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Abstract

The representation of a given quantity with less information is often
referred to as ‘quantization’ and it is an important subject in informa-
tion theory. In this paper, we have considered absolutely continuous
probability measures on unit discs, squares, and the real line. For these
probability measures the optimal sets of n-means and the nth quantiza-
tion errors are calculated for some positive integers n.

1 Introduction

Quantization is a nonlinear, zero-memory operation of converting a continuous
signal into a discrete signal that assumes only a finite number of levels. Quanti-
zation occurs whenever physical quantities are represented numerically. W.F.
Sheppard is the first person who studied a system of quantization (see [7]).
It has broad applications in signal processing, telecommunications, data com-
pression, image processing and cluster analysis. For some details and com-
prehensive lists of references one can see [2, 3, 6, 8]. Rigorous mathematical
treatment of the quantization theory is given in Graf-Luschgy’s book (see [4]).

The quantization of a probability distribution refers to the idea of esti-
mating a given probability by a discrete probability with a given number n of
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supporting points. Let P denote a Borel probability measure on Rd and let
‖ · ‖ denote the Euclidean norm on Rd for any d ≥ 1. The nth quantization
error for P (of order 2) is defined by

Vn := Vn(P ) = inf
{∫

min
a∈α
‖x− a‖2dP (x) : α ⊂ Rd, card(α) ≤ n

}
,

where the infimum is taken over all subsets α of Rd with card(α) ≤ n for
n ≥ 1. If

∫
‖x‖2dP (x) < ∞, then there is some set α for which the infimum

is achieved (see [4]). A set α for which the infimum is achieved, i.e., Vn =∫
mina∈α ‖x− a‖2dP (x), is called an optimal set of n-means. Elements of an

optimal set of n-means are called optimal quantizers. In some literature it is
also refereed to as principal points (see [5], and the references therein). For a
finite set α, the error

∫
mina∈α ‖x− a‖2dP (x) is often referred to as the cost

or distortion error for α, and is denoted by V (P ;α). Thus, Vn := Vn(P ) =
inf{V (P ;α) : α ⊂ Rd, card(α) ≤ n}. It is known that for a continuous
probability measure P an optimal set of n-means always has exactly n elements
(see [4]). In this paper, we consider both uniform and nonuniform continuous
probability distributions, i.e., the probability measures P considered in this
paper are absolutely continuous with respect to the Lebesgue measure λ, i.e.,
for any Borel subset B of Rd, we have P (B) =

∫
B
f(x)dλ(x), where f is the

density function, known as Radon-Nikodym derivative of P with respect to λ.
For a finite subset α of Rd the Voronoi region generated by an element a ∈ α
is the set of all elements in Rd which are nearest a, and is denoted by M(a|α),
i.e.,

M(a|α) = {x ∈ Rd : ‖x− a‖ = min
b∈α
‖x− b‖}.

The set {M(a|α) : a ∈ α} is called the Voronoi diagram or Voronoi tessellation
of Rd with respect to the set α. Let us now state the following proposition
(see [4, Section 4.1] and [2, Chapter 6 and Chapter 11]).

Proposition 1.1. Let α be an optimal set of n-means for a Borel probability
measure P on Rd. Let a ∈ α, and M(a|α) be the Voronoi region generated by
a ∈ α. Then, for every a ∈ α, (i) P (M(a|α)) > 0, (ii) P (∂M(a|α)) = 0, (iii)
a = E(X : X ∈ M(a|α)), and (iv) P -almost surely the set {M(a|α) : a ∈ α}
forms a Voronoi partition of Rd.

Remark 1.2. With respect to a uniform distribution defined on a region with
uniform density, the points in an optimal set are the mass centers, also known
as centroids, of their own Voronoi regions.

In [1], Dettmann and Roychowdhury considered a uniform distribution on
an equilateral triangle, and investigated the optimal sets of n-means and the
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nth quantization errors for this distribution for all n ≥ 1. They first showed
that the Voronoi regions generated by the two points in an optimal set of
two-means partition the equilateral triangle into an isosceles trapezoid and an
equilateral triangle in the Golden ratio. Then, by mathematical calculation
they determined the optimal sets of three- and four-means. As the number of
points increases, so does the number of algebraic equations to be solved. So,
they applied a numerical search algorithm that makes random shifts to the
point locations, accepting better configurations, and gradually decreasing the
shift amplitude in the absence of improvement. They presented the results of
this numerical search for n ≤ 21 points and gave conjectures about the optimal
configurations for n points, a bound on the quantization errors for n → ∞,
and a final conjecture about uniform distributions in more general geometries.

In this paper, due to calculation simplicity, in Section 1 we determine the
optimal sets of n-means and the nth quantization errors for all 1 ≤ n ≤ 6
for a uniform distribution on a unit disc. In Section 2, we determine them
for a uniform distribution on a unit square. In Section 3, we determine the
optimal sets of n-means and the nth quantization errors for all 1 ≤ n ≤ 4 for
a nonuniform distribution on R supported by the closed interval [0, 1]. The
technique of this paper can be used to investigate the optimal quantization
for many other uniform and nonuniform probability distributions defined on
a region.

2 Optimal sets and quantization error for uniform dis-
tribution on a disc

In this section, we first give some basic results relating to optimal sets and a
uniform distribution defined on a unit disc with uniform density. Then, we
determine the optimal sets of n-means and the nth quantization errors with
respect to the uniform distribution for all 1 ≤ n ≤ 6.

2.1 Basic results

Let X := (X1, X2) be a bivariate continuous random variable with uniform
distribution taking values on the unit disc with center at the origin. Then,
the probability density function (pdf) f(x1, x2) of the random variable X is
given by

f(x1, x2) =

{
1
π for x21 + x22 ≤ 1,
0 otherwise.

Notice that the pdf satisfies the following two necessary conditions:

(i) f(x1, x2) ≥ 0 for all (x1, x2) ∈ R2, and
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(ii)
∫∫

R2 f(x1, x2) dx1dx2 =
∫ 1

r=0

∫ 2π

θ=0
f(r cos θ, r sin θ) rdrdθ = 1.

Let f1(x1) and f2(x2) represent the marginal pdfs of the random variables
X1 and X2, respectively. Then, following the definitions in Probability Theory,
we have

f1(x1) =

∫ ∞
−∞

f(x1, x2) dx2 and f2(x2) =

∫ ∞
−∞

f(x1, x2) dx1.

Since for −1 ≤ x1 ≤ 1,∫ √1−x2
1

−
√

1−x2
1

f(x1, x2) dx2 =
2
√

1− x21
π

,

we have

f1(x1) =

{
2
√

1−x2
1

π for − 1 ≤ x1 ≤ 1,
0 otherwise.

Similarly, we can write

f2(x2) =

{
2
√

1−x2
2

π for − 1 ≤ x2 ≤ 1,
0 otherwise.

Notice that both f1(x1) and f2(x2) satisfy the necessary conditions for pdfs:
f1(x1) ≥ 0, f2(x2) ≥ 0 for all x1, x2 ∈ R, and∫ ∞

−∞
f1(x1) dx1 = 1 =

∫ ∞
−∞

f2(x2) dx2.

For the random variable X, let E(X) and V (X) represent the expected vector
and the expected squared distance of X. On the other hand, for i = 1, 2,
by E(Xi) and V (Xi) we denote the expectation and the variance of Xi,
respectively. Let i and j be the unit vectors in the positive directions of
x1- and x2-axes, respectively. By the position vector ã of a point A, it is

meant that
−→
OA = ã. In the sequel, we will identify the position vector of

a point (a1, a2) by (a1, a2) := a1i + a2j, and apologize for any abuse in no-
tation. For any two vectors ~u and ~v, let ~u · ~v denote the dot product be-
tween the two vectors ~u and ~v. Then, for any vector ~v, by (~v)2, we mean
(~v)2 := ~v · ~v. Thus, |~v| :=

√
~v · ~v, which is called the length of the vector

~v. For any two position vectors ã := (a1, a2) and b̃ := (b1, b2), we write
ρ(ã, b̃) := ((a1 − b1, a2 − b2))2 = (a1 − b1)2 + (a2 − b2)2.

