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SPECIAL MAXIMAL OPERATOR AND A+
p

WEIGHTS

Abstract

We introduce a special maximal operator associated to a special vari-
ant of Muckenhoupt’s weights. By using this special maximal operator,
we can construct the special weights. We also prove a weighted weak-
type estimate of the special maximal operator.

1 Introduction

1.1 Setup

In this note, we study the special maximal operator on the upper half plane
and the A+

p weights. To begin, we first introduce the A+
p class.

Definition 1.1. A measurable function µ is a weight on the upper half plane
R2

+ if µ > 0 almost everywhere and is locally integrable on R2
+.

Definition 1.2. A disk in R2
+ is said to be a special disk if it is centered at

some x ∈ R, where R denotes the topological boundary of R2
+.

Definition 1.3. For p > 1, let p′ denote the conjugate exponent of p. We
say the two weights µ1 and µ2 are in the A+

p (R2
+) class, denoted by (µ1, µ2) ∈

A+
p (R2

+), if there is a positive constant c such that

1∣∣D ∩ R2
+

∣∣ ∫
D∩R2

+

µ1(z) dA(z)

(
1∣∣D ∩ R2

+

∣∣ ∫
D∩R2

+

µ2(z)−
p′
p dA(z)

) p
p′

≤ c

for all special disks D. For some weight µ, if (µ, µ) ∈ A+
p (R2

+), we may simply
adopt the notation µ ∈ A+

p (R2
+).

Mathematical Reviews subject classification: Primary: 42B20, 42B25
Key words: maximal operator, A+

p weights
Received by the editors May 4, 2015
Communicated by: Viktor Kolyada

435



436 L. Chen

We have defined the A+
p (R2

+) class for p > 1. Now we extend this class to
the case p = 1.

Definition 1.4. Two weights µ1 and µ2 on R2
+ are in the class A+

1 (R2
+),

denoted by the ordered pair (µ1, µ2) ∈ A+
1 (R2

+), if there is a c > 0 such that,
for all special disks D, we have

1∣∣D ∩ R2
+

∣∣ ∫
D∩R2

+

µ1(ζ) dA(ζ) ≤ cµ2(z)

for any z ∈ D ∩R2
+. Again, for some weight µ, if it satisfies (µ, µ) ∈ A+

1 (R2
+),

we simply adopt the notation µ ∈ A+
1 (R2

+).

Now we introduce a suitable maximal operator associated to the A+
p (R2

+)
class.

Definition 1.5. For any measurable function f on R2
+, we define the special

maximal operator M̃+ by

M̃+(f)(z) = sup
z∈D

1∣∣D ∩ R2
+

∣∣ ∫
D∩R2

+

|f(ζ)| dA(ζ)

for z ∈ R2
+, where the supremum is taken over all special disks D containing

z.

Remark 1.6. It is clear that the special maximal function M̃+(f) is lower
semi-continuous.

Remark 1.7. It is easy to see that (µ1, µ2) ∈ A+
1 (R2

+) if and only if M̃+(µ1) ≤
cµ2. In particular, a weight µ belonging to the class A+

1 (R2
+) is equivalent to

M̃+(µ) ≤ cµ.

1.2 Results

After introducing the basic definitions, we can state our main results.

Theorem 1.8. Let f be a measurable funciton on R2
+. Then, for any 0 < q <

1, the function
(
M̃+(f)

)q
is in A+

1 (R2
+).

Remark 1.9. This theorem tells us how to construct an A+
1 weight. Together

with Proposition 2.1, we introduce a way to construct an A+
p weight; for

Proposition 2.1, see section 2.
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Theorem 1.10. Assume that p ≥ 1. Suppose µ1 and µ2 are two weights on
R2

+. Then we have a weak-type (p, p) inequality: namely, there is a constant
c > 0 such that

µ1

({
z ∈ R2

+ : M̃+(f)(z) > α
})
≤ c

αp

∫
R2

+

|f(z)|p µ2(z) dA(z) (1.1)

for all α > 0, if and only if (µ1, µ2) ∈ A+
p (R2

+).

Remark 1.11. This theorem is an analogue of the classical result for the Hardy–
Littlewood maximal operator; see [6, Theorem 1 and Theorem 8].

1.3 Background

In potential theory and classical harmonic analysis, it is of particular interest
to obtain the weighted estimate of a singular integral and the weighted mean
convergence of orthogonal series.

