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ON BAIRE CLASSIFICATION OF
STRONGLY SEPARATELY CONTINUOUS

FUNCTIONS

Abstract

We investigate strongly separately continuous functions on a product
of topological spaces and prove that if X is a countable product of
real lines, then there exists a strongly separately continuous function
f : X → R which is not Baire measurable. We show that if X is a
product of normed spaces Xn, a ∈ X and σ(a) = {x ∈ X : |{n ∈
N : xn 6= an}| < ℵ0} is a subspace of X equipped with the Tychonoff
topology, then for any open set G ⊆ σ(a), there is a strongly separately
continuous function f : σ(a) → R such that the discontinuity point set
of f is equal to G.

1 Introduction

In 1998 Omar Dzagnidze [2] introduced a notion of a strongly separately con-
tinuous function f : Rn → R. Namely, he calls a function f strongly separately
continuous at a point x0 = (x01, . . . , x

0
n) ∈ Rn if the equality

lim
x→x0

|f(x1, . . . , xk, . . . , xn)− f(x1, . . . , x
0
k, . . . , xn)| = 0

holds for every k = 1, . . . , n. Dzagnidze proved that a function f : Rn → R is
strongly separately continuous at x0 if and only if f is continuous at x0.

Extending these investigations, J. Činčura, T. Šalát and T. Visnyai [1]
consider strongly separately continuous functions defined on the space `2 of
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sequences x = (xn)∞n=1 of real numbers such that
∑∞
n=1 x

2
n < +∞, endowed

with the standard metric d(x, y) = (
∑∞
n=1(xn − yn)2)1/2. In particular, the

authors gave an example of a strongly separately continuous everywhere dis-
continuous function f : `2 → R.

Recently, T. Visnyai in [6] continued to study properties of strongly sepa-
rately continuous functions on `2 and constructed a strongly separately con-
tinuous function f : `2 → R which belongs to the third Baire class and is
not quasi-continuous at every point. Moreover, T. Visnyai gave a sufficient
condition for a strongly separately continuous function to be continuous on
`2.

In this paper, we study strongly separately continuous functions defined
on a subspaces of a product

∏
t∈T Xt of topological spaces Xt equipped with

the Tychonoff topology of pointwise convergence. We show that if X is a
product of a sequence (Xn)∞n=1 of topological spaces Xn, a ∈ X and σ(a) =
{x ∈ X : |{n ∈ N : xn 6= an}| < ℵ0} is a subspace of X equipped with
the Tychonoff topology, then every strongly separately continuous function
f : σ(a) → R belongs to the first stable Baire class. Moreover, we prove that
if X is a countable product of real lines, then there exists a strongly separately
continuous function f : X → R which is not Baire measurable. In the last
section we show that if X is a product of normed spaces, then for any open
set G ⊆ σ(a), there is a strongly separately continuous function f : σ(a)→ R
such that the discontinuity point set of f is equal to G.

2 Strongly separately continuous functions and S-open
sets

Let X =
∏
t∈T Xt be a product of a family of sets Xt with |Xt| > 1 for all

t ∈ T . If S ⊆ S1 ⊆ T , a = (at)t∈T ∈ X, x = (xt)t∈S1
∈
∏
t∈S1

Xt, then we
denote by axS a point (yt)t∈T , where

yt =

{
xt, t ∈ S,
at, t ∈ T \ S.

In the case S = {s}, we shall write axs instead of ax{s}.
If n ∈ N, then we set

σn(x) = {y = (yt)t∈T ∈ X : |{t ∈ T : yt 6= xt}| ≤ n}

and

σ(x) =

∞⋃
n=1

σn(x).
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Each of the sets of the form σ(x) for an x ∈ X is called a σ-product of the
space X.

We denote by τ the Tychonoff topology on a product X =
∏
t∈T Xt of

topological spaces Xt. If X0 ⊆ X, then the symbol (X0, τ) means the subspace
X0 equipped with the Tychonoff topology induced from (X, τ).