Let us now prove the following lemma.
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Lemma 2.2. Let X := (X1, X2) be a bivariate continuous random variable
with uniform distribution taking values on the unit disc with center (0, 0).
Then,

E(X) = (0, 0) and V (X) = V (X1) + V (X2) =
1

2
.

Proof. We have

E(X1) =

∫ ∞
−∞

x1f1(x1) dx1 =

∫ 1

−1

x1(2
√

1− x21)

π
dx1 = 0,

E(X2) =

∫ ∞
−∞

x2f2(x2) dx2 =

∫ 1

−1

x2(2
√

1− x22)

π
dx2 = 0,

and so,

E(X) =

∫∫
(x1i+ x2j)f(x1, x2)dx1dx2

= i

∫
x1f1(x1)dx1 + j

∫
x2f2(x2)dx2 = 0i+ 0j = (0, 0).

Again,

E(X2
1 ) =

∫ ∞
−∞

x21f1(x1) dx1 =

∫ 1

−1

x21(2
√

1− x21)

π
dx1 =

1

4
,

E(X2
2 ) =

∫ ∞
−∞

x22f2(x2) dx2 =

∫ 1

−1

x22(2
√

1− x22)

π
dx2 =

1

4
,

and so,

V (X1) = E(X2
1 )− [E(X1)]2 =

1

4
and V (X2) = E(X2

2 )− [E(X2)]2 =
1

4
.

Thus, we have

V (X) = E‖X − E(X)‖2

=

∫∫ (
(x1 − E(X1))2 + (x2 − E(X2))2

)
f(x1, x2) dx1dx2,

implying

V (X) =

∫
(x1 − E(X1))2f1(x1) dx1 +

∫
(x2 − E(X2))2f2(x2) dx2

= V (X1) + V (X2) =
1

2
.

Hence, the lemma is yielded.
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Corollary 2.3. Since E(X1) = 0 and E(X2) = 0, for any two real numbers
a and b, we have E(X1 − a)2 = E(X2

1 ) + a2 = V (X1) + a2, and similarly
E(X2 − b)2 = V (X2) + b2. Thus, for any (a, b) ∈ R2, we have

E‖X − (a, b)‖2

=

∫∫
R2

[(x1 − a)2 + (x2 − b)2]f(x1, x2)dx1dx2

=

∫
R

(x1 − a)2f1(x1)dx1 +

∫
R

(x2 − b)2f2(x2)dx2

= E(X1 − a)2 + E(X2 − b)2 = V (X1) + V (X2) + a2 + b2 =
1

2
+ a2 + b2.

Note 2.4. From Corollary 2.3 it is clear that the optimal set of one-mean
consists of the expected vector (0, 0) of the random variable X, which is the
center of the disc, and the corresponding quantization error is 1

2 , which is the
expected squared distance of the random variable X.

Let us now give the following lemma.

Lemma 2.5. For the uniform distribution on the unit disc with center at the
origin let g(θ1, θ2) be the position vector of the centroid of the sector which
makes a central angle of (θ2 − θ1) radians, and let V (θ1, θ2) be the distortion
error of the sector with respect to the centroid. Then,

g(θ1, θ2) =
(2(sin θ1 − sin θ2)

3(θ1 − θ2)
,−2(cos θ1 − cos θ2)

3(θ1 − θ2)

)
and

V (θ1, θ2) =
9 (θ2 − θ1) 2 − 32 sin2

(
1
2 (θ2 − θ1)

)
36π (θ2 − θ1)

.

Proof. Using the definitions of centroid and the distortion error, we have

g(θ1, θ2)

=

∫ 1

0

∫ θ2
θ1

r
π (r cos(θ), r sin(θ))dθdr∫ 1

0

∫ θ2
θ1

r
πdθdr

=
(2(sin θ1 − sin θ2)

3(θ1 − θ2)
,−2(cos θ1 − cos θ2)

3(θ1 − θ2)

)
,
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and

V (θ1, θ2)

=

∫ 1

0

∫ θ2

θ1

r
((

2(cos θ1−cos θ2)
3(θ1−θ2) + r sin(θ)

)
2 +

(
r cos θ − 2(sin θ1−sin θ2)

3(θ1−θ2)

)
2
)

π
dθdr

=

∫ θ2

θ1

16(sin(θ−θ1)−sin(θ−θ2))
θ1−θ2 − 16(cos(θ1−θ2)−1)

(θ1−θ2)2 + 9

36π
dθ

=
9 (θ2 − θ1) 2 − 32 sin2

(
1
2 (θ2 − θ1)

)
36π (θ2 − θ1)

.

Thus, the lemma is yielded.

We now give the following note.

Note 2.6. With respect to any diagonal the unit disc equipped with the uni-
form distribution has maximum symmetry, i.e., with respect to any diagonal
the unit disc is geometrically symmetric as well as symmetric with respect to
the uniform distribution. By the ‘symmetric with respect to the uniform dis-
tribution’ it is meant that if two regions of similar geometrical shape lie on the
opposite sides of a diagonal and are equidistant from the diagonal, then they
have the same probability. This motivates us to give the following conjecture.

Conjecture 2.7.

(i) The Voronoi regions of the points in an optimal set of two-means with
respect to the uniform distribution defined on a disc partition the disc
into two regions bounded by the semicircles.

(ii) The Voronoi regions of the points in an optimal set of three-means par-
tition the disc into three sectors each subtending a central angle of 2π

3
radians.

(iii) For n = 4, 5, 6, the Voronoi regions of the points in an optimal set of
n-means either form a regular n-gon with center same as the center of
the disc, or one of the points lies at the center of the disc and the other
(n− 1) points form a regular (n− 1)-gon with center as the center of the
disc.

Under the above conjecture, in the following subsections, we determine the
optimal sets of n-means for 2 ≤ n ≤ 6. It is extremely difficult and the answer
is not known yet how the points in an optimal set of n-means for higher values
of n are located.
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2.8 Optimal sets of 2-means

Let p̃ and q̃ be the position vectors of the two points in an optimal set of
two-means. By Conjecture 2.7, it is clear that p̃ and q̃ can lie on any diameter
and will be equidistant from the center of the disc. Also, the boundary of the
Voronoi regions of p̃ and q̃ will be another diameter which is perpendicular to
the diameter containing the two points.

First, we assume that the boundary of the Voronoi regions of p̃ and q̃ is
the diagonal along the x2-axis. Then, p̃ and q̃ will be the centroids of the right
and left halves of the disc, and so by Lemma 2.5, we have

p̃ = g(−π
2
,
π

2
) = (

4

3π
, 0) and q̃ = g(

π

2
,

3π

2
) = (− 4

3π
, 0).

Notice that because of the uniform distribution, the two quantization errors
due to the points p̃ and q̃ will be the same, and so by Lemma 2.5, the quanti-
zation error for an optimal set of two-means is given by

V2 = 2× V (−π
2
,
π

2
) =

9π2 − 32

18π2
= 0.319873.

Similarly, it can be proved that if the boundary of the two Voronoi regions is
the diagonal along the x1-axis, then p̃ and q̃ will be the centroids of the upper
and lower halves of the disc, and so

p̃ = (0,
4

3π
) and q̃ = (0,− 4

3π
) with quantizaiton error

9π2 − 32

18π2
.

Thus, due to rotational symmetry, we can deduce the following theorem (see
Figure 1(a)).

Theorem 2.9. For the uniform distribution on the unit disc, there are un-
countably many optimal sets of two-means with quantization error 0.319873.
Any such two means form a diameter of the circle x21 + x22 = 16

9π2 .

