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WEAKLY SYMMETRIC FUNCTIONS AND
WEAKLY SYMMETRICALLY
CONTINUOUS FUNCTIONS

Abstract

We prove that there exists a nowhere weakly symmetric function
f : R → R that is everywhere weakly symmetrically continuous and
everywhere weakly continuous. Existence of a nowhere weakly sym-
metrically continuous function f : R → R that is everywhere weakly
symmetric remains open.

1 Introduction

Throughout this paper, f : R → R is a function. It is known that there does
not exist an everywhere symmetrically continuous function that is nowhere
symmetric. However, there exists an everywhere symmetric function that
is nowhere symmetrically continuous. It is easy to see from a theorem of
K. Ciesielski and L. Larson that there exists a nowhere weakly symmetric
and nowhere weakly symmetrically continuous function. In this paper, we
prove that there exists a nowhere weakly symmetric function f : R → R
that is everywhere weakly symmetrically continuous and everywhere weakly
continuous.

Definitions. Let f : R → R be a function. Then f is said to be sym-
metrically continuous (respectively symmetric) at x ∈ R if limh→0[f(x+ h)−
f(x − h)] = 0 (respectively limh→0[f(x + h) + f(x − h) − 2f(x)] = 0); f
is weakly symmetrically continuous (respectively weakly symmetric) at x if
there exists a sequence hn ↘ 0 such that limn→∞[f(x+ hn)− f(x− hn)] = 0
(respectively limn→∞[ f(x + hn) + f(x − hn) − 2f(x)] = 0); f is weakly
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continuous at x if there exist sequences hn ↘ 0 and kn ↘ 0 such that
limn→∞ f(x− hn) = f(x) = limn→∞ f(x+ kn).

Notations. The symbols SCw(f) and Sw(f) denote, respectively, the set
of all points where f is weakly symmetrically continuous and the set of all
points where f is weakly symmetric. The set of all points where f is weakly
continuous is denoted by Cw(f).

2 Theorems and examples

t

Theorem 1. [5] There does not exist an everywhere symmetrically continuous
function f : R→ R that is nowhere symmetric.

Corollary 7.3.3 in [2] implies the following.

Example 1. There exists an everywhere symmetric functionf : R → Q that
is nowhere symmetrically continuous.

We analyze similar statements for weakly symmetrically continuous func-
tion and weakly symmetric functions.

Existence of a function f : R→ N with Sw(f) = ∅ = SCw(f) follows from
a theorem in [1].

Theorem 2. There exists a function f : R → N that is nowhere weakly
symmetric and nowhere weakly symmetrically continuous.

Proof. Theorem 1.1 in [1] shows that there exists a partition {Pn : n ∈ N}
of R such that for each x ∈ R, the set ∪n∈N{h > 0 : x − h, x + h ∈ Pn} is
finite. The function f : R → N defined by f(x) = 2n for x ∈ Pn is nowhere
weakly symmetric and nowhere weakly symmetrically continuous.

We prove that there exists a function f : R → { 1n : n ∈ N} such that
Sw(f) = ∅ and SCw(f) = R = Cw(f).

Theorem 3. There exists a nowhere weakly symmetric function f : R→ { 1n :
n ∈ N} that is everywhere weakly symmetrically continuous and everywhere
weakly continuous.

Proof. Let B = {bξ : ξ < c} be a linear basis of R over Q and let 0 6= x ∈ R.

Then x can be written uniquely as x =
∑k
i=1 qibαi , where qi ∈ Q\{0}, bαi ∈ B

and (αi)1≤i≤k is an increasing sequence. The length L(x) of x is defined to

be k. Define a function g : R → R by g(x) =
∑k
i=1 qibi and g(0) = 0. An

equivalence relation ∼ on R is defined as follows. For x, y ∈ R, x ∼ y if
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and only if g(x) = g(y). Since the set {g(x) : x ∈ R} is countably infinite
and the equivalence classes are either disjoint or the same, the set of distinct
equivalence classes is countably infinite. Let E = {[eu, v] : u, v ∈ N} ∪ {[0]}
be the set of all distinct equivalence classes, where L(eu, v) = u ∀v ∈ N. For
x, h ∈ R \ {0}, let

x =
k∑
i=1

qibαi
, x+ h =

m∑
i=1

xibβi
and x− h =

n∑
i=1

yibγi ,

where qi, xi, yi ∈ Q \ {0} and (αi)1≤i≤k, (βi)1≤i≤m, (γi)1≤i≤n are increasing
sequences. Define a function f : R → Q by f(x) = 1

5u11v for x ∈ [eu, v] and
f(0) = 1.