In the 1970s, Muckenhoupt introduced the Ap class to show that a nec-
essary and sufficient condition for the Hardy–Littlewood maximal operator
to be weighted Lp-bounded is the weight belonging to the Ap class; see [6].
This result is shown to be very important in proving the weigthed Lp and
the weighted BMO estimates of the Hilbert transform by Hunt, Muckenhoupt
and Wheeden; see [3, 7]. By considering Muckenhoupt’s results, Coifman and
Fefferman proved the weighted Lp boundedness of a general singular integral
in [2].

In contrast to the classical results, we are interested in the weighted Lp

estimate of the 2-dimensional analogue of the so-called Hilbert integral. The
Hilbert integral, which was introduced by Phong and Stein in [9, 10], is a
sibling of the Hilbert transform. It is defined by

H(f)(x) =

∫ ∞
0

f(y) dy

x+ y

for any f ∈ C∞c (R+), where x > 0. If we consider the Bergman projection on
the upper half plane, then we have a similar expression

B(f)(z) =
1

π

∫
R2

+

−f(w) dA(w)

(z − w)2

for any f ∈ C∞c (R2
+), where z ∈ R2

+. This type of operator, although not
singular at the diagonal line of the product domain, has a very close relation
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with the general Calderón-Zygmund singular integrals; see [4, 5]. In particular,
the follwoing two-weight estimate∫

R2
+

|B(f)(z)|p µ1(z) dA(z) ≤ C
∫
R2

+

|f(z)|p µ2(z) dA(z), (1.2)

where µ1 and µ2 are two weights on R2
+, has many interesting applications;

see [1] for some special cases.
In [4], Lanzani and Stein proved, for 1 < p < ∞, that the estimate (1.2)

holds for a single weight µ = µ1 = µ2 if and only if µ ∈ A+
p (R2

+). By slight
modifications of the proof in [4], the author in [1] improved the previous result:
if µ1 and µ2 are two weights such that cµ1 ≥ µ2 for some c > 0, then (1.2)
holds if and only if (µ1, µ2) ∈ A+

p (R2
+). Based on these facts, it is natural to

consider the more general situation.

Conjecture 1.12. For 1 < p < ∞, if the two weights µ1 and µ2 satisfy
(µ1, µ2) ∈ A+

p (R2
+), then (1.2) holds for some C > 0.

By considering the result in [8], we are also interested in the following
variant.

Conjecture 1.13. For 1 < p < ∞, if the two weights µ1 and µ2 satisfy
(µr1, µ

r
2) ∈ A+

p (R2
+) for some r > 1, then (1.2) holds for some C > 0.

Note that the A+
p class is a variant of the Ap class. So we suspect that

the special maximal operator M̃+ is the corresponding variant of the Hardy-
Littlewood maximal operator associated to the A+

p class. According to the
classical results, the weighted Lp estimate of the special maximal operator
M̃+ may play an important role in proving Conjecture 1.12 and Conjecture
1.13.

Moreover, if we consider the “absolute value” of the Bergman projection
on the upper half plane

B̃(f)(z) =
1

π

∫
R2

+

f(w) dA(w)

|z − w|2
,

then we see, for f ≥ 0 and z, z′ ∈ R2
+, that

B̃(f)(z′) ≥ B̃(f)(z)

whenever <(z′) = <(z) and =(z′) ≤ =(z). It is not difficult to see that the

special maximal operator M̃+ also enjoys the same property above as B̃. In
view of this, we hope that Theorem 1.8 and Theorem 1.10 could provide some
clues to prove Conjecture 1.12 and Conjecture 1.13.
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1.4 Organization and outline

In section 2, following the ideas in the classical results, we introduce a way to
construct an A+

p weight from two A+
1 weights. In section 3, we prove a useful

covering lemma and an interesting mapping property of the special maximal
operator M̃+. In section 4, we give the proof of Theorem 1.8. In section 5, we
prove Theorem 1.10.

2 Construction of an A+
p weight

In this section, we give a simple observation for a special product of two A+
1

weights.

Proposition 2.1. Suppose that µ1 and µ2 are two weights and µj ∈ A+
1 (R2

+),

j = 1, 2. Then, for 1 ≤ p <∞, we have µ1µ
1−p
2 ∈ A+

p (R2
+).

