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A SUFFICIENT CONDITION FOR A
BOUNDED SET OF POSITIVE LEBESGUE
MEASURE IN R2 OR R3 TO CONTAIN ITS

CENTROID

Abstract

In this paper, we give a sufficient condition for a domain in either
two- or three-dimensional Euclidean space to contain its centroid. We
show that the condition is sharp. The condition is not, however, neces-
sary.

1 Introduction

It is a matter of some interest to understand when the centroid of a region
in space actually lies in that region. Experts in robotics need this type of
information, just because the balance of a robot is an essential consideration.
The question is also of some considerable interest from a purely mathematical
point of view.

These ideas were first explored in [1]. We continue that research here. In
particular, we find a geometrically elegant sufficient condition for a region to
contain its centroid. This condition is, unfortunately, not necessary. But, the
question that we begin to answer here has been open for a number of years,
and what we present is a notable first step. And, we are able to show that our
result is sharp.
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2 Some preliminaries

We begin with some definitions and notational conventions.

Definition 1. Let λ = λN be the Lebesgue measure on RN .

Definition 2. Let πi : RN → R be the ith natural coordinate function, given
by πi((p1, . . . , pN )) = pi.

Definition 3. Let U be a bounded Lebesgue measurable subset of RN with
λ(U) > 0, and for each i ∈ {1, 2, . . . , N}, define

xi =

∫
U
πidλ

λ(U)
.

Then the centroid of U , denoted C(U), is given by C(U) = (x1, x2, . . . , xN ).

Definition 4. Let d = dN be the Euclidean distance in RN . That is, for any
p, q ∈ RN , we have

d(p, q) =

√√√√ N∑
i=1

(πi(q)− πi(p))2.

Additionally, let || · || be the usual norm on RN , so that d(p, q) = ||p− q||.

Definition 5. If p ∈ RN and r > 0, then let B(p, r) be the open (Euclidean)
ball with center p and radius r.

Definition 6. For each positive integer N , let ΣN denote the volume of the
unit ball in RN ; i.e., ΣN = λ(B(0, 1)).

Roughly speaking, our goal in this paper is to show that, if U is a bounded
subset of RN with positive Lebesgue measure, and if the ratio of the radius of
the smallest ball containing U to the radius of the largest ball contained in U
is sufficiently small, then U must contain its centroid. By “sufficiently small,”
we mean that this ratio is less than a value aN , which is dependent only on the
dimension N of the space in which U is embedded. We will present a technique
for calculating these values, and we will see that they are sharp, in the sense
that the result would not hold if we replaced aN with aN + ε for any ε > 0.
However, we will only calculate aN here in the particular cases where N = 2
or 3, since the general case is unwieldy. In fixed higher dimensions, we believe
that our technique can still be used, though unfortunately the calculations
become prohibitive.

Let us conclude this section by stating our main result. Technical artifacts
in the statement of the theorem will be explained in the next section.
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Theorem 7. Let U be a bounded, Lebesgue-measurable subset of R2 (re-
spectively, of R3) with λ(U) > 0. Suppose that that the largest open ball
contained in U has radius r1 and the smallest closed ball containing U has
radius r2. Then, C(U) ∈ U if r2/r1 < a2, where a2 ≈ 1.82001 is the unique
positive zero of the function

f2(x) =
2

3
(4(x− 1))

3
2 − π

− (2− x)

(
π

2
x2 − (2− x)

√
4(x− 1)− x2 sin−1(

2

x
− 1)

)
(respectively, if r2/r1 < a3, where a3 ≈ 1.71667 is the unique positive real
root of the polynomial f3(x) = x4 − 2x3 + 2x− 2).

3 Some technical matters

Before we get to the heart of the matter, though, we will pause to investigate a
somewhat subtle detail. In the previous paragraphs, we mentioned the “largest
ball” (call it B) that is contained in U . Here, we are of course referring to an
open ball B whose radius is greater than or equal to the radius of any other ball
that is contained in U . But one may ask whether such a largest ball must even
exist. Certainly, if U is allowed to be unbounded, there may be no such thing—
consider U = R2 \{(0, 0)}, or U = {(x, y) ∈ R2 : x ≥ 1, y ≥ 0, and y ≤ 1− 1

x}.
But our paper deals with centroids and it is therefore natural to consider only
bounded sets, since the centroid of an unbounded set may not even exist. As
it turns out, the requirement that U be bounded is enough to ensure that such
a largest open ball B does indeed exist. The following lemma formalizes this
notion.1

Lemma 8. Let U be a bounded subset of RN . Then there exist p ∈ U and
r ≥ 0 such that:

• B(p, r) ⊆ U

• if B(p′, r′) ⊆ U , then r ≥ r′.