2.10 Optimal sets of 3-means

By Conjecture 2.7, the Voronoi regions of the three points in an optimal set of
three-means partition the disc into three sectors each making a central angle
of 2π

3 radians. In Figure 1(b), we have considered such a configuration of three
points P , Q, and R with the Voronoi regions sectors AOB, BOC and COA,
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respectively. Hence by Lemma 2.5,

p̃ = g(0,
2π

3
) = (

√
3

2π
,

3

2π
), q̃ = g(

2π

3
,

4π

3
) = (−

√
3

π
, 0), and

r̃ = g(
4π

3
,

6π

3
) = (

√
3

2π
,− 3

2π
),

with quantization error

V3 = 3× (Quantization error due to P ) = 3× V (0,
2π

3
) = 0.196036.

Notice that P , Q, and R lie on the circle x21 + x22 = 3
π2 . Thus, we deduce the

following theorem.

Theorem 2.11. For the uniform distribution on the unit disc, there are un-
countably many optimal sets of three-means with quantization error 0.196036.
Any such three means form an equilateral triangle inscribed in the circle x21 +
x22 = 3

π2 .

2.12 Optimal sets of 4-means

By Conjecture 2.7, the Voronoi regions of the four points in an optimal set
of four-means partition the disc into four sectors each making a central angle
of π

2 radians. As shown for n = 5 in the next subsection, we can show that
the optimal set of four-means does not contain the center of the disc. In
Figure 1(c), we have considered such a configuration of four optimal quantizers
P , Q, R, and S with the Voronoi regions sectors AOB, BOC, COD, andDOA,
respectively. Hence by Lemma 2.5,

p̃ = g(0,
π

2
) = (

4

3π
,

4

3π
), q̃ = g(

π

2
, π) = (− 4

3π
,

4

3π
),

r̃ = g(π,
3π

2
) = (− 4

3π
,− 4

3π
), s̃ = g(

3π

2
, 2π) = (

4

3π
,− 4

3π
),

with quantization error V4 = 4×(Quantization error due to P ) = 4×V (0, π2 ) =
9π2−64
18π2 = 0.139747. Thus, we can deduce the following theorem.

Theorem 2.13. For the uniform distribution on the unit disc, there are un-
countably many optimal sets of four-means with quantization error 0.139747.
Any such four means form a square inscribed in the circle x21 + x22 = 32

9π2 .
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Figure 1: (a) Optimal quantizers P , Q form a diameter of the circle x21 +x22 =
16
9π2 ; (b) optimal quantizers P , Q, R form an equilateral triangle inscribed in
the circle x21 + x22 = 3

π2 ; (c) optimal quantizers P , Q, R and S form a square
inscribed in the circle x21 + x22 = 32

9π2 .
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2.14 Optimal sets of 5-means

By Conjecture 2.7, one of the following two cases can arise:
Case 1. In this case, we assume that the five optimal quantizers are

equidistant from the center of the disc. So, the Voronoi regions of the points
partition the disc into five sectors each making a central angle of 2π

5 radians.
As shown in Figure 2(a), we assume that the five optimal quantizers are P , Q,
R, S and T with Voronoi regions the sectors AOB, BOC, COD, DOE and
EOA, respectively, each subtending a central angle of 2π

5 radians. Hence by
Lemma 2.5,

p̃ = g(0,
2π

5
) = (0.504551, 0.366578), q̃ = g(

2π

5
,

4π

5
) = (−0.192721, 0.593135),

r̃ = (
4π

5
,

6π

5
) = (−0.62366, 0), s̃ = (

6π

5
,

8π

5
) = (−0.192721,−0.593135),

t̃ = (
8π

5
,

10π

5
) = (0.504551,−0.366578),

with quantization error

V5 = 5× (Quantization error due to P ) = 5× V (0,
2π

5
)

= 5× 0.0222098 = 0.111049.

Case 2. In this case, we assume that one of the five optimal quantizers
is the center O of the disc, and the other four are the points P , Q, R and
S equidistant from the center of the disc. Due to uniform distribution, the
Voronoi regions of each of the points P , Q, R and S will subtend a central
angle of π2 radians. As shown in Figure 2(b), let ABCD be the Voronoi region
of the point P , where the line CD is the boundary of the Voronoi regions of
the points P and O. A has the coordinates (1, 0). P being the centroid of
its Voronoi region, the line segment OP will be the perpendicular bisector of
the line segment CD. Let the equation of the line CD be x1 + x2 = a for
some constant a. Then, the coordinates of P are (a, a). If V (AOB) is the
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Figure 2: (a) P , Q, R, S and T form an optimal set of 5-means; (b) O, P , Q,
R and S do not form an optimal set of 5-means.

quantization error in the sector AOB due to the points O and P , then

V (AOB)

=
1

π

(∫ a

0

∫ a−x1

0

ρ(x, (0, 0))dx2dx1

+

∫ a

0

∫ √1−x2
1

a−x1

ρ(x, (a, a))dx2dx1 +

∫ 1

a

∫ √1−x2
1

0

ρ(x, (a, a))dx2dx1

)
=
a4

6π
+
a
(
−2a

(
a2 − 3

√
1− a2a+ 6

)
+ 9
√

1− a2 − 8
)

+ 3
(
4a2 + 1

)
sin−1(a)

12π

+
3
(
4a2 + 1

)
cos−1(a)− a

(
2a
(
2a2 + 3

√
1− a2a− 6

)
+ 9
√

1− a2 + 8
)

12π
.

It is easy to see that the above expression is minimum when a = 0.467885,
and the minimum value is 0.0307967, i.e., V (AOB) = 0.0307967. Thus, if
V5(Case 2) is the quantization error due to the five points in this case, we
have

V5(Case 2) = 4V (AOB) = 4× 0.0307967 = 0.123187.

Since V5(Case 1) < V5(Case 2), the five points in Case 1 give the optimal set
of five-means and hence, we can deduce the following theorem.

Theorem 2.15. For the uniform distribution on the unit disc, there are un-
countably many optimal sets of five-means with quantization error 0.111049.
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Figure 3: O, P , Q, R, S and T form an optimal set of 6-means.

Any such five points form a regular pentagon inscribed in the circle x21 + x22 =
0.388951.

2.16 Optimal sets of 6-means

In this section, we calculate the optimal sets of 6-means. By Conjecture 2.7,
one of the following two cases can arise:

Case 1. In this case, we assume that the six optimal quantizers are equidis-
tant from the center of the disc. So, the Voronoi regions of the points partition
the disc into six sectors each making a central angle of π

3 radians. Let P be
one of the six optimal quantizers whose Voronoi region is the sector AOB

where O is the origin, and A, B are the points (1, 0), (1
2 ,
√
3
2 ). Let V (P ) be

the quantization error due to the point P in the sector AOB. Then, we have

p̃ =

∫ 1
1
2

∫√1−x2
1

0
(x1,x2)
π dx2dx1 +

∫ 1
2

0

∫ x1 tan(π3 )
0

(x1,x2)
π dx2dx1∫ 1

1
2

∫√1−x2
1

0
1
πdx2dx1 +

∫ 1
2

0

∫ x1 tan(π3 )
0

1
πdx2dx1

= (0.551329, 0.31831),
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and

V (P ) =

∫ 1

1
2

∫ √1−x2
1

0

(x1 − 0.551329) 2 + (x2 − 0.31831) 2

π
dx2dx1

+

∫ 1
2

0

∫ x1 tan(π3 )

0

(x1 − 0.551329) 2 + (x2 − 0.31831) 2

π
dx2dx1

= 0.0157859.

If V6(Case 1) is the quantization error due to the six points in this case, we
have V6(Case 1) = 6× 0.0157859 = 0.0947153.