Proof. By definition, for j = 1, 2, we have

1∣∣D ∩ R2
+

∣∣ ∫
D∩R2

+

µj(z) dA(z) ≤ c inf
z∈D∩R2

+

µj(z)

for all special disks D. Then we see that

1∣∣D ∩ R2
+

∣∣ ∫
D∩R2

+

µ1(z)µ2(z)1−p dA(z) ≤ c inf
z∈D∩R2

+

µ1(z)

(
inf

z∈D∩R2
+

µ2(z)

)1−p

and (
1∣∣D ∩ R2

+

∣∣ ∫
D∩R2

+

(
µ1(z)µ2(z)1−p

)− p′
p dA(z)

) p
p′

≤ c
(

inf
z∈D∩R2

+

µ1(z)

)−1(
inf

z∈D∩R2
+

µ2(z)

)p−1
.

Combining these two inequalities above, we obtain µ1µ
1−p
2 ∈ A+

p (R2
+).

Remark 2.2. From Proposition 2.1, we see that as long as we have two A+
1 (R2

+)
weights, we can construct an A+

p (R2
+) weight by taking a special product of

the two A+
1 (R2

+) weights.
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3 Two useful lemmas

3.1 Special squares

We first define the special squares associated to the special maximal operator
M̃+ and the corresponding special disks, .

Definition 3.1. A square is said to be a special square if it is of the form

S̃j,k = {x+ iy ∈ R2
+ : j · 2k ≤ x ≤ (j + 1) · 2k and 0 ≤ y ≤ 2k},

where j, k ∈ Z. Given a special square S̃j,k, we define

S̃∗j,k = {x+ iy ∈ R2
+ : (j − 2) · 2k ≤ x ≤ (j + 3) · 2k and 0 ≤ y ≤ 5 · 2k}.

3.2 A covering lemma

With the definition of the special squares, we can state a covering lemma,
which is an analogue of [6, Lemma 7].

Lemma 3.2. Let f ≥ 0 be an integrable function on R2
+, and suppose α > 0.

Then there is a sequence of measurable sets {Wl} and a sequence of special

squares {S̃l} such that

(a) The intersection of different Wl’s has measure 0,

(b) S̃l ⊂Wl ⊂ S̃∗l ,

(c) α
16

∣∣∣S̃l∣∣∣ ≤ ∫Wl
f(ζ) dA(ζ),

(d) If M̃+(f)(z) > α, then z ∈
⋃
Wl.

Proof. Following the idea in [6], we argue as in the classical Calderón-
Zygmund lemma. Since

∫
R2

+
f(ζ) dA(ζ) <∞, there is a k0 ∈ Z+ such that, for

all k ≥ k0 and all j ∈ Z, we have

1

|S̃j,k|

∫
S̃j,k

f(ζ) dA(ζ) ≤ α

16
. (3.1)

For the k = k0 − 1 level, to each j ∈ Z, we have either (3.1) still true or

α

16
<

1

|S̃j,k|

∫
S̃j,k

f(ζ) dA(ζ) ≤ α

4
. (3.2)
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The right-hand side of (3.2) follows from (3.1) in the k+1 level. If (3.2) holds

for this j, we collect this special square S̃j,k into the sequence {S̃l}; otherwise

we continue this process to the k− 1 level in this S̃j,k. Therefore, we obtain a

sequence of almost disjoint special squares {S̃l} satisfying (3.2).

Define W1 = S̃∗1\
(⋃

m 6=1 S̃m

)
, and successively let

Wl = S̃∗l \

⋃
m6=l

S̃m ∪
⋃
l′<l

Wl′

 ,

for l > 1. Properties (a) and (b) are easy to check from this definition.

Property (c) follows from S̃l ⊂ Wl and S̃l satisfies (3.2). If M̃+(f)(z) > α,
then there is a special disk Dz = Dr(x0) centered at x0 ∈ R with radius r > 0
such that z ∈ Dz and

1∣∣Dz ∩ R2
+

∣∣ ∫
Dz∩R2

+

f(ζ) dA(ζ) > α.