We will refer to B(p, r) as “the largest open ball contained in U.”2

1It is worth noting that we could ease the need for these first two lemmas by modifying
the main argument of this paper to assume merely that U has a containing ball and a
contained ball of sufficiently similar radii, thereby avoiding the use of the terms “smallest”
and “largest” altogether. But we find these matters to be interesting in their own right, and
we believe that they ultimately lead to a more satisfying theorem.

2It may be more accurate to use the article “a” instead of “the” here, since the largest
ball may not be unique. However, for ease of exposition, we do not do so in this paper.
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Proof. The case U = ∅ is trivial, so we assume that U is nonempty. Let
f : U → R be given by f(p) = sup{r ∈ R : B(p, r) ⊆ U}, and define
r = sup{f(p) : p ∈ U}. Certainly r <∞ since U is bounded.

First, observe that for any u ∈ U , we actually do have B(u, f(u)) ⊆ U ,

since for each v ∈ B(u, f(u)), we can set t = f(u)+d(u,v)
2 so that v ∈ B(u, t),

and then, since t < f(u), we know from the definition of f(u) that there must
be some t′ > t for which B(u, t′) ⊆ U ; hence, v ∈ U . We will make use of this
fact toward the end of the proof.

Now let (ri)i≥0 be a sequence of values from {f(p) : p ∈ U} such that
ri → r as i→∞, and choose (pi)i≥0 so that f(pi) = ri for each i ≥ 0. Since U
is bounded, we know from the Bolzano-Weierstrass theorem that there is some
subsequence (pij )j≥0 and some p ∈ U such that pij → p as j →∞. Note also
that the corresponding sequence (rij )j≥0 converges to r, since (ri)i≥0 does.

Now choose any point q ∈ B(p, r). Then d(p, q) = r − ε for some ε > 0.
Choose N ∈ N such that for all j ≥ N , we have d(p, pij ) < ε

2 , and choose
M ∈ N such that for all k ≥ M , we have r − rik < ε

2 . Let L = max{N,M}.
Then d(piL , q) ≤ d(piL , p) + d(p, q) < ε

2 + r − ε = r − ε
2 < riL . Therefore,

q ∈ B(piL , riL).
Since riL = f(piL), we know from our observation that B(piL , riL) ⊆ U ,

and hence q ∈ U . Since q was chosen arbitrarily from B(p, r), this shows that
B(p, r) ⊆ U . Finally, it is clear that if B(p′, r′) ⊆ U , then r′ ≤ f(p′) ≤ r. So,
the proof is complete.

We are also concerned with the parallel notion of the “smallest ball” (call it
B′) containing U . Here, we can quickly see that even when U is bounded, there
may be no smallest containing open ball—consider U = {(0, 0)}. However, if
we make B′ a closed ball, the problem is solved. Throughout the following
lemma—and indeed, the rest of this paper—we will denote the closure of any
set S by S. The appropriate topology should be clear from context.

Lemma 9. Let U be a bounded subset of RN . Then there exist p ∈ U and
r ≥ 0 such that:

• U ⊆ B(p, r)

• if U ⊆ B(p′, r′), then r ≤ r′, with equality only if U = ∅ or p′ = p.

We will refer to B(p, r) as “the smallest closed ball containing U .”

Proof. The idea here is very similar to that of the previous proof.
Again, we assume for the duration of the proof that U 6= ∅. Since U is

bounded, we can choose some w ∈ RN and some s ∈ R+ such that U ⊆
B(w, s).
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Let f : B(w, 2s) → R be given by f(p) = inf{r ∈ R : U ⊆ B(p, r)}, and
define r = inf{f(p) : p ∈ B(w, 2s)}.

First, we make a helpful observation. Suppose that u ∈ B(w, 2s). Choose

v ∈ RN \B(u, f(u)), and set t = f(u)+d(u,v)
2 so that v 6∈ B(u, t) despite the fact

that t > f(u). Then, from the definition of f(u), we know that t is not a lower
bound of the set {r ∈ R : U ⊆ B(u, r)}, so there must be some t′ < t such
that U ⊆ B(u, t′). But of course B(u, t′) ⊆ B(u, t), so U ⊆ B(u, t) and hence
v 6∈ U . Therefore, it follows that U ⊆ B(u, f(u)), which is the observation we
were seeking.

