, ω)dµ(ω)

]
dt.

Proof. Let us denote I1(ω) = (C, µ)
∫
A
f(λ, ω)dν(λ), ω ∈ [a, b]. Since f is

Choquet ν-integrable on A ∈ B in the capacity µ, by (1) we get 0 ≤ I1(ω) ≤
M · ν(A) for all ω ∈ [a, b] and according to Definitions 1 and 4, there exists

a generalized sequence I
(1)
k ∈ C([a, b], C, µ), I

(1)
k (ω) ∈ R, ω ∈ [a, b], k > 0,

with limk→+∞ I
(1)
k = I1 ∈ C([a, b], C, µ), pointwise limit on the whole [a, b], in

addition satisfying :

for ε > 0, k > 0 and η = 1/m, m ∈ N, there exist δ
(1)
ε,m,k > 0, such that for

any division d
(1)
m : 0 = x

(m)
0 < ... < x

(m)
nm = k of [0, k], any ξ

(m)
i ∈ [x

(m)
i , x

(m)
i+1 ]

with x
(m)
i+1 − x

(m)
i < δ

(1)
ε,m,k, i = 0, ..., nm − 1, we have

µ({ω ∈ [a, b]; |S1(FA,ν(f); d(1)
m , ξ

(m)
i )(ω)− I(1)

k (ω)| ≥ ε}) < 1/m, m ∈ N.

This means that the divisions can be chosen such that for m→∞, we have

S1(FA,ν(f); d(1)
m , ξ

(m)
i )(ω)→ I

(1)
k (ω),

in the ”measure” µ on [a, b]. Moreover, reasoning exactly as in the proof of
Theorem 1, (i), the divisions can be chosen such that the above convergence

holds pointwise, µ-a.e. ω ∈ [a, b]. Since S1(FA,ν(f); d
(1)
m , ξ

(m)
i )(ω) ≥ 0 for all

ω ∈ [a, b], we get I
(1)
k (ω) ≥ 0, µ-a.e. ω ∈ [a, b]. Then, since by the monotonicity

hypothesis on f , it easily follows that as functions of ω, all FA,ν(f)(ξ
(m)
i , ω) are
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nondecreasing functions (or all FA,ν(f)(ξ
(m)
i , ω) are nonincreasing functions),

we easily get that S1(FA,ν(f); d
(1)
m , ξ

(m)
i )(ω) are monotonous functions of ω, of

the same monotonicity. This implies that all I
(1)
k (ω) are of the same mono-

tonicity as functions of ω and consequently, I1(ω) is of the same monotonicity
µ-a.e. ω ∈ [a, b].

On the other hand, for all m ∈ N and ω ∈ [a, b] we have

|S1(FA,ν(f); d(1)
m , ξ

(m)
i )(ω)| =

nm−1∑
i=0

FA,ν(f)(ξ
(m)
i , ω)(x

(m)
i+1 − x

(m)
i ) ≤ k.

Now, since µ is countably subadditive and monotone, it easily follows that
it is null-additive (that is, for E,F with E

⋂
F = ∅ and µ(F ) = 0 we get

µ(E
⋃
F ) = µ(E)) and by Theorem 11.10, p. 236 in [9], we immediately

obtain

(C)

∫
[a,b]

I
(1)
k (ω)dµ(ω) = lim

m→∞
(C)

∫
[a,b]

S1(FA,ν(f); d(1)
m , ξ

(m)
i )(ω)dµ(ω).

But, since as function of ω, all FA,ν(f)(ξ
(m)
i , ω) are nondecreasing functions

(or all FA,ν(f)(ξ
(m)
i , ω) are nonincreasing functions), by Remark 2, (iv) and

(i), we immediately obtain

(C)

∫
[a,b]

I
(1)
k (ω)dµ(ω)

= lim
m→∞

nm−1∑
i=0

[
(C)

∫
[a,b]

FA,ν(f)(ξ
(m)
i , ω)dµ(ω)

]
· (x(m)

i+1 − x
(m)
i )

= (R)

∫ k

0

[
(C)

∫
[a,b]

FA,ν(f)(t, ω)dµ(ω

]
dt.

By (1), it follows FA,ν(f)(t, ω) = 0, for all t > M , a.e. ω ∈ [a, b], which implies
that for a fixed N0 > M , we have

S1(FA,ν(f); d(1)
m , ξ

(m)
i )(ω) ≤

nm−1∑
i=0,x

(m)
i+1<N0

FA,ν(f)(ξ
(m)
i , ω)(x

(m)
i+1 − x

(m)
i )

≤
nm−1∑

i=0,x
(m)
i+1<N0

(x
(m)
i+1 − x

(m)
i ) ≤ N0.
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Since at the beginning we proved that for m → ∞, S1(F (f); )(ω) converges

pointwise to I
(1)
k (ω), this implies that for N0 > M and all k ∈ N, we get

|I(1)
k (ω)| = I

(1)
k (ω) ≤ N0, a.e. ω ∈ [a, b].