If Xt = Y for all t ∈ T , then the product
∏
t∈T Xt we also denote by Y m,

where m = |T |.
A set E ⊆

∏
t∈T Xt is called S-open if

σ1(x) ⊆ E

for all x ∈ E.
Let S(X) denote the collection of all S-open subsets of X. We notice that

S(X) is a topology on X. We will denote by (X,S) the product X =
∏
t∈T Xt

equipped with the topology S(X).
The next properties follow easily from the definitions.

Proposition 2.1. Let X =
∏
t∈T Xt, |Xt| > 1 for all t ∈ T and E ⊆ X.

Then

1. E ∈ S(X) if and only if X \ E ∈ S(X);

2. E ∈ S(X) if and only if E =
⋃
x∈E σ(x);

3. if x ∈ X, then σ(x) is the smallest S-open set which contains x;

4. if E ∈ S(X), then E is dense in (X, τ);

5. there exists a non-trivial S-open subset of X if and only if |T | ≥ ℵ0.

It follows from Proposition 2.1 that σ-products of two distinct points of∏
t∈T Xt either coincide, or do not intersect. Consequently, the family of all

σ-products of an arbitrary S-open set E ⊆
∏
t∈T Xt generates a partition of

E on mutually disjoint S-open sets, which we will call S-components of E.

Definition 2.2. Let (Xt : t ∈ T ) be a family of topological spaces, let Y
be a topological space, and let E ⊆

∏
t∈T Xt be an S-open set. A mapping

f : E → Y is said to be separately continuous at a point a = (at)t∈T ∈ E with
respect to the t-th variable provided that the mapping g : Xt → Y defined by
the rule g(x) = f(axt ) for all x ∈ Xt is continuous at the point at ∈ Xt.

Definition 2.3. Let E ⊆
∏
t∈T Xt be an S-open set, let T be a topology

on E, and let (Y, d) be a metric space. A mapping f : (E, T ) → Y is called
strongly separately continuous at a point a ∈ E with respect to the t-th variable
if

lim
x→a

d(f(x), f(xat )) = 0.
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Definition 2.4. A mapping f : E → Y is

• (strongly) separately continuous at a point a ∈ E if f is (strongly) sepa-
rately continuous at a with respect to each variable t ∈ T ;

• (strongly) separately continuous on the set E if f is (strongly) separately
continuous at every point a ∈ E with respect to each variable t ∈ T .

Theorem 2.5. Let E ⊆
∏
t∈T Xt be an S-open set, and let (Y, d) be a metric

space. A mapping f : (E,S)→ Y is continuous if and only if f : (E, T )→ Y
is strongly separately continuous for an arbitrary topology T on E.

Proof. Necessity. Fix a topology T on E and consider the partition (σ(xi) :
i ∈ I) of the set E on S-components σ(xi). We notice that f |σ(xi) = yi, where
yi ∈ Y for all i ∈ I, since f is continuous on (E,S). Let a = (at)t∈T ∈ E
and t ∈ T . If x ∈ E, then x ∈ σ(xi) for some i ∈ I. Moreover, xat ∈ σ(xi).
Then f(x) = f(xat ) = yi. Hence, d(f(x), f(xat )) = 0 for all x ∈ E. Hence, f is
strongly separately continuous on (E, T ).

Sufficiency. Put T = S. Fix x0 ∈ E and show that f is continuous at
x0 on (E,S). Let x0 ∈ σ(xi) for some i ∈ I. Let us observe that x → x0 in
(E,S) if and only if x ∈ σ(x0). Since f is strongly separately continuous at x0
and σ(x0) = σ(xi), we have d(f(x), f(xx0

t )) = 0 for all x ∈ σ(xi) and t ∈ T .
Consequently, f(x) = f(x0) for all x ∈ σ(xi). Since the set σ(xi) is open in
(E,S), f is continuous at x0.

