PLENARY LECTURE

Bruce Hanson, Department of Mathematics, Statistics, and Computer Science, St. Olaf College, Northfield, MN 55057, U.S.A. email: hansonb@stolaf.edu

SOME RESULTS ABOUT BIG AND LITTLE LIP

Abstract

Let $f : \mathbb{R} \to \mathbb{R}$ be continuous. We examine the relationship between the so-called "big Lip" and "little lip" functions: Lip f and lip f.

1 Introduction

Throughout this note we will assume that f is a continuous, real-valued function defined on \mathbb{R} . Recall that f is Lipschitz (on \mathbb{R}) if there exists M > 0 such that $|f(x) - f(y)| \leq M|x - y|$ for all $x, y \in \mathbb{R}$. If there is such a constant M, we will say that f is M-Lipschitz. Lipschitz functions are rather well behaved:

Theorem 1.1 (Rademacher, 1919). If f is Lipschitz, then f is differentiable *a.e.* on \mathbb{R} .

One can weaken the Lipschitz assumption in Rademacher's Theorem and still reach the same conclusion by requiring that f satisfy a local Lipschitz condition. For this we need the so-called "big Lip" function defined as follows:

$$\operatorname{Lip} f(x) = \limsup_{r \to 0^+} \frac{M_f(x, r)}{r},$$

where

$$M_f(x,r) = \sup\{|f(x) - f(y)| \colon |x - y| \le r\}.$$

Then it is not hard to show the following:

Mathematical Reviews subject classification: Primary: 26A27 Key words: Lipschitz conditions, nondifferentiability

Received by the editors November 10, 2017

Communicated by: Paul D. Humke

Basic Result: f is M-Lipschitz if and only if Lip $f(x) \leq M$ for all $x \in \mathbb{R}$.

More interesting is the following generalization of Rademacher's Theorem:

Theorem 1.2 (Rademacher-Stepanov, 1923). Suppose that f is continuous on \mathbb{R} . Then f is differentiable a.e. on $L_f = \{x \in \mathbb{R} : Lip \ f(x) < \infty\}$.

In particular, if Lip $f(x) < \infty$ for all $x \in \mathbb{R}$, then f is differentiable a.e. on \mathbb{R} .

If we replace the lim sup in the definition of Lip f with a lim inf, we get the so-called "little lip" function:

$$\lim_{r \to 0^+} f(x) = \liminf_{r \to 0^+} \frac{M_f(x, r)}{r}.$$

The Basic Result above remains true with Lip f replaced with lip f. On the other hand, the Rademacher-Stepanov theorem fails spectacularly if we replace L_f with $l_f = \{x \in \mathbb{R} : \text{lip } f(x) < \infty\}$ as the following result shows:

Theorem 1.3 (Balogh and Csörnyei, 2006, [1]).

- 1. There exists a continuous function $f : \mathbb{R} \to \mathbb{R}$ with lip f(x) = 0 a.e. on \mathbb{R} , but such that f is nowhere differentiable on \mathbb{R} .
- 2. There exists a continuous function $f : \mathbb{R} \to \mathbb{R}$ and a set $A \subset \mathbb{R}$ of positive measure such that lip $f(x) < \infty$ for all $x \in \mathbb{R}$, but f is nowhere differentiable on A.

It is possible to make the exceptional set $E = \{ \lim f(x) \neq 0 \}$ in part (1) quite small:

Theorem 1.4 (Hanson, 2012,[4]). There exists a set $S \subset \mathbb{R}$ of Hausdorff dimension 0 and a continuous function $f : \mathbb{R} \to \mathbb{R}$ such that lip f(x) = 0 for all $x \in \mathbb{R} \setminus S$ and f is nowhere differentiable on \mathbb{R} .

In both Theorem 1.3(1) and Theorem 1.4 the function f is constructed so that Lip $f(x) = \infty$ for all $x \in \mathbb{R}$. This highlights the fact that Lip f and lip f can behave very differently. Off of a small exceptional set S we have Lip $f = \infty$ and lip f = 0.

However, it is not possible to construct a function f such that Lip $f(x) = \infty$ and lip $f(x) < \infty$ for all $x \in \mathbb{R}$. This follows from the following result, which allows us to recover a version of the Rademacher-Stepanov Theorem involving the little lip function.