Case 2. In this case, we assume that one of the six optimal quantizers is
the center O of the disc, and the other five are equidistant from the center of
the disc. Due to the uniform distribution, the Voronoi regions of each of these
five points will subtend a central angle of 2π

5 radians. As shown in Figure 3, let
ABCD be the Voronoi region of such a point P , where A has the coordinates
(1, 0) and the line CD is the boundary of the Voronoi regions of the points
P and O. Let OC = OD = a for some constant a. Then, the coordinates of
C and D are, respectively, (a cos 2π

5 , a sin 2π
5 ) and (a, 0), and the equation of

the line CD is x2 = −(x1 − a) cot π5 . Thus, we have the coordinates of P as
(2a cos2 π5 , a sin 2π

5 ). Let m̃ represent the position vector of the centroid of the
sector AOB, and let V (AOB) be the quantization error of the sector AOB
due to the points O and P . Then,

m̃ =

∫ 1

cos( 2π
5 )
∫√1−x2

1

0
(x1,x2)
π dx2dx1 +

∫ cos( 2π
5 )

0

∫ x1 tan( 2π
5 )

0
(x1,x2)
π dx2dx1∫ 1

cos( 2π
5 )
∫√1−x2

1

0
1
πdx2dx1 +

∫ cos( 2π
5 )

0

∫ x1 tan( 2π
5 )

0
1
πdx2dx1

= (0.504551, 0.366578),

and writing

L = (Area of the sector AOB) m̃,

V = (Area of the 4OCD)(Centroid of the 4OCD),

W = Area of the sector AOB −Area of the 4OCD, we have

p̃ =
L− V
W

=
1
5π(0.504551, 0.366578)− a2 sin( 2π

5 )(2a cos2(π5 ), a sin( 2π
5 ))

2·3
π
5 −

1
2a

2 sin
(
2π
5

)
=

(
0.666667 − 0.436339a3

1.32131 − a2
,

0.484362 − 0.317019a3

1.32131 − a2

)
.
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Since the line segments OP and CD bisect each other, we have

0.484362 − 0.317019a3

1.32131 − a2
= a sin

(
2π

5

)
which yields a = 0.423866,

and hence, using Figure 3, we have

V (AOB) =
1

π

(∫ a cos( 2π
5 )

0

∫ x1 tan( 2π
5 )

0

ρ(x, (0, 0))dx2dx1

+

∫ a

a cos( 2π
5 )

∫ cot(π5 )(−(x1−a))

0

ρ(x, (0, 0))dx2dx1

+

∫ a

a cos( 2π
5 )

∫ a sin( 2π
5 )

cot(π5 )(−(x1−a))
ρ(x, (2a cos2(

π

5
), a sin(

2π

5
))dx2dx1

+

∫ 1

a

∫ √1−x2
1

0

ρ(x, (2a cos2(
π

5
), a sin(

2π

5
))dx2dx1

+

∫ cos( 2π
5 )

a cos( 2π
5 )

∫ x1 tan( 2π
5 )

a sin( 2π
5 )

ρ(x, (2a cos2(
π

5
), a sin(

2π

5
))dx2dx1

+

∫ a

cos( 2π
5 )

∫ √1−x2
1

a sin( 2π
5 )
ρ(x, (2a cos2(

π

5
), a sin(

2π

5
))dx2dx1

)
= 0.018719.

Thus, if V6(Case 2) is the quantization error due to the six points in this case,
we have

V6(Case 2) = 5× 0.018719 = 0.093595.

Since V6(Case 2) < V6(Case 1), the six points in Case 2 give the optimal set of
six-means. Moreover, the coordinates of P are (0.554847, 0.40312), and hence,
we can deduce the following theorem.

Theorem 2.17. For the uniform distribution on the unit disc, there are un-
countably many optimal sets of six-means with quantization error 0.093595.
One of such six points is the center of the disc, and the other five form a
regular pentagon inscribed in the circle x21 + x22 = 0.470361.

3 Optimal sets and quantization error for uniform dis-
tribution on a square

In this section, we determine the optimal sets of n-means and the nth quan-
tization errors for all 1 ≤ n ≤ 5 for a uniform distribution defined on a
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region with uniform density whose boundary forms a square. Let X :=
(X1, X2) be a bivariate continuous random variable with the uniform distribu-
tion taking values on the region whose boundary forms a square with vertices
O(0, 0), A(1, 0), B(1, 1) and C(0, 1). In the sequel by the term ‘square’ we
mean the square region and denote it by J . As mentioned in the previous sec-
tion, let f(x1, x2) denote the pdf of the random variable X, f1(x1) and f2(x2)
represent the marginal pdfs of the random variables X1 and X2, respectively.
We also keep the other notations same as before. Thus, we have

f(x1, x2) =

{
1 for (x1, x2) ∈ J,
0 otherwise,

f1(x1) =

{
1 for 0 < x1 < 1,
0 otherwise,

and f2(x2) =

{
1 for 0 < x2 < 1,
0 otherwise.

Let us now prove the following lemma.

Lemma 3.1. Let X := (X1, X2) be a bivariate continuous random variable
with uniform distribution taking values on the square J . Then,

E(X) = (E(X1), E(X2)) = (
1

2
,

1

2
) and V (X) = V (X1) + V (X2) =

1

6
.

Proof. E(X1) =
∫ 1

0
x1 dx1 = 1

2 , E(X2) =
∫ 1

0
x2 dx2 = 1

2 , E(X2
1 ) =

∫ 1

0
x21 dx1

= 1
3 , and E(X2

2 ) =
∫ 1

0
x22 dx2 = 1

3 . Then,

E(X) =

∫∫
(x1i+ x2j)f(x1, x2)dx1dx2

= i

∫
x1f1(x1)dx1 + j

∫
x2f2(x2)dx2

= (E(X1), E(X2)) = (
1

2
,

1

2
),

V (X1) = E(X2
1 )− [E(X1)]2 =

1

12
and V (X2) = E(X2

2 )− [E(X2)]2 =
1

12
.

Thus, we have

V (X) = E‖X − E(X)‖2

=

∫∫ (
(x1 − E(X1))2 + (x2 − E(X2))2

)
f(x1, x2) dx1dx2,

implying

V (X) =

∫
(x1 − E(X1))2f1(x1) dx1 +

∫
(x2 − E(X2))2f2(x2) dx2

= V (X1) + V (X2) =
1

6
.
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C B

AO

F

E

P

Q

Figure 4: Two points P and Q.

Thus, the lemma is yielded.

Note 3.2. For any (a, b) ∈ R2, since

E‖X − (a, b)‖2 = V (X1) + V (X2) + (a− 1

2
)2 + (b− 1

2
)2

=
1

6
+ ‖(a, b)− (

1

2
,

1

2
)‖2,

we see that the optimal set of one-mean consists of the expected vector ( 1
2 ,

1
2 )

of the random variable X, which is the centroid of the square J and the
corresponding quantization error is 1

6 which is the expected squared distance
of the random variable X.

3.3 Optimal sets of 2-means

In this subsection, we investigate the optimal sets of two-means and the cor-
responding quantization error. Let us divide J by a straight line ` into two
regions as shown in Figure 4. Let ` intersect the side OA at the point E and the
side BC at the point F . It might be that the line ` is a diagonal of the square.
Thus, the square J is divided into two regions: the quadrilateral OEFC and
the quadrilateral EABF . Let the position vectors of A, B, C, E, F be de-
noted, respectively, by ã, b̃, c̃, ẽ and f̃ . We know ã = (1, 0), b̃ = (1, 1) and
c̃ = (0, 1). Let the lengths of OE and CF be, respectively, α and β. Then,
we have ẽ = αã, f̃ = βb̃ + (1 − β)c̃. Now, the area of the triangles OEC,
ECF , EAF and ABF are, respectively, 1

2α, 1
2β, 1

2 (1 − α) and 1
2 (1 − β). By

Remark 1.2, we know that the points in an optimal set are the centroids of
their corresponding Voronoi regions. Let p̃ and q̃ be the position vectors of
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the centroids P and Q of the quadrilaterals OEFC and EABF , respectively.
Then, taking moments about the origin, we have

p̃ =
1
2α

1
3 (c̃+ ẽ) + 1

2β
1
3 (c̃+ ẽ+ f̃)

1
2α+ 1

2β
=
(α2 + αβ + β2

3(α+ β)
,
α+ 2β

3(α+ β)

)
,

and

q̃ =
1
2 (1− α) 1

3 (ã+ ẽ+ f̃) + 1
2 (1− β) 1

3 (ã+ b̃+ f̃)
1
2 (2− α− β)

=
(α2 + αβ + β2 − 3

3(α+ β − 2)
,
α+ 2β − 3

3(α+ β − 2)

)
.