Let (σi : i ∈ I) be a partition of X =
∏
t∈T Xt on S-components, and

let f :
∏
t∈T Xt → R be a function such that f |σi

≡ const for all i ∈ I.
Theorem 2.5 implies that f is strongly separately continuous on (X, τ), since
for every i ∈ I, the set σi is clopen in (X,S). The next example shows that it
is not so in the case f |σi is a continuous function on (σi, τ) for every i ∈ I.

Example 2.6. Let X = Rℵ0 , let (σi : i ∈ I) be a partition of X on S-
components, and let σ(m) = {x = (xn) ∈ X : |{n ∈ N : xn 6= m}| < ℵ0} for
all m ∈ N. Consider a function f : X → R,

f(x) =

{
m · (x1 + · · ·+ xm), if x ∈ σ(m),
0, otherwise.

Then f |σi
: (σi, τ) → R is continuous for every i ∈ I, but f is not strongly

separately continuous at x = 0.

Proof. For every m ∈ N we put

um =
( 1

m
, . . . ,

1

m︸ ︷︷ ︸
m

,m,m, . . .
)
.
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Then um ∈ σ(m) and um → 0 in (X, τ). Note that f(um) = m and f((um)x1) =
m−1. Therefore, |f(um)−f((um)x1)| = 1 for all m ∈ N. Consequently, f is not
strongly separately continuous at x = 0 with respect to the first variable.

Theorem 2.7. Let E ⊆
∏
t∈T Xt be an S-open subset of a product of topo-

logical spaces Xt, let (Y, d) be a metric space, and let f : (E, τ) → Y be a
strongly separately continuous mapping at the point a = (at)t∈T ∈ E. Then f
is continuous at the point a if and only if

∀ε > 0 ∃T0 ⊆ T, |T0| < ℵ0
∃U– a neighborhood of a in (E, T ) | (1)

d(f(a), f(xaT0
)) < ε ∀x ∈ U.

Proof. Necessity. Suppose f is continuous at the point a and ε > 0. Take a
basic neighborhood U of a such that d(f(x), f(a)) < ε for all x ∈ U , and put
T0 = ∅. Then xaT0

= x, which implies condition (1).
Sufficiency. Fix ε > 0. Using the condition of the theorem, we take a finite

set T0 ⊆ T and a neighborhood U of a in (E, τ) such that

d(f(a), f(xaT0
)) <

ε

2

for every x ∈ U . If T0 = ∅, then d(f(x), f(a)) < ε for all x ∈ U , which implies
the continuity of f at a. Now assume T0 = {t1, . . . , tn}. Since f is strongly
separately continuous at a, for every k = 1, . . . , n, we choose a neighborhood
Vk of the point a such that

d(f(x), f(xatk)) <
ε

2n

for all x ∈ Vk. We take a basic neighborhood W of a such that

W ⊆ U ∩
( n⋂
k=1

Vk
)
.

Observe that xa{t1,...,tk} ∈W for every k = 1, . . . , n and for every x ∈W . Then
for all x ∈W , we have

d(f(x), f(a)) ≤ d(f(x), f(xaT0
)) + d(f(xaT0

), f(a))

< d(f(x), f(xa{t1})) + d(f(xa{t1}), f(xa{t1,t2}))

+ · · ·+ d(f(xa{t1,...,tn−1}), f(xa{t1,...,tn})) +
ε

2

<
ε

2n
· n+

ε

2
= ε.

Hence, f is continuous at the point a.
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The following corollary generalizes the result of Dzagnidze [2, Theorem
2.1].

Corollary 2.8. Let E be an S-open subset of a product
∏
t∈T Xt of topological

spaces Xt, |T | < ℵ0, and let (Y, d) be a metric space. Then any strongly
separately continuous mapping f : (E, τ)→ Y is continuous.

Proof. Fix an arbitrary point a ∈ E and a strongly separately continuous
mapping f : (E, τ)→ Y . For ε > 0, we put T0 = T and U = E. Then for all
x ∈ U , we have xaT0

= a, and consequently

d(f(a), f(xaT0
)) = 0 < ε.