Claim 1. f(x+ h) + f(x− h) 6= 2f(x) ∀h ∈ R \ {0}.

Proof of the claim. Assume, to the contrary, that f(x+h)+f(x−h) = 2f(x).
It can be shown that, for s, t, u, v, a, b ∈ N,

1

5s11t
+

1

5u11v
=

2

5a11b

if and only if s = u = a and t = v = b. Consequently, [x+ h] = [x] = [x− h],
which implies that g(x+h) = g(x) = g(x−h) and k = m = n. If βj /∈ {αi : 1 ≤
i ≤ k} for some 1 ≤ j ≤ k, then, since 2x = (x+h)+(x−h) and xj 6= 0, we have
0 = xj+yj , which contradicts that g(x+h) = g(x−h). Therefore (αi)1≤i≤k =

(βi)1≤i≤k. Similarly, (αi)1≤i≤k = (γi)1≤i≤k. So x + h =
∑k
i=1 xibαi

, x− h =∑k
i=1 yibαi

and
∑k
i=1 xibi = g(x + h) = g(x − h) =

∑k
i=1 yibi. This implies

that xi = yi ∀1 ≤ i ≤ k and x+ h = x− h, a contradiction.
Thus, f(x+ h) + f(x− h) 6= 2f(x) ∀h ∈ R \ {0}. �

We show that for any fixed x ∈ R, there exists a positive number K such
that |f(x+ h) + f(x− h)− 2f(x)| ≥ K ∀h ∈ R \ {0}, and hence, Sw(f) = ∅.
Recall that f(0) = 1. Clearly, the statement is true for x = 0. Let a and b be
fixed positive integers,

f(x) =
1

5a11b
, f(x+ h) =

1

5s11t
and f(x− h) =

1

5u11v
,

where h 6= 0. If s or t > a+2b, then 1
5s11t <

1
5a11b

and
∣∣ 1
5s11t −

2
5a11b

∣∣ > 1
5a11b

.
Let

L = inf

{∣∣∣∣ 1

5s11t
− 2

5a11b

∣∣∣∣ : ∀s, t ∈ N
}

.

Since
{

1
5s11t −

2
5a11b

: s, t ≤ a+ 2b
}

is a finite set of nonzero numbers, L >
0. It is easy to see that there exists a positive integer M > a such that
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∣∣ 1
5s11t + 1

5u11v −
2

5a11b

∣∣ > L
2 ∀s, t, u, v ∈ N and s, t, u or v > M . Notice that,

by Claim 1, it is not possible that s = u = a and t = v = b. Let K be the
minimum of

{
L
2 ,
∣∣ 1
5s11t + 1

5u11v −
2

5a11b

∣∣ : s, t, u and v ≤M
}

. Then K > 0
and |f(x+ h) + f(x− h)− 2f(x)| ≥ K ∀h ∈ R \ {0}. Consequently, f(x +
hn) + f(x− hn)− 2f(x) 9 0 as hn → 0. Thus, Sw(f) = ∅.

To prove that SCw(f) = R and Cw(f) = R, choose a Hamel basis B
such that |B ∩ I| = |R| for every nonempty open interval I. Recall that x =∑k
i=1 qibαi . Let (bµn)1≤n<ω be a sequence in B ∩ (0, 1) such that (µn)1≤n<ω

is an increasing sequence and αk < µ1 < c . Let hn = 1
2n

∑n
i=1 bµi . Clearly,

L(x±hn) ≥ n and 0 ≤ f(x±hn) ≤ 1
5n and hn → 0. So f(x+hn)− f(x−hn)→

0 and SCw(f) = R. There exists an increasing sequence (qkbζn)1≤n<ω and a
decreasing sequence (qkbλn

)1≤n<ω such that ζn > αk ∀n, λn > αk ∀n and both
(qkbζn)1≤n<ω and (qkbλn

)1≤n<ω converge to qkbαk
. Let pn = qkbαk

−qkbζnand
kn = −qkbαk

+ qkbλn . Then pn ↘ 0 and kn ↘ 0 and f(x − pn) = f(x) =
f(x+ kn) ∀n. Thus, Cw(f) = R.

Problem 1. Does there exist a nowhere weakly symmetrically continuous
function f : R→ R that is everywhere weakly symmetric?
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