If p̃ and q̃ are the optimal quantizers, we must have,

ρ(p̃, ẽ) = ρ(q̃, ẽ) and ρ(p̃, f̃) = ρ(q̃, f̃).

Solving the above two equations, we have three possible sets of solutions for
α and β: {α = 1, β = 0}, {α = 0, β = 1}, {α = 1

2 , β = 1
2}. If {α = 1, β = 0},

then p̃ = ( 1
3 ,

1
3 ), q̃ = ( 2

3 ,
2
3 ), and the corresponding distortion error is∫ 1

0

∫ 1−x1

0

(
(x1 −

1

3
)2 + (x2 −

1

3
)2
)
dx2dx1

+

∫ 1

0

∫ 1

1−x1

(
(x1 −

2

3
)2 + (x2 −

2

3
)2
)
dx2dx1 =

1

9
.

Similarly, if {α = 0, β = 1}, then p̃ = ( 1
3 ,

2
3 ), q̃ = ( 2

3 ,
1
3 ), and the corresponding

distortion error is 1
9 . If {α = 1

2 , β = 1
2}, then p̃ = ( 1

4 ,
1
2 ) and q̃ = ( 3

4 ,
1
2 ), and

the corresponding distortion error is∫ 1
2

0

∫ 1

0

(
(x1 −

1

4
)2 + (x2 −

1

2
)2
)
dx2dx1

+

∫ 1

1
2

∫ 1

0

(
(x1 −

3

4
)2 + (x2 −

1

2
)2
)
dx2dx1 =

5

48
.

Due to symmetry, we can say that the points (1
2 ,

1
4 ) and ( 1

2 ,
3
4 ) will also give the

same distortion error 5
48 . Since 5

48 <
1
9 , we can deduce the following theorem.

Theorem 3.4. For the uniform distribution on the square J with vertices
(0, 0), (1, 0), (1, 1) and (0, 1), there are two optimal sets of two-means
{( 1

4 ,
1
2 ), ( 3

4 ,
1
2 )} and {( 1

2 ,
1
4 ), ( 1

2 ,
3
4 )} with quantization error 5

48 .
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We now give the following note.

Note 3.5. With respect to the uniform distribution the unit square has four
lines of maximum symmetry: the two diagonals, and the two lines which bisect
the opposite sides of the square. By the maximum symmetry it is meant
that with respect to any of the above lines the unit square is geometrically
symmetric, also symmetric with respect to the uniform distribution. By the
‘symmetric with respect to the uniform distribution’ it is meant that if two
regions of similar geometrical shape are equidistant from any of the above four
lines and are on opposite sides of the line, then they have the same probability.
This motivates us to give the following conjecture.

Conjecture 3.6.

(i) The points in an optimal set of three-means are symmetrically distributed
over the square with respect to one of the two diagonals of the square, or
with respect to one of the two lines which are perpendicular bisectors of
the opposite sides of the square.

(ii) The two points in an optimal set of four-means lie on a line of symmetry
of the square, and the other two are on opposite sides and equidistant
from the line of symmetry.

(iii) One point in an optimal set of five-means is at the center ( 1
2 ,

1
2 ) of the

square, and the other four lie on the lines x1 = 1
2 and x2 = 1

2 and
equidistant from the center of the square, or lie on the two diagonals of
the square and equidistant from the center of the square.

Under the above conjecture, in the following subsections, we determine the
optimal sets of n-means for n = 3, 4, and 5. It is extremely difficult and the
answer is not known yet how the points in an optimal set of n-means for higher
values of n are located.

3.7 Optimal sets of 3-means

In this subsection, we determine the optimal sets of three-means. By Conjec-
ture 3.6, the following two cases can arise:

Case 1. As shown in Figure 5(a), in this case we assume that one of the
three points in an optimal set of three-means lies on the diagonal OB, and the
other two are on either side of the diagonal OB. Let the boundaries of the three
Voronoi regions meet at the point M on the diagonal, and cut the side BC
and AB at the points D and E, respectively. Let BD = α and BM = β

√
2.

Then, due to symmetry, we have BE = α. Then, the position vectors of D, E
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Figure 5: (a) Three points P , Q and R in Case 1 (not an optimal configura-
tion); (b) three points P , Q and R in Case 2 (optimal configuration).

and M are given by, d̃ = (1− α)b̃+ αc̃, ẽ = αã+ (1− α)b̃ and m̃ = (1− β)b̃.
Area of the triangle BMD = Area of the triangle BME = 1

2αβ. Let P , Q, R
be the centroids of the quadrilaterals MEBD, OMDC, and OAEM . Then,
we have

p̃ =
1
2αβ

1
3 (b̃+ d̃+ m̃) + 1

2αβ
1
3 (b̃+ ẽ+ m̃)

αβ

=
(1

6
(−α− 2β + 6),

1

6
(−α− 2β + 6)

)
,

q̃ =
1
2 ·

1
3 (b̃+ c̃)− 1

2αβ
1
3 (b̃+ d̃+ m̃)

1−αβ
2

=
(
− α2β + α(β − 3)β + 1

3αβ − 3
,−α(β − 3)β + 2

3αβ − 3

)
,

r̃ =
1
2 ·

1
3 (b̃+ ã)− 1

2αβ
1
3 (b̃+ ẽ+ m̃)

1−αβ
2

=
(
− α(β − 3)β + 2

3αβ − 3
,−α

2β + α(β − 3)β + 1

3αβ − 3

)
.

If p̃, q̃ and r̃ form an optimal set of three-means, we must have

ρ(p̃, d̃) = ρ(q̃, d̃) and ρ(p̃, m̃) = ρ(q̃, m̃).

Solving the above two equations, we have {α = 0.621648, β = 0.491223}, and
so
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p̃ = (0.732651, 0.732651), q̃ = (0.203336, 0.592112) and
r̃ = (0.592112, 0.203336).

Moreover, we have m̃ = (0.508777, 0.508777), d̃ = (0.378352, 1), and so the
equation of the line MD is x2 = 0.508777 − 3.76633(x1 − 0.508777). Now, if
V3(Case 1) is the distortion error in this case, we have

V3(Case 1) = 2× (Distortion error in the triangle OBC)

= 2×
(∫ 0.378352

0

∫ 1

x1

ρ(x, (0.203336, 0.592112))dx2dx1

+

∫ 0.508777

0.378352

∫ 0.508777−3.76633(x1−0.508777)

x1

ρ(x, (0.203336, 0.592112))dx2dx1

+

∫ 0.508777

0.378352

∫ 1

0.508777−3.76633(x1−0.508777)
ρ(x, (0.732651, 0.732651))dx2dx1

+

∫ 1

0.508777

∫ 1

x1

ρ(x, (0.732651, 0.732651))dx2dx1

)
= 2× 0.0332909 = 0.0665818.