Hence, f is continuous at the point a by Theorem 2.7.

The proposition below shows that Corollary 2.8 is not valid for a product
of infinitely many topological spaces.

Proposition 2.9. Let X =
∏
t∈T Xt be a product of topological spaces Xt,

where |Xt| > 1 for every t ∈ T , let |T | > ℵ0, and let (Y, d) be a metric space
with |Y | > 1. Then there exists a strongly separately continuous everywhere
discontinuous mapping f : (X, τ)→ Y .

Proof. Fix x0 ∈ X and y1, y2 ∈ Y , y1 6= y2. According to Proposition 2.1(5),
σ(x0) 6= ∅ 6= X \ σ(x0). Set f(x) = y1 if x ∈ σ(x0) and f(x) = y2 if
x ∈ X \σ(x0). We prove that f is everywhere discontinuous on X. Indeed, let
a ∈ X and f(a) = y1. Take an open neighborhood V of y1 such that y2 6∈ V .
If U is an arbitrary neighborhood of a in (X, τ), then there is x ∈ U \ σ(x0)
by Proposition 2.1 (4). Then f(x) = y2 6∈ V . Therefore, f is discontinuous at
a. Similarly one can show that f is discontinuous at a in the case f(a) = y2.

Since the set σ(x0) is clopen in (X,S), the mapping f : (X,S) → Y is
continuous. It remains to apply Theorem 2.5.

3 Baire measurable strongly separately continuous func-
tions

Let B0(X,Y ) be the collection of all continuous mappings f : X → Y . Assume
that the classes Bξ(X,Y ) are already defined for all 0 ≤ ξ < α, where α < ω1.
Then f : X → Y is said to be of the α-th Baire class, f ∈ Bα(X,Y ), if f is
a pointwise limit of a sequence of mappings fn ∈ Bξn(X,Y ), where ξn < α.
Denote

B(X,Y ) =
⋃

0≤α<ω1

Bα(X,Y ).
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We say that f : X → Y is a Baire measurable mapping if f ∈ B(X,Y ).
Let 0 ≤ α < ω1, let X be a metrizable space, let Y be a topological space

and let Z be a locally convex space. W. Rudin [5] proved that every mapping
f : X × Y → Z which is continuous with respect to the first variable and is of
the α-th Baire class with respect to the second one belongs to the (α + 1)-th
Baire class on X × Y . The following proposition is an easy corollary of the
Rudin Theorem.

Proposition 3.1. Let n ∈ N, let X1, . . . , Xn be metrizable spaces, and let
Z be a locally convex space. Then every separately continuous mapping f :∏n
i=1Xi → Z belongs to the (n− 1)-th Baire class.

Proof. The assertion of the proposition is evident if n = 1 and is exactly the
Rudin Theorem if n = 2. Now assume that the proposition is true for all 2 ≤
k < n and prove it for k = n. Denote X =

∏n−1
i=1 Xi. Then f : X ×Xn → Z

belongs to the (n − 2)-th Baire class with respect to the first variable by the
inductive assumption, and f is continuous with respect to the second variable.
Applying the Rudin Theorem we have f ∈ Bn−1(X ×Xn, Z).

The next result shows that the corollary of Rudin’s Theorem is not valid
for infinite products.

Proposition 3.2. There exists a strongly separately continuous function f :
(Rℵ0 , τ)→ R which is not Baire measurable.

Proof. Consider a partition (σi : i ∈ I) of Rℵ0 on S-components σi. It is
not hard to verify that |I| = c. Denote by F the collection of all functions
f : Rℵ0 → R such that f |σi

= const for all i ∈ I. Then |F| = 2|I| = 2c.
Moreover, since (Rℵ0 , τ) is separable, |B0(Rℵ0 ,R)| = c, and consequently,
|B(X,Y )| = c. Hence, there exists f ∈ F \B(Rℵ0 ,R). Since for every i ∈ I the
set σi is clopen in (Rℵ0 ,S), f is continuous on (Rℵ0 ,S). Then f is strongly
separately continuous on (Rℵ0 , τ) according to Proposition 2.5.