Now, since µ is countably subadditive and monotone, it is null-additive too (see
the previous lines in the proof) and by Theorem 11.10, p. 236, we immediately
obtain

lim
k→∞

(C)

∫
[a,b]

I
(1)
k (ω)dµ(ω) = (C)

∫
[a,b]

I1(ω)dµ(ω).

This implies

(R)

∫ ∞
0

[
(C)

∫
[a,b]

FA,ν(f)(t, ω)dµ(ω

]
dt

= lim
k→∞

(C)

∫
[a,b]

I
(1)
k (ω)dµ(ω)

= (C)

∫
[a,b]

I1(ω)dµ(ω)

= (C)

∫
[a,b]

[
(C, µ)

∫
A

f(λ, ω)dν(λ)

]
dµ(ω),

which proves the theorem.

Remark 5. It is clear that the concept of Choquet ν-integral in capacity µ and
its properties remain valid in the case when µ is countably subadditive and ν
is any normalized Choquet capacity of order k ≥ 2 defined as in [2].

Remark 6. According to Subsection 15.8, pp. 335-337 in [9], the classical
Choquet integral has applications in classification theory. Very briefly (see the
mentioned subsection for all the details), the classifying boundary is identified
by the equation

(C)

∫
A

[a+ bf(x)]dν(x) = c,

where a, b are vectors (of real constants), c is a real constant and f represents
a (deterministic) matrix of observation data.

But it is clear that we can similarly consider for study the more general
stochastic (non-deterministic) model for classification, when a, b are vector
random variables, c is a random variable and f is a matrix of nondeterministic
observation data, that is a = a(ω), b = b(ω), c = c(ω) and f = f(t, ω), with
ω ∈ Ω, t ∈ [α, β]. In this case, choosing another capacity µ supposed to be
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countably subadditive, the stochastic classifying boundary will be identified by
the equation

(C, µ)

∫
A

[a(ω) + b(ω)f(t, ω)]dν(t) = c(ω), µ− a.e. ω ∈ Ω.

Remark 7. According to Subsection 15.7, pp. 333-335 in [9], in a similar
way with classification theory, the classical Choquet integral has also applica-
tions in multiregression. Very briefly, with the notations in Remark 6, the
multiregression (deterministic) model can be written as

y = c+ (C, µ)

∫
A

[a+ bf(x)]dν(x) +N(0, σ2),

where N(0, σ2) is a normally distributed random variable with mean 0 and
variance σ2.

As in the above Remark 6, we can consider for study the more general
nondeterministic (stochastic) regression model

y(ω) = c(ω) + (C)

∫
A

[a(ω) + b(ω)f(t, ω))]dν(t) +N(0, σ2).

Remark 8. In the hypothesis and with the notations in Definition 4 and as
a generalization of the classical Fredholm integral equation, we can introduce
and study the following stochastic Fredholm-Choquet integral equation

ϕ(x, ω) = f(x, ω)+λ·(C, µ)

∫
Λ

K(x, s)ϕ(s, ω)dν(s), x ∈ Λ, µ−a.e. ω ∈ Ω. (2)

with the given data λ ∈ R, f : Λ → C(Ω, C, ν), K : Λ × Λ → R and the
unknown function ϕ : Λ→ C(Ω, C, ν).

Without to enter here into details, we mention that under the additional
hypothesis on ν to be submodular and continuous by increasing sequences and
on µ to be continuous by decreasing sequences (for these concepts see, e.g., [3],
p. 16), by using the classical fixed point theorem of Banach, we can deduce the
existence and uniqueness of the solution of equation (2) in various spaces and
under some suitable hypothesis on λ and K. This equation will be studied in
details elsewhere.
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Choquet Integral in Capacity 279

References

[1] D. R. Adams, Choquet integrals in potential theory, Publ. Mat., 42 (1998),
3–66.

[2] G. Choquet, Theory of capacities, Ann. Inst. Fourier (Grenoble), 5(1953–
1954), 131–292.

[3] D. Denneberg, Non-Additive Measure and Integral, Kluwer Academic
Publisher, Dordrecht, Boston, London, 2010.

[4] S. G. Gal, On the Kurzweil-Henstock integral in probability, Math. Rep.
(Bucur.), 47(3-4)(1995), 263–269.

[5] R. Henstock, Theory of Integration, Butterworths, London, 1963.

[6] B. Makarov and A. Podkorytov, Real Analysis : Measures, Integrals and
Applications, Universitext, Springer, New York, 2013.

[7] R. M. MacLeod, The Generalized Riemann Integral, Carus Mathematical
Monographs, The Mathematical Association of America, 1980.

[8] O. Onicescu, Gh. Cenusa and I. Sacuiu, Random Function Almost Peri-
odic in Probability (Romanian), Academic Press, Bucharest, 1983.

[9] S. Wang and G. J. Klir, Generalized Measure Theory, Springer, New York,
2009.



280 S. G. Gal