Theorem 1.5 (Balogh and Csörnyei, 2006,[1]).

- 1. If $f : \mathbb{R} \to \mathbb{R}$ is continuous and $\mathbb{R} \setminus l_f$ is countable, then f is differentiable on a set of positive measure.
- 2. If $f : \mathbb{R} \to \mathbb{R}$ is continuous, $\mathbb{R} \setminus l_f$ is countable and lip f is locally integrable, then f is differentiable a.e. on \mathbb{R} .

The integrability condition in part (2) of this result is quite sharp. For example, in part (2) of Theorem 1.3 the construction can be carried out so that f is locally in L^p for every p < 1.

2 Characterizing N_f

In this section we consider the problem of characterizing sets of non-differentiability for functions f with Lip f (or lip f) finite everywhere on \mathbb{R} . To streamline the exposition we introduce the following notation: We define

 $N_f = \{x \colon f \text{ is not differentiable at } x\},\$

and let Lip $\mathbb{R} = \{f \colon L_f = \mathbb{R}\}$ and lip $\mathbb{R} = \{f \colon l_f = \mathbb{R}\}.$

We would like to characterize N_f for functions in Lip \mathbb{R} and lip \mathbb{R} . In the case of Lip \mathbb{R} the work has essentially been accomplished by Zahorski, who proved the following beautiful result:

Theorem 2.1 (Zahorski, 1942, [10]).

- 1. $E = N_f$ for some continuous $f : \mathbb{R} \to \mathbb{R}$ if and only if $E = E_1 \cup E_2$, where E_1 is G_{δ} , E_2 is $G_{\delta\sigma}$, and $|E_2| = 0$.
- 2. $E = N_f$ for some Lipschitz $f : \mathbb{R} \to \mathbb{R}$ if and only if |E| = 0 and E is $G_{\delta\sigma}$.

Note: The set E is G_{δ} if E can be written as the intersection of countably many open sets. A $G_{\delta\sigma}$ set is a countable union of G_{δ} sets. Furthermore, we use |E| to denote the Lebesgue measure of E.

Using the Rademacher-Stepanov Theorem we can reframe part (2) of Zahorski's Theorem as follows:

Theorem 2.2. $E = N_f$ for some $f \in Lip \mathbb{R}$ if and only if |E| = 0 and E is $G_{\delta\sigma}$.

Characterizing N_f for functions in lip \mathbb{R} appears to be more difficult. Assume for the moment that $f \in \lim \mathbb{R}$. Then f is continuous so by part (1) of Zahorski's Theorem it follows that $N_f = E_1 \cup E_2$, where E_1 is G_{δ} , E_2 is $G_{\delta\sigma}$ and $|E_2| = 0$. Additionally, it follows from the proof of part (1) of Theorem 1.4 that $|N_f \cap (a,b)| < b-a$ for all $(a,b) \subset \mathbb{R}$. We introduce the following:

Definition 2.3. A subset E of \mathbb{R} is <u>trim</u> if $|E \cap (a,b)| < b-a$ for all open intervals (a,b).

Based on our work so far we can make the following conjecture:

Conjecture 1: $E = N_f$ for some $f \in \lim \mathbb{R}$ if and only if $E = E_1 \cup E_2$ where E_1 is trim G_{δ} , E_2 is $G_{\delta\sigma}$ and $|E_2| = 0$.

Of course, the forward direction of the conjecture has been established. In the other direction the following is known:

Theorem 2.4 (Hanson, 2016, [5]).

- 1. If E is closed and nowhere dense, then there exists $f \in lip \mathbb{R}$ such that $N_f = E$.
- 2. If E is trim and G_{δ} , then there exists $f \in lip \mathbb{R}$ such that $|E \bigtriangleup N_f| = 0$.

3 Characterizing L_f and l_f

Another interesting problem to consider is that of characterizing L_f and l_f for continuous functions f. As with the case of characterizing N_f , this problem is more straightforward for L_f . For this case we have the following:

Theorem 3.1. $E = L_f$ for some continuous function $f : \mathbb{R} \to \mathbb{R}$ if and only if E is F_{σ} .

Proving the forward direction of this result is a straightford exercise. The reverse direction follows easily from a result of Piranian ([9]).