Let 1 ≤ α < ω1. A mapping f : X → Y belongs to the α-th stable Baire
class, f ∈ Bdα(X,Y ), if there exists a sequence of mappings fn ∈ Bαn

(X,Y ),
where αn < α, such that for every x ∈ X, there exists N ∈ N such that
fn(x) = f(x) for all n ≥ N .

Theorem 3.3. Let (Xn)∞n=1 be a sequence of topological spaces, a ∈
∏∞
n=1Xn,

E = σ(a), and let f : (E, τ)→ R be a function.

1. If f is strongly separately continuous, then f ∈ Bd1 (E,R).

2. If f is separately continuous and Xn is metrizable for every n ∈ N, then
f ∈ Bdω0

(E,R).
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Proof. For every n ∈ N, we put

En =

n∏
i=1

Xi ×
∞∏

i=n+1

{ai},

gn = f |En
, and

fn(x) = gn(x1, . . . , xn, an+1, . . . )

for all x ∈ E. Clearly, E =
⋃∞
n=1En, En ⊆ En+1, and every space (En, τ) is

homeomorphic to (
∏n
i=1Xi, τ).

If f is strongly separately continuous, then by Theorem 2.8, every gn is
continuous on En. Then fn : (E, τ)→ R is a continuous extension of gn.

In the second case, gn ∈ Bn−1(En, Z) by Proposition 3.1 for every n. It is
not hard to verify that fn ∈ Bn−1(E,Z).

Now if x ∈ E, then there is N ∈ N such that x ∈ En for all n ≥ N .
Therefore, fn(x) = f(x) for all n ≥ N . Hence, f ∈ Bd1 (E,R) in the first case
and f ∈ Bdω0

(E,R) in the second one.

Proposition 3.4. Let a = (0, 0, . . . ) ∈ Rℵ0 , E = σ(a) ⊆ Rℵ0 and Y = [0, 1].
Then there exists a separately continuous function f : E → Y such that f 6∈⋃∞
n=1Bn((E, τ), Y ).

Proof. For every n ∈ N, we take a function hn ∈ Bn+1(R, Y )\Bn(R, Y ). Ac-
cording to the Lebesgue Theorem [4], for every n ∈ N, there exists a separately
continuous function gn : Rn+2 → Y such that

gn(x, x, . . . , x︸ ︷︷ ︸
n+2

) = hn(x)

for each x ∈ R. Evidently, gn is not of the n-th Baire class on Rn+2.
Let ϕ : R → Y be any continuous function such that {0} = ϕ−1(0). For

n ∈ N, we consider a function fn : E → Y ,

fn(x1, . . . , xn, . . . ) = ϕ(xn+2) · gn(x1, . . . , xn+2).

Then the function fn : E → Y is separately continuous as the product of two
separately continuous functions. Moreover,

fn|En+2
6∈ Bn(En+2, Y )

for every n ∈ N, where

En = Rn × {0} × {0} × . . . .
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For every x ∈ E, we put

f(x) =

∞∑
n=1

1

2n
fn(x).

Observe that f : E → R is separately continuous as the sum of the uni-
formly convergent series of separately continuous functions.

It remains to show that f 6∈
⋃∞
n=1Bn(E, Y ). Assume to the contrary that

f ∈ Bn(E, Y ) for some n ∈ N. Then f |En+2
∈ Bn(En+2, Y ). Notice that

f |En+2
=

n∑
k=1

1

2k
fk|En+2

,

since fk|En+2
= 0 for all k ≥ n+ 1. Denote

g =

n−1∑
k=1

1

2k
fk|En+2

.

Then we have g ∈ Bn(En+2, Y ), since

fk|En+2
∈ Bk+1(En+2, Y ) ⊆ Bn(En+2, Y )

for every k = 1, . . . , n− 1. Therefore,

fn|En+2 = (f |En+2 − g) ∈ Bn(En+2, Y ),

which implies a contradiction.

