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Abstract

Let f : R → R be continuous. We examine the relationship between
the so-called “big Lip” and “little lip” functions: Lip f and lip f .

1 Introduction

Throughout this note we will assume that f is a continuous, real-valued func-
tion defined on R. Recall that f is Lipschitz (on R) if there exists M > 0 such
that |f(x)− f(y)| ≤ M |x− y| for all x, y ∈ R. If there is such a constant M ,
we will say that f is M -Lipschitz. Lipschitz functions are rather well behaved:

Theorem 1.1 (Rademacher, 1919). If f is Lipschitz, then f is differentiable
a.e. on R.

One can weaken the Lipschitz assumption in Rademacher’s Theorem and
still reach the same conclusion by requiring that f satisfy a local Lipschitz
condition. For this we need the so-called “big Lip” function defined as follows:

Lip f(x) = lim sup
r→0+

Mf (x, r)

r
,

where
Mf (x, r) = sup{|f(x)− f(y)| : |x− y| ≤ r}.

Then it is not hard to show the following:
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Basic Result: f is M -Lipschitz if and only if Lip f(x) ≤M for all x ∈ R.

More interesting is the following generalization of Rademacher’s Theorem:

Theorem 1.2 (Rademacher-Stepanov, 1923). Suppose that f is continuous
on R. Then f is differentiable a.e. on Lf = {x ∈ R : Lip f(x) <∞}.

In particular, if Lip f(x) <∞ for all x ∈ R, then f is differentiable a.e. on
R.

If we replace the lim sup in the definition of Lip f with a lim inf, we get
the so-called “little lip” function:

lip f(x) = lim inf
r→0+

Mf (x, r)

r
.

The Basic Result above remains true with Lip f replaced with lip f . On
the other hand, the Rademacher-Stepanov theorem fails spectacularly if we
replace Lf with lf = {x ∈ R : lip f(x) <∞} as the following result shows:

Theorem 1.3 (Balogh and Csörnyei, 2006, [1]).

1. There exists a continuous function f : R → R with lip f(x) = 0 a.e. on
R, but such that f is nowhere differentiable on R.

2. There exists a continuous function f : R → R and a set A ⊂ R of
positive measure such that lip f(x) <∞ for all x ∈ R, but f is nowhere
differentiable on A.

It is possible to make the exceptional set E = {lip f(x) 6= 0} in part (1)
quite small:

Theorem 1.4 (Hanson, 2012,[4]). There exists a set S ⊂ R of Hausdorff
dimension 0 and a continuous function f : R → R such that lip f(x) = 0 for
all x ∈ R\S and f is nowhere differentiable on R.

In both Theorem 1.3(1) and Theorem 1.4 the function f is constructed so
that Lip f(x) = ∞ for all x ∈ R. This highlights the fact that Lip f and
lip f can behave very differently. Off of a small exceptional set S we have
Lip f =∞ and lip f = 0.

However, it is not possible to construct a function f such that Lip f(x) =
∞ and lip f(x) < ∞ for all x ∈ R. This follows from the following result,
which allows us to recover a version of the Rademacher-Stepanov Theorem
involving the little lip function.
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Theorem 1.5 (Balogh and Csörnyei, 2006,[1]).

1. If f : R→ R is continuous and R\lf is countable, then f is differentiable
on a set of positive measure.

2. If f : R → R is continuous, R\lf is countable and lip f is locally inte-
grable, then f is differentiable a.e. on R.

The integrability condition in part (2) of this result is quite sharp. For
example, in part (2) of Theorem 1.3 the construction can be carried out so
that f is locally in Lp for every p < 1.

2 Characterizing Nf

In this section we consider the problem of characterizing sets of non-differentiability
for functions f with Lip f (or lip f) finite everywhere on R. To streamline
the exposition we introduce the following notation: We define

Nf = {x : f is not differentiable at x},

and let Lip R = {f : Lf = R} and lip R = {f : lf = R}.
We would like to characterize Nf for functions in Lip R and lip R. In the

case of Lip R the work has essentially been accomplished by Zahorski, who
proved the following beautiful result:

Theorem 2.1 (Zahorski, 1942, [10]).