Now, let (ri)i≥0 be a sequence of values from {f(p) : p ∈ B(w, 2s)} such
that ri → r as i→∞, and choose (pi)i≥0 so that f(pi) = ri for each i ≥ 0. By
the Bolzano-Weierstrass theorem, there is some subsequence (pij )j≥0 and some

p ∈ B(w, 2s) such that pij → p as j → ∞. Note also that the corresponding
sequence (rij )j≥0 converges to r, since (ri)i≥0 does.

Next, choose any point q ∈ RN\B(p, r). Then d(p, q) = r+ε for some ε > 0.
Choose N ∈ N such that for all j ≥ N , we have d(p, pij ) < ε/2, and choose
M ∈ N such that for all k ≥M , we have rik − r < ε/2. Let L = max{N,M}.
Then, from the triangle inequality, we have d(piL , q) ≥ d(p, q) − d(p, piL) >

r+ε− ε
2 = r+ ε

2 > riL . Therefore, q 6∈ B(piL , riL). Finally, since riL = f(piL),

we know from our first observation that U ⊆ B(piL , riL), and hence q 6∈ U . It

follows that U ⊆ B(p, r).
Suppose that U ⊆ B(p′, r′). Then r′ ≥ f(p′). If p′ ∈ B(w, 2s), then it

is clear that f(p′) ≥ r, and hence r′ ≥ r. Otherwise, if p′ 6∈ B(w, 2s), then
B(p′, s) ∩ U = ∅, so f(p′) > s. Since s ≥ f(w) ≥ r, we see that in this case,
too, r′ ≥ r.

Now, we want to show that this inequality is in fact strict in all non-
trivial cases. Suppose that, for some p′ 6= p, we have U ⊆ B(p′, r), and write

p′′ = p+p′

2 and r′′ =
√
r2 − d(p,p′)2

4 . Choose q ∈ RN \ B(p′′, r′′). Suppose

that the angle α = ∠pp′′q is between π
2 and π, inclusive. Then from the law of

cosines, we know that d(p, q)2 = d(p, p′′)2+d(p′′, q)2−2d(p, p′′)d(p′′, q) cosα ≥
d(p, p′′)2 + d(p′′, q)2 > d(p, p′′)2 + r′′2 = d(p, p′′)2 + r2 − d(p,p′′)2

4 = r2 +
3
4d(p, p′′)2 > r2. Hence d(p, q) > r, so q 6∈ B(p, r), and therefore, q 6∈ B(p, r)∩
B(p′, r). If α ∈ [0, π/2), then ∠p′p′′q ∈ [π/2, π], and so the same argument
works if we swap the roles of p and p′. Thus, q 6∈ B(p, r)∩B(p′, r), so it follows
that B(p, r)∩B(p′, r′) ⊆ B(p′′, r′′). And of course, since U ⊆ B(p, r)∩B(p′, r),
it follows that U ⊆ B(p′′, r′′). But this is a contradiction, since r′′ < r.

Now that we have laid these matters to rest, we must take one more pre-
liminary step before we are ready to move forward with our main argument.
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The following little lemma will help us to construct the critical shape that we
seek.

Lemma 10. Let B be an open N -ball with radius r > 0. Choose p ∈ B and
select a coordinate system so that B has center 0 and p has x1-coordinate in
the interval [0, r) and xj-coordinate 0 for j = 2, 3, . . . , N . Then there exists
L ∈ [−r, r) such that VL = {q ∈ B : π1(q) > L} has centroid p. What is more,
if U ⊂ B also has centroid p, then λ(VL) ≥ λ(U).

Proof. For any L, it is clear that πj(C(VL)) = 0 for j = 2, 3, . . . , N . We will
use the Intermediate Value Theorem to show that π1(C(VL)) = π1(p).

Say L0 = −r and L1 = π1(p). Then π1(C(VL0)) = 0 since VL0 = B, and
clearly π1(C(VL1)) ≥ π1(p). We have therefore found two values L0 and L1 so
that π1(C(VL0

)) ≤ π1(p) ≤ π1(C(VL1
)). For arbitrary L ∈ [−r, r), we have

π1(C(VL)) =

∫ r
L
xΣN−1

[√
r2 − x2

]N−1
dx

λ(VL)
.