Moving on to the problem of characterizing l_f , it is easy to show that if f is continuous, then l_f is a $G_{\delta\sigma}$ set, which leads to the following natural conjecture:

Conjecture 2: $E = l_f$ for some continuous f if and only if E is a $G_{\delta\sigma}$ set. A partial result in this direction is the following:

Theorem 3.2 (Buczolich, Hanson, Rmoutil, Zürcher [2]). If E is either F_{σ} or G_{δ} , then there exists continuous $f \colon \mathbb{R} \to \mathbb{R}$ such that $l_f = E$.

The proof of the G_{δ} case in this theorem is already quite involved. It appears to be quite challenging to extend the proof to the $G_{\delta\sigma}$ case.

4 Connections between lip f and quasiconformal mappings

There is a nice connection between big and little lip and the theory of quasiconformal functions. In this section we assume that Ω and Ω' are open, connected subsets of \mathbb{R}^n with $n \geq 2$ and $f : \Omega \to \Omega'$ is an orientation preserving homeomorphism. Let ||Df|| denote the operator norm of the matrix of partial derivatives of f and J_f the determinant of this matrix. Then the analytic definition of a quasiconformal mapping is the following:

Definition 4.1. f is <u>quasiconformal</u> on Ω if $f \in W^{1,n}_{loc}(\Omega)$ and there is a constant $K \geq 1$ such that $||Df(x)||^n \leq KJ_f(x)$ a.e. on Ω .

Quasiconformal functions can also be characterized using a more geometric approach. Define

$$H_f(x) = \limsup_{r \to 0^+} \frac{M_f(x, r)}{m_f(x, r)},$$

where $M_f(x,r) = \sup_{|x-y|=r} |f(x) - f(y)|$ and $m_f(x,r) = \inf_{|x-y|=r} |f(x) - f(y)|.$

The function H_f is known as the linear dilatation of f. The following classical result relates H_f to the analytic definition of quasiconfomality:

Theorem 4.2 (Gehring, 1960). *f* is quasiconformal on Ω if and only if there exists $K \ge 1$ such that $H_f(x) \le K$ for all $x \in \Omega$.

A few years later Gehring showed that the hypotheses on H_f can be weakened a bit and still give the same conclusion:

Theorem 4.3 (Gehring, 1962,[3]). Suppose that $S \subset \Omega$ with σ -finite n-1 dimensional measure, $H_f(x) < \infty$ for all $x \in \Omega \setminus S$ and there is a $K < \infty$ such that $H_f(x) \leq K$ a.e. on Ω . Then f is quasiconformal on Ω .

Taking the same approach with H_f as we did with Lip f we define a "lim inf" version of the linear dilatation as follows:

$$h_f(x) = \liminf_{r \to 0^+} \frac{M_f(x, r)}{m_f(x, r)}.$$

Another way to weaken the hypotheses in Theorem 4.6 is by replacing H_f with h_f . In [6] Heinonen and Koskela showed, surprisingly enough, that doing so does not affect the conclusion:

Theorem 4.4 (Heinonen, Koskela 1995). *f* is quasiconformal on Ω if and only if $h_f(x) \leq K < \infty$ for all $x \in \Omega$.

More recently Kallunki and Koskela, [7] showed that Theorem 4.3 is also true with H_f replaced by h_f :

Theorem 4.5 (Kallunki, Koskela, 2000). Suppose that S is a subset of Ω with σ -finite n-1 dimensional measure, $h_f(x) < \infty$ for all $x \in \Omega \setminus S$ and there is a $K < \infty$ such that $h_f(x) \leq K$ a.e. on Ω . Then f is quasiconformal on Ω .

The last two theorems give the impression that h_f and H_f are interchangeable. However, this changes when we consider the following:

Theorem 4.6. If $H_f(x) < \infty$ a.e. on Ω , then f is differentiable a.e. on Ω .