If 2k1−1 ≤ r < 2k1 for some k1 ∈ Z, then Dz intersects at most three special
squares S̃j,k1 ’s and it is contained in the union of these squares. Moreover, we
have ∣∣Dz ∩ R2

+

∣∣ ≤ π

2

∣∣∣S̃j,k1∣∣∣ < 4
∣∣Dz ∩ R2

+

∣∣ .
Therefore, at least one such special square, say S̃j1,k1 , satisfies∫

Dz∩R2
+∩S̃j1,k1

f(ζ) dA(ζ) >
1

3
α
∣∣Dz ∩ R2

+

∣∣ .
So we obtain ∫

S̃j1,k1

f(ζ) dA(ζ) >
π

24
α
∣∣∣S̃j1,k1∣∣∣ > α

16

∣∣∣S̃j1,k1∣∣∣ .
From our construction of the sequence {S̃l}, S̃j1,k1 cannot be any of those

satisfying (3.1), so S̃j1,k1 is contained in one of the special squares {S̃l}. Since

S̃j1,k1 intersects Dz, we must have z ∈ Dz ⊂ S̃∗j1,k1 ⊂ S̃∗l1 for some l1. By the

definition of {Wl}, if z is not in W1, . . . ,Wl1 , then z must be in S̃m1 for some
m1. Hence z ∈Wm1

, which implies (d).
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3.3 A mapping property of M̃+

Now we introduce an interesting mapping property of the special maximal
operator M̃+.

Lemma 3.3. Let f be a measurable funciton on R2
+. Then either M̃+(f)(z) =

∞ for all z ∈ R2
+, or M̃+(f)(z) <∞ for all z ∈ R2

+.

Proof. Assuming that M̃+(f)(z) = ∞ for some z ∈ R2
+, we show that

M̃+(f)(z′) =∞ for any z′ ∈ R2
+. By definition, there is a sequence of special

disks {Dn} with z ∈ Dn and

1∣∣Dn ∩ R2
+

∣∣ ∫
Dn∩R2

+

|f(ζ)| dA(ζ) > n (3.3)

for all n ∈ Z+. Let rn be the radius of Dn, and let xn be the center. Then
Dn = Drn(xn). Since z ∈ Dn, we see rn > =(z) > 0.

If {rn} is not bounded above, then by selecting a subsequence, we may
assume that lim rn =∞. Then, given any z′ ∈ R2

+, we have rn ≥ |z′ − z| for n
sufficiently large. In this case, it is easy to see that z′ ∈ D2rn(xn), the special
disk centered at xn with radius 2rn. From (3.3), we see that

1∣∣D2rn(xn) ∩ R2
+

∣∣ ∫
D2rn (xn)∩R2

+

|f(ζ)| dA(ζ) >
1

4
n

for n sufficiently large. This implies M̃+(f)(z′) =∞.
If {rn} is bounded above, then by selecting a subsequence, we may assume

that lim rn = r for some r with =(z) ≤ r < ∞. Note that, since z ∈ Dn, we
have <(z) ∈ Dn, so Dn ⊂ D3r(<(z)) for n sufficiently large, where D3r(<(z))
is a special disk centered at <(z) with radius 3r. Therefore, from (3.3), we see
that ∫

D3r(<(z))∩R2
+

|f(ζ)| dA(ζ) >
1

2
nπr2n ≥ cn,

where c = 1
2π=(z) > 0, for n sufficiently large. So we obtain∫

D3r(<(z))∩R2
+

|f(ζ)| dA(ζ) =∞.

Now, for any z′ ∈ R2
+, it is easy to see that z′ ∈ D3r+|z′−z|(<(z)), the special

disk centered at <(z) with radius 3r + |z′ − z|. From the equality above, we
have

1∣∣D3r+|z′−z|(<(z)) ∩ R2
+

∣∣ ∫
D3r+|z′−z|(<(z))∩R

2
+

|f(ζ)| dA(ζ) =∞,
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which implies M̃+(f)(z′) =∞. This completes the proof.

4 Construction of A+
1 weights

Now we are ready to apply M̃+ to construct A+
1 (R2

+) weights.

Proof of Theorem 1.8. It suffices to show the conclusion for f ≥ 0. By
Lemma 3.3, we can assume M̃+(f)(z) < ∞ for all z ∈ R2

+; otherwise, the

conclusion is trivial. If M̃+(f)(z) = 0 for some z ∈ R2
+, then it is easy to see

that f = 0 on R2
+. In this case, the conclusiong is trivial again. So we may

assume that 0 < M̃+(f) <∞ on R2
+.

We use an analogue of the argument in [11, Chapter 5.2]. Let µ(z) =(
M̃+(f)(z)

)q
; we show that M̃+(µ)(z) ≤ cµ(z). That implies µ ∈ A+

1 (R2
+).