4 Discontinuities of strongly separately continuous map-
pings

For a mapping f between spaces X and Y , we denote the set of all points of
continuity of f by C(f). Let D(f) = X \ C(f).

Theorem 4.1. Let X =
∏∞
n=1Xn be a product of normed spaces (Xn, ‖ · ‖n),

and let a ∈ X. Then for any open set G ⊆ (σ(a), τ), there exists a strongly
separately continuous function f : (σ(a), τ)→ R such that D(f) = G.

Proof. Without loss of generality we may assume that a = (0, 0, . . . ). For
every n ∈ N, we consider a norm ‖ · ‖n on the space Xn which generates its
topological structure. Let d be a bounded metric on X which generates the
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Tychonoff topology τ . Denote X0 = (σ(a), τ) and F = X0 \ G. For every
x = (xn)n∈N ∈ X0, put

ϕ(x) =

{
d(x, F ), if F 6= ∅
1, if F = ∅

,

g(x) = exp(−
∞∑
n=1

‖xn‖n),

f(x) = ϕ(x) · g(x).

We prove that F ⊆ C(f). Indeed, if x0 ∈ F and (xm)∞m=1 is a convergent
to x0 sequence in X0, then limm→∞ ϕ(xm)·g(xm) = 0, since limm→∞ ϕ(xm) =
ϕ(x0) = 0 and |g(xm)| ≤ 1 for every m. Hence, limm→∞ f(xm) = 0 = f(x0).

Fix an arbitrary x0 ∈ G and show that x0 ∈ D(f). For every m ∈ N, we
choose xm ∈ Xm with ‖xm‖m = ln 2 + ‖x0m‖m and set

xm = (x01, x
0
2, . . . , x

0
m−1, xm, x

0
m+1, . . . ).

Clearly, xm → x0 in X0. For every m ∈ N, we have

g(xm)− g(x0) = exp(−
∞∑
n=1

‖x0n‖n)(exp(

∞∑
n=1

‖x0n‖n −
∞∑
n=1

‖xmn ‖n)− 1)

= g(x0)(exp(− ln 2)− 1)

= −1

2
g(x0).

Therefore, g(xm) = 1
2g(x0) and

f(xm)− f(x0) = ϕ(xm)g(xm)− ϕ(x0)g(x0) = g(x0)(
1

2
ϕ(xm)− ϕ(x0))

for all m ∈ N. Then

lim
m→∞

(f(xm)− f(x0)) = −1

2
ϕ(x0) · g(x0) < 0.

Hence, f is discontinuous at x0. Consequently, D(f) = G.
It remains to check that f is strongly separately continuous on X0. Evi-

dently, f is strongly separately continuous on the set C(f) = F . Fix x0 ∈ G,
k ∈ N and an arbitrary convergent to x0 sequence (xm)∞m=1 in X0. For every

m, we put ym = (xm)x
0

{k}. Since G is open and ym → x0, we may suppose that
xm, ym ∈ G for every m. We note that

f(xm)− f(ym) = g(xm)(ϕ(xm)− ϕ(ym)) + ϕ(ym)(g(xm)− g(ym))

= g(xm)(ϕ(xm)− ϕ(ym)) + ϕ(ym)g(ym)(exp(‖x0k‖k − ‖xmk ‖k)− 1).
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It follows from the inequality

exp(−‖x0k − xmk ‖) ≤ exp(‖x0k‖k − ‖xmk ‖k) ≤ exp(‖x0k − xmk ‖)

that

lim
m→∞

(exp(‖x0k‖k − ‖xmk ‖k)− 1) = 0.

Taking into account that ϕ and g are bounded and that

lim
m→∞

ϕ(xm) = lim
m→∞

ϕ(ym) = ϕ(x0),

we obtain that

lim
m→∞

(f(xm)− f(ym)) = 0.

Hence, f is strongly separately continuous on X0.
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