Case 2. As shown in Figure 5(b), in this case we assume that one of the three
points in an optimal set of three-means lies on the line GH which bisects the
opposite sides OA and BC at the points G and H, and the other two points are
equidistant from GH. Let the boundaries of the three Voronoi regions meet
at the point M on the line GH, and cut the sides OC and AB at the points D
and E, respectively. Let OD = α and GM = β. Then, due to symmetry, we
have AE = α. Then, Area of the triangle OMD = Area of the triangle AME
= 1

4α, Area of the triangle OGM = Area of the triangle AGM = 1
4β, Area

of the triangle MDH = Area of the triangle MEH = 1
4 (1 − β), and Area of

the triangle CDH = Area of the triangle BEH = 1
4 (1 − α). Moreover, the

position vectors of the points D,E,G,H, and M are, respectively, given by
d̃ = αc̃, ẽ = αb̃ + (1 − α)ã, g̃ = ( 1

2 , 0), h̃ = ( 1
2 , 1), and m̃ = βh̃ + (1 − β)g̃.
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Thus,

p̃ =
(1−α)(b+e+h)

3·4 + (1−α)(c+d+h)
3·4 + (1−β)(d+h+m)

3·4 + (1−β)(e+h+m)
3·4

1
2 (−α− β + 2)

=
(1

2
,
α2 + αβ + β2 − 3

3(α+ β − 2)

)
,

q̃ =
α(d+m)

3 4 + β(g+m)
3 4

α+β
4

=
( α+ 2β

6(α+ β)
,
α2 + αβ + β2

3(α+ β)

)
,

r̃ =
α(a+e+m)

3 4 + β(a+g+m)
3 4

α+β
4

=
( 5α+ 4β

6(α+ β)
,
α2 + αβ + β2

3(α+ β)

)
.

If p̃, q̃ and r̃ form an optimal set of 3-means, we must have

ρ(p̃, d̃) = ρ(q̃, d̃) and ρ(p̃, m̃) = ρ(q̃, m̃).

Solving the above two equations, we have {α = 0.762348, β = 0.486479}, and
so

p̃ = (0.5, 0.803764), q̃ = (0.231591, 0.317285), and r̃ = (0.768409, 0.317285).

Moreover, we have m̃ = ( 1
2 , 0.486479), d̃ = (0, 0.762348), and so the equation

of the line MD is x2 = 0.486479 − 0.551737(x1 − 0.5). Now, if V3(Case 2) is
the distortion error in this case, we have

V3(Case 2) = 2× (Distortion error in the rectangle OGHC)

= 2×
(∫ 1

2

0

∫ 1

0.486479−0.551737(x1−0.5)
ρ(x, (0.5, 0.803764))dx2dx1

+

∫ 1
2

0

∫ 0.486479−0.551737(x1−0.5)

0

ρ(x, (0.231591, 0.317285))dx2dx1

)
= 2× 0.0330899 = 0.0661797.

Since V3(Case 2) < V3(Case 1), we see that the points in Case 2 give the error
minimum. Hence the points P , Q and R in Case 2 form an optimal set of
three-means. Notice that due to rotational symmetry there are three more
optimal sets of three-means. Thus, we deduce the following theorem.

Theorem 3.8. For the uniform distribution on the square there are four op-
timal sets of three-means with quantization error 0.0661797. One of the four
optimal sets of three-means is the set
{(0.5, 0.803764), (0.231591, 0.317285), (0.768409, 0.317285)}.
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Figure 6: (a) Four points P , Q, R and S in Case 1 (optimal configuration);
(b) four points P , Q, R and S in Case 2 (not an optimal configuration).

3.9 Optimal set of 4-means

In this subsection, we calculate the optimal set of four-means. By Conjec-
ture 3.6, the following two cases can arise:

Case 1. As shown in Figure 6(a), in this case we assume that two of the
four points, say P and Q lie on the diagonal OB, and the other two, say R
and S are equidistant from the diagonal OB, in fact due to symmetry R and S
lie on the other diagonal AC. Thus, the boundaries of the Voronoi regions of
the four optimal quantizers are the lines x1 = 1

2 and x2 = 1
2 , i.e., the Voronoi

regions of the optimal quantizers in this case divide the square J into four
congruent squares. Due to symmetry, we have

p̃ = (
1

4
,

1

4
), q̃ = (

3

4
,

3

4
), r̃ = (

3

4
,

1

4
), and s̃ = (

1

4
,

3

4
),

and the corresponding distortion error is given by

4× (Distortion error in the Voronoi region of P )

= 4×
(∫ 1

2

0

∫ 1
2

0

(
(x1 −

1

4
)2 + (x2 −

1

4
)2
)
dx2dx1

)
= 4× 1

96
= 0.0416667.

Case 2. As shown in Figure 6(b), in this case we assume that two of the
four optimal quantizers, say P and Q, lie on the line of symmetry x1 = 1

2 of
the square and the other two, say R and S, lie on the line of symmetry x2 = 1

2
of the square. Thus, the boundaries of the Voronoi regions in this case are
the two diagonals of the square, in other words, the Voronoi regions in this
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Figure 7: (a) Five points M , P , Q, R and S in Case 1 (not an optimal config-
uration); (b) five points M , P , Q, R and S in Case 2 (optimal configuration).

case partition the square J into four congruent triangles. Due to symmetry,
we have

p̃ = (
1

2
,

1

4
), q̃ = (

1

2
,

3

4
), r̃ = (

3

4
,

1

2
), and s̃ = (

1

4
,

1

2
),

and the corresponding distortion error is given by

4× (Distortion error in the Voronoi region of P )

= 4×
(∫ 1

2

0

∫ 1−x2

x2

(
(x1 −

1

2
)2 + (x2 −

1

4
)2
)
dx1dx2

)
= 4× 1

64
= 0.0625.

Notice that the error in Case 1 is less than the error in Case 2. Thus, we
deduce the following theorem.

Theorem 3.10. For the uniform distribution on the unit square with vertices
(0, 0), (1, 0), (1, 1) and (0, 1), the set {( 1

4 ,
1
4 ), ( 3

4 ,
3
4 ), ( 3

4 ,
1
4 ), ( 1

4 ,
3
4 )} forms a

unique optimal set of four-means with quantization error 0.0416667.

3.11 Optimal set of 5-means

In this subsection, we calculate the optimal set of five-means. By Conjec-
ture 3.6, the following two cases can arise:

Case 1. As shown in Figure 7(a), in this case we assume that one point
in an optimal set of five-means is at the center M( 1

2 ,
1
2 ) of the square, and the

other four lie on the lines x1 = 1
2 and x2 = 1

2 , and are equidistant from the cen-
ter of the square. Then, for some positive scalar α, we can consider the optimal
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set of 5-means as {M( 1
2 ,

1
2 ), P ( 1

2 +α, 12 ), Q( 1
2 ,

1
2 +α), R( 1

2−α,
1
2 ), S( 1

2 ,
1
2−α)}.

Thus, the distortion error in the triangle MAB due to the points M and P is
given by∫ α+1

2

1
2

∫ x1

1−x1

ρ(x, (
1

2
,

1

2
))dx2dx1 +

∫ 1

α+1
2

∫ x1

1−x1

ρ(x, (α+
1

2
,

1

2
))dx2dx1

=
1

24
(−2α4 + 6α2 − 4α+ 1),

which is minimum when α = 0.366025, and the minimum value is 0.0126603.
Thus, if V5(Case 1) is the distortion error in this case, we have V5(Case 1) =
4× 0.0126603 = 0.0506413.

Case 2. As shown in Figure 7(b), in this case we assume that one point
lies at the center of the square, and the other four lie on the two diagonals
of the square and are equidistant from ( 1

2 ,
1
2 ). Then, for some positive scalar

α, we can consider the optimal set of 5-means as {M( 1
2 ,

1
2 ), P (α, α), Q(1 −

α, α), R(1 − α, 1 − α), S(α, 1 − α)}. The boundary of the Voronoi regions of
the points M and P is given by the equation x2 = −x1 + 1+2α

2 . Thus, the
distortion error in the quadrilateral MM1BM2 due to the points M and P is
given by ∫ α

1
2

∫ 1
2 (2α+1)−x1

1
2

ρ(x, ( 1
2 ,

1
2 ))dx2dx1 +

∫ α

1
2

∫ 1

1
2 (2α+1)−x1

ρ(x, (α, α))dx2dx1

+

∫ 1

α

∫ 1

1
2

ρ(x, (α, α))dx2dx1

= −α
4

2
+

5α3

3
− 2α2 +

1

24

(
−16α3 + 42α2 − 37α+ 11

)
+

25α

24
+

1

96
(1− 2α)4 − 19

96
.