Fixing z ∈ R2
+, we normalize f by dividing by M̃+(f)(z), so we may assume

that M̃+(f)(z) = 1 and µ(z) = 1. Hence it suffices to show that there is a
c > 0 such that

1∣∣D ∩ R2
+

∣∣ ∫
D∩R2

+

µ(ζ) dA(ζ) ≤ c (4.1)

for any special D containing z.

Given a special disk D = DR(x0) containing z, let f1 = χD2R(x0)∩R2
+
f and

f2 = f − f1. We first deal with f1. Let Vα = {ζ ∈ D ∩ R2
+ : M̃+(f1)(ζ) > α}.

We have

∫
D∩R2

+

(
M̃+(f1)(ζ)

)q
dA(ζ) =

∫ ∞
0

qαq−1 |Vα| dα

=

∫ 1

0

+

∫ ∞
1

qαq−1 |Vα| dα.
(4.2)

Since |Vα| ≤ |D|, we see that the first integral of (4.2) is bounded by cR2. For

the second integral, since M̃+(f)(z) = 1 and z ∈ D2R(x0) ∩ R2
+, we see that
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f1 is integrable on R2
+. By Lemma 3.2, we have

|Vα| ≤
∑
l

∣∣∣S̃∗l ∣∣∣ =
∑
l

25
∣∣∣S̃l∣∣∣

≤ c
∑
l

1

α

∫
Wl

f1(η) dA(η)

≤ c

α

∫
R2

+

f1(η) dA(η)

=
c

α

∫
D2R(x0)∩R2

+

f(η) dA(η)

≤ cR2

α
M̃+(f)(z)

=
cR2

α
.

So the second integral of (4.2) is bounded by cR2. Hence, so is (4.2).
Next we deal with f2. For any ζ ∈ D ∩ R2

+, we consider an arbitrary
special disk D′r that contains ζ and whose radius is r. It is easy to see that
D′r ⊂ D2r+R(x0). When 2r < R, we have D′r ⊂ D2r+R(x0) ⊂ D2R(x0). Since
f2 vanishes on D2R(x0) ∩ R2

+, we see that

1∣∣D′r ∩ R2
+

∣∣ ∫
D′r∩R2

+

f2(η) dA(η) = 0 < c,

for any c > 0. When 2r ≥ R, then (2r +R)2 ≤ 16r2, so we have∫
D′r∩R2

+

f2(η) dA(η) ≤
∫
D2r+R(x0)∩R2

+

f(η) dA(η)

≤
∣∣D2r+R(x0) ∩ R2

+

∣∣ M̃+(f)(z)

= c(2r +R)2

≤ cr2,

since z ∈ D ⊂ D2r+R(x0). In either case, we obtain

1∣∣D′r ∩ R2
+

∣∣ ∫
D′r∩R2

+

f2(η) dA(η) < c.

Since D′r is arbitrary, we see M̃+(f2)(ζ) ≤ c for any ζ ∈ D ∩ R2
+. Therefore,

we obtain ∫
D∩R2

+

(
M̃+(f2)(ζ)

)q
dA(ζ) ≤ cR2. (4.3)
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Combining (4.3) with the fact that (4.2) is bounded by cR2, we see that∫
D∩R2

+

(
M̃+(f)(ζ)

)q
dA(ζ) ≤ cR2,

which implies (4.1). This completes the proof.

5 The weak-type (p, p) estimate

Following the idea in [6], we now investigate the weak-type (p, p) mapping

property of the special maximal operator M̃+.

Proof of Theorem 1.10. We use an analogue of the argument in [6, The-
orem 8]. For the sufficient part, we only need to prove (1.1) for integrable
f ≥ 0. To see this, note that any measurable function f ≥ 0 on R2

+ can be
approximated by the increasing sequence {fχDR

}R>0, where DR = DR(x0) is
a sequence of special disks centered at x0 ∈ R with radius R. Note that the
set {z ∈ R2

+ : M̃+(f)(z) > α} is the increasing union of the same sets formed
with the fχDR

’s. If we prove (1.1) for fχDR
, then the monotonic convergent

theorem will imply (1.1) for f . Note that any fχDR
can be approximated

by an increasing sequence of simple functions. Since the support of fχDR
is

bounded, these simple functions are integrable. By the same limiting argu-
ment, (1.1) for integrable functions will imply (1.1) for fχDR

.