1. E = Nf for some continuous f : R → R if and only if E = E1 ∪ E2,
where E1 is Gδ, E2 is Gδσ, and |E2| = 0.

2. E = Nf for some Lipschitz f : R → R if and only if |E| = 0 and
E is Gδσ.

Note: The set E is Gδ if E can be written as the intersection of countably
many open sets. A Gδσ set is a countable union of Gδ sets. Furthermore, we
use |E| to denote the Lebesgue measure of E.

Using the Rademacher-Stepanov Theorem we can reframe part (2) of Za-
horski’s Theorem as follows:

Theorem 2.2. E = Nf for some f ∈ Lip R if and only if |E| = 0 and
E is Gδσ.
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Characterizing Nf for functions in lip R appears to be more difficult. As-
sume for the moment that f ∈ lip R. Then f is continuous so by part (1) of
Zahorski’s Theorem it follows that Nf = E1 ∪ E2, where E1 is Gδ, E2 is Gδσ
and |E2| = 0. Additionally, it follows from the proof of part (1) of Theorem
1.4 that |Nf ∩ (a, b)| < b− a for all (a, b) ⊂ R. We introduce the following:

Definition 2.3. A subset E of R is trim if |E ∩ (a, b)| < b − a for all open
intervals (a, b).

Based on our work so far we can make the following conjecture:

Conjecture 1: E = Nf for some f ∈ lip R if and only if E = E1 ∪ E2

where E1 is trim Gδ, E2 is Gδσ and |E2| = 0.

Of course, the forward direction of the conjecture has been established. In
the other direction the following is known:

Theorem 2.4 (Hanson, 2016,[5]).

1. If E is closed and nowhere dense, then there exists f ∈ lip R such that
Nf = E.

2. If E is trim and Gδ, then there exists f ∈ lip R such that |E4Nf | = 0.

3 Characterizing Lf and lf

Another interesting problem to consider is that of characterizing Lf and lf for
continuous functions f . As with the case of characterizing Nf , this problem
is more straightforward for Lf . For this case we have the following:

Theorem 3.1. E = Lf for some continuous function f : R → R if and only
if E is Fσ.

Proving the forward direction of this result is a straightford exercise. The
reverse direction follows easily from a result of Piranian ([9]).

Moving on to the problem of characterizing lf , it is easy to show that if
f is continuous, then lf is a Gδσ set, which leads to the following natural
conjecture:

Conjecture 2: E = lf for some continuous f if and only if E is a Gδσ set.
A partial result in this direction is the following:

Theorem 3.2 (Buczolich, Hanson, Rmoutil, Zürcher [2]). If E is either Fσ
or Gδ, then there exists continuous f : R→ R such that lf = E.

The proof of the Gδ case in this theorem is already quite involved. It
appears to be quite challenging to extend the proof to the Gδσ case.
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4 Connections between lip f and quasiconformal map-
pings

There is a nice connection between big and little lip and the theory of qua-
siconformal functions. In this section we assume that Ω and Ω′ are open,
connected subsets of Rn with n ≥ 2 and f : Ω → Ω′ is an orientation pre-
serving homeomorphism. Let ||Df || denote the operator norm of the matrix
of partial derivatives of f and Jf the determinant of this matrix. Then the
analytic definition of a quasiconformal mapping is the following:

Definition 4.1. f is quasiconformal on Ω if f ∈ W 1,n
loc (Ω) and there is a

constant K ≥ 1 such that ||Df(x)||n ≤ KJf (x) a.e. on Ω.

Quasiconformal functions can also be characterized using a more geometric
approach. Define

Hf (x) = lim sup
r→0+

Mf (x, r)

mf (x, r)
,

whereMf (x, r) = sup
|x−y|=r

|f(x)− f(y)| andmf (x, r) = inf
|x−y|=r

|f(x)− f(y)|.

The function Hf is known as the linear dilatation of f . The following
classical result relates Hf to the analytic definition of quasiconfomality:

Theorem 4.2 (Gehring, 1960). f is quasiconformal on Ω if and only if there
exists K ≥ 1 such that Hf (x) ≤ K for all x ∈ Ω.