This is minimum when α = 0.778937 and the minimum value is 0.00881742.
Thus, if V5(Case 2) is the distortion error in this case, we have V5(Case 2) =
4× 0.00881742 = 0.0352697.

Since V5(Case 2) < V5(Case 1), the points in Case 2 give the optimal set
five-means. Thus, we deduce the following theorem.

Theorem 3.12. For the uniform distribution on the unit square with vertices
(0, 0), (1, 0), (1, 1) and (0, 1), the set {(0.5, 0.5), (0.778937, 0.778937),
(0.221063, 0.778937), (0.221063, 0.221063), (0.778937, 0.221063)} forms a
unique optimal set of five-means with quantization error 0.0352697.
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4 Optimal quantization for a nonuniform distribution

In this section, due to calculation simplicity we determine the optimal sets of
n-means and the nth quantization errors for all 1 ≤ n ≤ 4 for a nonuniform
distribution P on the real line with probability density function (pdf) f(x)
given by

f(x) =


2
5 for 0 ≤ x ≤ 1

2 ,
8
5 for 1

2 < x ≤ 1,
0 otherwise.

Notice that for the given pdf f(x), we have P ([0, 12 ]) = 1
5 and P ([ 12 , 1]) = 4

5 .
First, we give the following lemma.

Lemma 4.1. Let X be a random variable with distribution P . Let E(X) and
V (X) represent the expected value and the variance of the random variable X.
Then, E(X) = 13

20 and V (X) = 73
1200 .

Proof. E(X) =

1
2∫
0

2
5xdx+

1∫
1
2

8
5xdx = 13

20 and E(X2) =

1
2∫
0

2
5x

2dx+
1∫
1
2

8
5x

2dx =

29
60 yielding V (X) = E(X2) − [E(X)]2 = 29

60 − ( 13
20 )2 = 73

1200 , which is the
lemma.

Remark 4.2. For any a ∈ R, E(X − a)2 = V (X) + (a−E(X))2 which yields
the fact that the optimal set of one-mean is the expected value 13

20 and the
corresponding quantization error is the variance V (X) of the random variable
X.

Proposition 4.3. Let P be the probability distribution with pdf f(x). Then,
{ 1132 ,

25
32} forms a unique optimal set of two-means with quantization error

317
15360 = 0.020638.

Proof. Let α := {a, b} be an optimal set of two-means such that a < b. Since
the optimal quantizers are the centroids of their own Voronoi regions, we have
0 < a < b < 1. By the properties of centroids, we have

aP (M(a|α)) + bP (M(b|α)) = E(X) =
13

20
= 0.65,

which implies that the two optimal quantizers a and b lie in the opposite sides
of the point 13

20 . Thus, the following three cases can arise:
Case 1. 1

2 ≤ a < b < 1.
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Then, the distortion error is given by∫ 1
2

0

2

5
(x− a)2 dx+

∫ a+b
2

1
2

8

5
(x− a)2 dx+

∫ 1

a+b
2

8

5
(x− b)2 dx

=
2a3

5
+

2a2b

5
− 3a2

5
− 2ab2

5
+

3a

10
− 2b3

5
+

8b2

5
− 8b

5
+

29

60
,

which is minimum when a = 1
2 and b = 5

6 , and the minimum value is 13
540 =

0.0240741.
Case 2. 0 < a ≤ 1

2 ≤
a+b
2 < b < 1.

Then, the distortion error is given by∫ 1
2

0

2

5
(x− a)2dx+

∫ a+b
2

1
2

8

5
(x− a)2dx+

∫ 1

a+b
2

8

5
(x− b)2dx

=
2a3

5
+

2a2b

5
− 3a2

5
− 2ab2

5
+

3a

10
− 2b3

5
+

8b2

5
− 8b

5
+

29

60
,

which is minimum when a = 11
32 and b = 25

32 , and the minimum value is
317

15360 = 0.020638.

Case 3. 0 < a < a+b
2 ≤

1
2 ≤ b < 1.

Then, the distortion error is given by∫ a+b
2

0

2

5
(x− a)2dx+

∫ 1
2

a+b
2

2

5
(x− b)2dx+

∫ 1

1
2

8

5
(x− b)2dx

=
a3

10
+
a2b

10
− ab2

10
− b3

10
+ b2 − 13b

10
+

29

60
,

which is minimum when a = 1
4 and b = 3

4 , and the minimum value is 1
48 =

0.0208333.
Comparing the distortion errors in all the above possible cases, we see

that { 1132 ,
25
32} forms a unique optimal set of two-means with quantization error

317
15360 = 0.020638. Thus, the proposition is yielded.

Proposition 4.4. Let P be the probability distribution with pdf f(x). Then,
{0.200339, 0.601018, 0.867006} forms a unique optimal set of three-means with
quantization error 0.00739237.

Proof. Let α := {a, b, c} be an optimal set of three-means. Since the optimal
quantizers are the centroids of their own Voronoi regions, we have 0 < a <
b < c < 1. By the properties of centroids, we have

aP (M(a|α)) + bP (M(b|α)) + cP (M(c|α)) = E(X) =
13

20
= 0.65,
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which implies that all the optimal quantizers can not lie in one side of the
point 13

20 . Thus, the following cases can arise:

Case 1. 0 < a < a+b
2 < b < b+c

2 ≤
1
2 ≤ c < 1.

Then, the distortion error is given by∫ a+b
2

0

2

5
(x− a)2dx+

∫ b+c
2

a+b
2

2

5
(x− b)2dx+

∫ 1
2

b+c
2

2

5
(x− c)2dx+

∫ 1

1
2

8

5
(x− c)2dx

=
a3

10
+
a2b

10
− ab2

10
+
b2c

10
− bc2

10
− c3

10
+ c2 − 13c

10
+

29

60
,

which is minimum when a = 0.0874081, b = 0.262224, and c = 0.737776, and
the minimum value is 0.0188458.

Case 2. 0 < a < a+b
2 < b ≤ 1

2 ≤
b+c
2 < c < 1.

Then, the distortion error is given by∫ a+b
2

0

2

5
(x− a)2 dx+

∫ 1
2

a+b
2

2

5
(x− b)2 dx+

∫ b+c
2

1
2

8

5
(x− b)2 dx

+

∫ 1

b+c
2

8

5
(x− c)2 dx

=
a3

10
+
a2b

10
− ab2

10
+

3b3

10
+

2b2c

5
− 3b2

5
− 2bc2

5
+

3b

10
− 2c3

5
+

8c2

5
− 8c

5
+

29

60
,

which is minimum when a = 1
6 , b = 1

2 , and c = 5
6 , and the minimum value is

1
108 = 0.00925926.

Case 3. 0 < a < a+b
2 ≤

1
2 ≤ b <

b+c
2 < c < 1.

Then, the distortion error is given by∫ a+b
2

0

2

5
(x− a)2 dx+

∫ 1
2

a+b
2

2

5
(x− b)2 dx+

∫ b+c
2

1
2

8

5
(x− b)2 dx

+

∫ 1

b+c
2

8

5
(x− c)2 dx

=
a3

10
+
a2b

10
− ab2

10
+

3b3

10
+

2b2c

5
− 3b2

5
− 2bc2

5
+

3b

10
− 2c3

5
+

8c2

5
− 8c

5
+

29

60
,

which is minimum when a = 0.200339, b = 0.601018, and c = 0.867006, and
the minimum value is 0.00739237.

Case 4. 0 < a ≤ 1
2 ≤

a+b
2 < b < b+c

2 < c < 1.
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Then, the distortion error is given by∫ 1
2

0

2

5
(x− a)2 dx+

∫ a+b
2

1
2

8

5
(x− a)2 dx+

∫ b+c
2

a+b
2

8

5
(x− b)2 dx

+

∫ 1

b+c
2

8

5
(x− c)2 dx

=
2a3

5
+

2a2b

5
− 3a2

5
− 2ab2

5
+

3a

10
+

2b2c

5
− 2bc2

5
− 2c3

5
+

8c2

5
− 8c

5
+

29

60
,

which is minimum when a = 0.325207, b = 0.674793, and c = 0.891598, and
the minimum value is 0.0101842.