Let Vα = {z ∈ R2
+ : M̃+(f)(z) > α}. By Lemma 3.2, for p > 1, we have

µ1(Vα) ≤
∑
l

µ1(Wl)

≤
∑
l

µ1(Wl)

(
16

α|S̃l|

∫
Wl

f(z) dA(z)

)p

≤
∑
l

c

αp
µ1(Wl)

|S̃l|

∫
Wl

f(z)pµ2(z) dA(z)

(
1

|S̃l|

∫
Wl

µ2(z)−
p′
p dA(z)

)p/p′

≤
∑
l

c

αp

∫
Wl

f(z)pµ2(z) dA(z)
µ1(S̃∗l )

|S̃∗l |

(
1

|S̃∗l |

∫
S̃∗l

µ2(z)−
p′
p dA(z)

)p/p′

≤
∑
l

c

αp

∫
Wl

f(z)pµ2(z) dA(z)

≤ c

αp

∫
R2

+

f(z)pµ2(z) dA(z).



446 L. Chen

For p = 1, similarly, we have

µ1(Vα) ≤
∑
l

16µ1(Wl)

α|S̃l|

∫
Wl

f(z) dA(z)

≤
∑
l

c

α

µ1(Wl)

|S̃l|

∫
Wl

f(z)µ2(z) dA(z)

(
inf
z∈Wl

µ2(z)

)−1

≤
∑
l

c

α

∫
Wl

f(z)µ2(z) dA(z)
µ1(S̃∗l )

|S̃∗l |

(
inf
z∈S̃∗l

µ2(z)

)−1
≤ c

α

∫
R2

+

f(z)µ2(z) dA(z).

For the necessary part, we first consider p > 1. Given any special disk D,

we assume that
∫
D∩R2

+
µ2(z)−

p′
p dA(z) = ∞. Then, by duality of the space

Lp(D∩R2
+), there is a g ∈ Lp(D∩R2

+) such that
∫
D∩R2

+
g(z)µ2(z)−

1
p dA(z) =

∞. Let f = gµ
− 1

p

2 χD∩R2
+

on R2
+. Then M̃+(f)(z) =∞ for all z ∈ D∩R2

+. So

(1.1) gives µ1(D ∩ R2
+) = 0, which contradicts the assumption µ1 > 0 almost

everywhere. We also exclude the trivial case µ2 = ∞ on D ∩ R2
+ to see that

indeed we have 0 <
∫
D∩R2

+
µ2(z)−

p′
p dA(z) <∞.

Take f = µ
− p′

p

2 χD∩R2
+

and α = 1

|D∩R2
+|
∫
D∩R2

+
µ2(z)−

p′
p dA(z) in (1.1). We

see that

µ1(D ∩ R2
+) ≤ c

αp

∫
D∩R2

+

µ2(z)−p
′
µ2(z) dA(z)

=
c
∣∣D ∩ R2

+

∣∣
αp−1

,

which is equivalent to (µ1, µ2) ∈ A+
p (R2

+).

When p = 1, given any special disk D, we exclude the trivial case inf µ2 =
∞, where the infimum is taken over all z ∈ D∩R2

+. Then, for any ε > 0, there
must be a measurable set U ⊂ D∩R2

+ with |U | > 0, so that µ2(z) < ε+ inf µ2

on U .
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Taking f = χU and α = |U |
|D∩R2

+|
in (1.1), we see that

µ1(D ∩ R2
+) ≤

c
∣∣D ∩ R2

+

∣∣
|U |

∫
U

µ2(z) dA(z)

≤ c
∣∣D ∩ R2

+

∣∣ (ε+ inf
z∈D∩R2

+

µ2(z)

)
.

Letting ε → 0+, we see that the inequality above is equivalent to (µ1, µ2) ∈
A+

1 (R2
+). This completes the proof.

6 Concluding remarks

1. For any measurable f ≥ 0, we do not have the basic inequality f ≤
M̃+(f). Due to this special feature of the special maximal operator, some
classical results, such as the reverse Hölder inequality or the factorization of
weights, may fail in the A+

p setting. Hence, in order to obtain the weighted Lp

and BMO estimates, or even to prove Conjecture 1.12 and Conjecture 1.13,
we need to develop additional analysis on the behavior of this special maximal
operator along the boundary.

2. It is natural to ask: what is the n-dimensional analogue of the Hilbert
integral? This type of operator behaves like the Bergman projection on a
general domain; see also [5]. It will be very interesting if we can apply the
higher dimensional analogue to the function theory of several complex variables
in the future.
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