A few years later Gehring showed that the hypotheses on Hf can be weak-
ened a bit and still give the same conclusion:

Theorem 4.3 (Gehring, 1962,[3]). Suppose that S ⊂ Ω with σ-finite n − 1
dimensional measure, Hf (x) <∞ for all x ∈ Ω\S and there is a K <∞ such
that Hf (x) ≤ K a.e. on Ω. Then f is quasiconformal on Ω.

Taking the same approach with Hf as we did with Lip f we define a
“lim inf” version of the linear dilatation as follows:

hf (x) = lim inf
r→0+

Mf (x, r)

mf (x, r)
.

Another way to weaken the hypotheses in Theorem 4.6 is by replacing Hf

with hf . In [6] Heinonen and Koskela showed, surprisingly enough, that doing
so does not affect the conclusion:

Theorem 4.4 (Heinonen, Koskela 1995). f is quasiconformal on Ω if and
only if hf (x) ≤ K <∞ for all x ∈ Ω.
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More recently Kallunki and Koskela, [7] showed that Theorem 4.3 is also
true with Hf replaced by hf :

Theorem 4.5 (Kallunki, Koskela, 2000). Suppose that S is a subset of Ω with
σ-finite n − 1 dimensional measure, hf (x) < ∞ for all x ∈ Ω\S and there is
a K <∞ such that hf (x) ≤ K a.e. on Ω. Then f is quasiconformal on Ω.

The last two theorems give the impression that hf and Hf are interchange-
able. However, this changes when we consider the following:

Theorem 4.6. If Hf (x) <∞ a.e. on Ω, then f is differentiable a.e. on Ω.

This result is an easy consequence of the Rademacher Stepanov Theorem
and the Lebesgue Differentiation Theorem. A proof of it can be found in ([8]).
Because of its dependence on the Rademacher-Stepanov Theorem, it may not
be surprising to learn that Theorem 4.6 is not true if we replace Hf with hf :

Theorem 4.7 (Hanson,2012,[4]). Let n ≥ 2. There exists a homeomorphism
g : (0, 1)n → Rn and a set S ⊂ (0, 1)n such that

1. dimH(S) ≤ n− 1

2. hg(x) = 1 for all x ∈ (0, 1)n\S

3. Hg(x) =∞ for all x ∈ (0, 1)n

4. g is nowhere differentiable.

Theorem 4.7 follows directly from Theorem 1.4 by defining g(x1, x2, . . . , xn) =
(x1, x2, . . . , xn−1, xn + f(x1)), where f is constructed as in Theorem 1.4. In
the opposite direction the following result is an analogue of Theorem 1.5 (part
(2)).

Theorem 4.8 (Kallunki, Koskela, 2000). Suppose that n = 2, hf (x) < ∞
for all x ∈ Ω\S, where S has σ-finite length and hf ∈ L2

loc(Ω). Then f is
differentiable a.e. on Ω.

In examining the proof of Theorem 4.8 it seems that there is good evidence
that the integrability condition on hf can be weakened, leading to the following
conjecture:

Conjecture 3: Theorem 4.8 remains true if we replace the assumption
hf ∈ L2

loc(Ω) with hf ∈ L1
loc(Ω).
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5 Additional Questions

In addition to Conjectures 1-3, there are many interesting questions concerning
the big and little lip functions and their relationship to each other. A few of
them are listed below. We use the notation l∞f = R\lf and L∞f = R\Lf .

Q1: Is it possible to characterize lf and Lf for monotone functions?

Q2: For which pairs of sets {E,G} does there exist f such that lf = E
and Lf = G?

Q3: Assume E is a Gδ set. We know that there is a continuous f : R→ R
such that E = L∞f = l∞f . Does there exist f : R → R such that E = L∞f =
l∞f = Nf?

Q4: Given a Gδ set E of measure zero, there is a continuous, monotone
function f : R→ R such that E = l∞f .

1. Can we require that E = Nf as well?

2. If we do not require monotonicity, is E = Nf = l∞f (in case the above
should fail) or even E = Nf = l∞f = L∞f possible?
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