Case 5. 0 < 1
2 ≤ a <

a+b
2 < b < b+c

2 < c < 1.
Then, the distortion error is given by∫ 1
2

0

2

5
(x− a)2 dx+

∫ a+b
2

1
2

8

5
(x− a)2 dx+

∫ b+c
2

a+b
2

8

5
(x− b)2 dx

+

∫ 1

b+c
2

8

5
(x− c)2 dx

=
2a3

5
+

2a2b

5
− 3a2

5
− 2ab2

5
+

3a

10
+

2b2c

5
− 2bc2

5
− 2c3

5
+

8c2

5
− 8c

5
+

29

60
,

which is minimum when a = 1
2 , b = 7

10 , and c = 9
10 , and the minimum value

is 29
1500 = 0.0193333.
Comparing the distortion errors in all the above possible cases, we see that

{0.200339, 0.601018, 0.867006} forms a unique optimal set of three-means with
quantization error 0.00739237. Hence, the proof of the proposition is complete.

Proposition 4.5. Let P be the probability distribution with pdf f(x). Then,
{ 59
332 ,

177
332 ,

239
332 ,

301
332} forms a unique optimal set of four-means with quantization

error 1465
330672 = 0.00443037.

Proof. Let {a1, a2, a3, a4} be an optimal set of four-means such that a1 <
a2 < a3 < a4. Since the optimal quantizers are the centroids of their own
Voronoi regions, we have 0 < a1 < a2 < a3 < a4 < 1. As in the previous two
propositions, all the optimal quantizers can not lie in one side of the point 13

20 .
Thus, 1

2 <
13
20 ≤ a4. We show that 0 < a1 <

1
2 (a1 + a2) < 1

2 < a2 < a3 < a4 <
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1. If 0 < a1 <
1
2 (a1 + a2) < 1

2 < a2 < a3 < a4 < 1, then the distortion error is

∫ a1+a2
2

0

2

5
(x− a1)2dx+

∫ 1
2

a1+a2
2

2

5
(x− a2)2dx+

∫ a2+a3
2

1
2

8

5
(x− a2)2dx

+

∫ a3+a4
2

a2+a3
2

8

5
(x− a3)2dx+

∫ 1

a3+a4
2

8

5
(x− a4)2dx

=
a31
10

+
a21a2
10
− a1a

2
2

10
+

3a32
10

+
2a22a3

5
− 3a22

5
− 2a2a

2
3

5
+

3a2
10

+
2a23a4

5

− 2a3a
2
4

5
− 2a34

5
+

8a24
5
− 8a4

5
+

29

60
.

Now, obtain the partial derivatives of the above expression with respect to
a1, a2, a3, and a4, and equating them to zero, we obtain a system of four
equations. Solving the system of four equations, we obtain {a = 59

332 , b =
177
332 , c = 239

332 , d = 301
332} with distortion error 1465

330672 = 0.00443037. Since V4 is
the quantization error for four-means, we have V4 ≤ 0.00443037. If a3 ≤ 1

2 ,
then

V4 ≥
∫ 1

1
2

min
a∈{ 1

2 ,a4}

8

5
(x− a)2dx = −2a34

5
+

7a24
5
− 3a4

2
+

31

60
,

which is minimum when a4 = 5
6 , and the minimum value is 1

135 = 0.00740741 >
V4 which yields a contradiction. So, we can assume that 1

2 < a3. We now show
that 1

2 < a2. For the sake of contradiction, assume that a2 ≤ 1
2 . Then, the

following two cases can arise:
Case 1. 1

2 (a2 + a3) ≤ 1
2 < a3.

Then, the distortion error is given by∫ a1+a2
2

0

2

5
(x− a1)2dx+

∫ a2+a3
2

a1+a2
2

2

5
(x− a2)2dx+

∫ 1
2

a2+a3
2

2

5
(x− a3)2dx

+

∫ a3+a4
2

1
2

8

5
(x− a3)2dx+

∫ 1

a3+a4
2

8

5
(x− a4)2dx

=
a31
10

+
a21a2
10
− a1a

2
2

10
+
a22a3
10
− a2a

2
3

10
+

3a33
10

+
2a23a4

5
− 3a23

5
− 2a3a

2
4

5
+

3a3
10

− 2a34
5

+
8a24
5
− 8a4

5
+

29

60
.

Now, obtain the partial derivatives of the above expression with respect to a1,
a2, a3, and a4, and equating them to zero, we obtain a system of four equations.
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Solving the system of four equations, we have {a1 = 1
8 , a2 = 3

8 , a3 = 5
8 , a4 = 7

8}
with distortion error 1

192 = 0.00520833 > V4 which leads to a contradiction.
Case 2. a2 ≤ 1

2 ≤
1
2 (a2 + a3).

Then, the distortion error is given by∫ a1+a2
2

0

2

5
(x− a1)2 dx+

∫ 1
2

a1+a2
2

2

5
(x− a2)2 dx+

∫ a2+a3
2

1
2

8

5
(x− a2)2 dx

+

∫ a3+a4
2

a2+a3
2

8

5
(x− a3)2 dx+

∫ 1

a3+a4
2

8

5
(x− a4)2 dx

=
a31
10

+
a21a2
10
− a1a

2
2

10
+

3a32
10

+
2a22a3

5
− 3a22

5
− 2a2a

2
3

5
+

3a2
10

+
2a23a4

5

− 2a3a
2
4

5
− 2a34

5
+

8a24
5
− 8a4

5
+

29

60

which is minimum when a1 = 1
6 , a2 = 1

2 , a3 = 7
10 , a4 = 9

10 , and the minimum
value is 61

13500 = 0.00451852 > V4, which is a contradiction.
By Case 1 and Case 2, we can assume that 1

2 < a2. If 21
64 ≤ a1, then

V4 ≥
∫ 21

64

0

2

5
(x− 21

64
)2 dx =

3087

655360
= 0.00471039 > V4,

which leads to a contradiction, and so a1 <
21
64 . We now show that 1

2 (a1 +
a2) < 1

2 . For the sake of contradiction, assume that 1
2 ≤

1
2 (a1 + a2). Then,

a2 ≥ 1− a1 > 1− 21
64 = 43

64 , and so

V4 ≥
∫ 1

2

0

2

5
(x− a1)2 dx+

∫ a1+a2
2

1
2

8

5
(x− a2)2 dx+

∫ a2

a1+a2
2

8

5
(x− a2)2 dx

=
7a31
15

+
a21a2

5
− 3a21

5
− a1a

2
2

5
− 1

15
(a1 − a2)3 +

3a1
10

+
a32
15
− 1

20
,

which is minimum when a1 = 21
64 and a2 = 43

64 (P -almost surely), and the
minimum value is 3979

491520 = 0.0080953 > V4, which gives a contradiction.
Hence, we can assume that 1

2 (a1 + a2) < 1
2 . Therefore, we can conclude

that 0 < a1 <
1
2 (a1 + a2) < 1

2 < a2 < a3 < a4 < 1 which gives the optimal set
of four-means as { 59

332 ,
177
332 ,

239
332 ,

301
332}, and the corresponding quantization error

is 1465
330672 = 0.00443037. Thus, the proof of the proposition is complete.

Remark 4.6. Proceeding similarly as the proof of Proposition 4.5, though
cumbersome, one can obtain the optimal sets of n-means for the probability
distribution P with density function f(x) for n = 5, 6, 7, etc. The problem
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of two uniform regions of different densities has two parameters, the ratio of
the densities and the ratio of the lengths. The general formula to obtain an
optimal set of n-means, for any n ∈ N, in this direction is still not known.

Acknowledgement: The author is grateful to Professor Carl P. Dettmann
of University of Bristol for helpful discussions.
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