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ON THE MINKOWSKI SUM OF TWO
CURVES

Abstract

We answer a question posed by Miklós Laczkovich in [1] on the
Minkowski sum of two curves.

Let A ⊂ R2 be a continuous curve from (0, 0) to (1, 0). Let B ⊂ R2 be a
continuous curve from (0, 0) to (0, 1). Let S = A+B = {a+ b : a ∈ A, b ∈ B}.
What is the minimum possible area (i.e., two dimensional Lebesgue measure)
of S? The answer is the following.

Proposition 1. The minimum possible area of S is 1.

Proof. We claim that ⋃
(m,n)∈Z2

(S + (m,n)) = R2. (1)

To prove (1), define A′ =
⋃

m∈Z(A + (m, 0)) and B′ =
⋃

n∈Z(B + (0, n)).
We need to show A′ + B′ = R2. Since A is a continuous curve from (0, 0)
to (1, 0), A′ is a continuous curve extending infinitely far in both horizontal
directions. Similarly, B′ is a continuous curve extending infinitely far in both
vertical directions. By the Jordan curve theorem (e.g., [2, Theorem 63.4]),
A′ +B′ = R2. And as Laczkovich remarked to me at the time, it is enough to
use the Jordan curve theorem for polygons. This completes the proof of (1).

By (1), it follows that the image of S under the quotient map R2 → R2/Z2

is surjective. Thus, S has area has at least 1.
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