This result is an easy consequence of the Rademacher Stepanov Theorem and the Lebesgue Differentiation Theorem. A proof of it can be found in ([8]). Because of its dependence on the Rademacher-Stepanov Theorem, it may not be surprising to learn that Theorem 4.6 is not true if we replace H_f with h_f :

Theorem 4.7 (Hanson,2012,[4]). Let $n \ge 2$. There exists a homeomorphism $g: (0,1)^n \to \mathbb{R}^n$ and a set $S \subset (0,1)^n$ such that

- 1. $\dim_{\mathcal{H}}(S) \leq n-1$
- 2. $h_q(x) = 1$ for all $x \in (0,1)^n \setminus S$
- 3. $H_q(x) = \infty$ for all $x \in (0,1)^n$
- 4. g is nowhere differentiable.

Theorem 4.7 follows directly from Theorem 1.4 by defining $g(x_1, x_2, \ldots, x_n) = (x_1, x_2, \ldots, x_{n-1}, x_n + f(x_1))$, where f is constructed as in Theorem 1.4. In the opposite direction the following result is an analogue of Theorem 1.5 (part (2)).

Theorem 4.8 (Kallunki, Koskela, 2000). Suppose that n = 2, $h_f(x) < \infty$ for all $x \in \Omega \setminus S$, where S has σ -finite length and $h_f \in L^2_{loc}(\Omega)$. Then f is differentiable a.e. on Ω .

In examining the proof of Theorem 4.8 it seems that there is good evidence that the integrability condition on h_f can be weakened, leading to the following conjecture:

Conjecture 3: Theorem 4.8 remains true if we replace the assumption $h_f \in L^2_{loc}(\Omega)$ with $h_f \in L^1_{loc}(\Omega)$.

Some Results about Big and Little Lip

5 Additional Questions

In addition to Conjectures 1-3, there are many interesting questions concerning the big and little lip functions and their relationship to each other. A few of them are listed below. We use the notation $l_f^{\infty} = \mathbb{R} \setminus l_f$ and $L_f^{\infty} = \mathbb{R} \setminus L_f$.

Q1: Is it possible to characterize l_f and L_f for monotone functions?

Q2: For which pairs of sets $\{E, G\}$ does there exist f such that $l_f = E$ and $L_f = G$?

Q3: Assume E is a G_{δ} set. We know that there is a continuous $f: \mathbb{R} \to \mathbb{R}$ such that $E = L_f^{\infty} = l_f^{\infty}$. Does there exist $f: \mathbb{R} \to \mathbb{R}$ such that $E = L_f^{\infty} = l_f^{\infty} = l_f^{\infty} = N_f$?

Q4: Given a G_{δ} set E of measure zero, there is a continuous, monotone function $f \colon \mathbb{R} \to \mathbb{R}$ such that $E = l_f^{\infty}$.

- 1. Can we require that $E = N_f$ as well?
- 2. If we do not require monotonicity, is $E = N_f = l_f^{\infty}$ (in case the above should fail) or even $E = N_f = l_f^{\infty} = L_f^{\infty}$ possible?

References

- Balogh Z., and M. Csörnyei, Scaled Oscillation and Regularity, Proc. Amer. Math. Soc. 134 9, (2006),2667-2675.
- [2] Buczolich Z., Hanson B., Rmoutil M., Zürcher T., On sets where lip f is finite, in preparation.
- [3] Gehring F.W., Rings and quasiconformal mappings in space, Trans. Amer. Math. Soc. 103 (1962),353-393.
- [4] Hanson, B. Linear Dilatation and Differentiability of Homeomorphisms of ℝⁿ.. Proc. Amer. Math. Soc. 140 (2012), nr.10, 3541-3547.
- [5] Hanson, B. Sets of Non-differentiability for Functions with Finite Lower Scaled Oscillation. Real Analysis Exchange. 41(1) (2016), 87-100.
- [6] Heinonen, J., and P.Koskela, *Definitions of Quasiconformality*, Invent. Math. 120(1995),61-79.

- [7] Kallunki,S., and P.Koskela, Exceptional sets for the definition of quasiconformality, American Journal of Mathematics 122(2000),735-743.
- [8] Kallunki,S., and O.Martio, ACL homeomorphisms and linear dilatation, Proc.Amer.Math.Soc. 130 (2002),1073-1078.
- [9] Piranian, G., The set of non-differentiability of a continuous function, Amer. Math. Monthly 74(4) (1966), no.4, 57-61.
- [10] Zahorski Z., Sur l'ensemble des points de non-dérivabilité d'une fonction continue, Bull. Soc. Math. France 74 (1946), 147-178.