This is the ratio of two continuous functions of L, so it is continuous at
all points where the denominator is non-zero; i.e., on all of [−r, r). So, by the
Intermediate Value Theorem, there exists an L such that π1(C(VL)) = π1(p),
and hence, C(VL) = p.

For the second part of the statement, suppose that U and VL are as de-
scribed. Translate the whole system so that L = 0. By Lemma 5.3 in [1], we
can write

λ(U ∩ VL)

λ(U)
πj(C(U ∩ VL)) +

λ(U \ VL)

λ(U)
πj(C(U \ VL))

=
λ(U ∩ VL)

λ(VL)
πj(C(U ∩ VL)) +

λ(VL \ U)

λ(VL)
πj(C(VL \ U)) .

So, after rearranging, we have

λ(VL)− λ(U) =

λ(U)λ(VL \ U)πj(C(VL \ U))− λ(VL)λ(U \ VL)πj(C(U \ VL))

λ(U ∩ VL)πj(C(U ∩ VL))
. (1)

But if q ∈ VL \ U , then π1(q) > 0, so π1(C(VL \ U)) > 0. Similarly, if
q ∈ U ∩VL, then π1(q) > 0, so π1(C(U ∩VL)) > 0. Finally, if q ∈ U \VL, then
π1(q) ≤ 0, so π1(C(U \ VL)) ≤ 0. Thus, the righthand side of (1) is not less
than zero. So λ(VL) ≥ λ(U).

Finally, we are ready to prove the theorem.
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4 Proof of the main theorem

Proof. We prove the equivalent contrapositive statement. We work at first
in RN in order to suggest a general technique for approaching this problem in
any given dimension N ∈ N, but toward the end of the proof we will specialize
down to the physically-relevant cases N = 2 and N = 3 in order to facilitate
computation.

Let U be a bounded, Lebesgue-measurable subset of RN with λ(U) > 0.
Denote by B1 the largest open ball contained in U , and by B2 the smallest
closed ball containing U . Let r1 be the radius of B1, let r2 be the radius of B2,
and let c1 and c2 denote the centers of the balls B1 and B2, respectively. Let
U1 = U ∩B1 = B1 and let U2 = U \U1. Say that p = C(U), p1 = C(U1) = c1,
and p2 = C(U2). Without loss of generality, suppose that c2 = 0 and that p2
lies on the nonnegative x1-axis.

Figure 1: An example of a two-dimensional set U and the various objects
associated with it.

Suppose that U does not contain its centroid. It follows that p 6∈ B1. That
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is, r1 ≤ d(p1, p). Since U1 and U2 are disjoint, Lemma 5.3 in [1] shows that

p =
λ(U1)

λ(U1) + λ(U2)
p1 +

λ(U2)

λ(U1) + λ(U2)
p2 .

So we have

r1 ≤ d
(
p1,

λ(U1)

λ(U1) + λ(U2)
p1 +

λ(U2)

λ(U1) + λ(U2)
p2

)
= d

(
p1, p1 +

λ(U2)

λ(U1) + λ(U2)
(p2 − p1)

)
=

∥∥∥∥ λ(U2)

λ(U1) + λ(U2)
(p2 − p1)

∥∥∥∥
=

λ(U2)

λ(U1) + λ(U2)
‖p2 − p1‖

=
λ(U2)

λ(U1) + λ(U2)
d(p1, p2) . (2)

By Lemma 10, there exists an L ∈ [−r2, r2) such that VL = {q ∈ B2 :
π1(q) > L} has centroid p2 and λ(VL) ≥ λ(U2). So, we have

λ(U2) ≤ λ(VL)

λ(U2)λ(U1) ≤ λ(VL)λ(U1)

λ(U2)λ(U1) + λ(U2)λ(VL) ≤ λ(VL)λ(U1) + λ(U2)λ(VL)

λ(U2)[λ(U1) + λ(VL)] ≤ λ(VL)[λ(U1) + λ(U2)]

λ(U2)

λ(U1) + λ(U2)
≤ λ(VL)

λ(U1) + λ(VL)
.

So, from (2), we have

r1 ≤
λ(VL)

λ(U1) + λ(VL)
d(p1, p2) . (3)

Now we will put an upper bound on d(p1, p2). Let qε = p1 + p1
||p1|| (r1 − ε).

Then d(p1, qε) = |r1 − ε|, so when ε ∈ (0, 2r1), we know that qε ∈ B1. Then,
since B1 ⊆ B2, we have d(0, qε) < r2. But d(0, qε) = ||p1|| + |r1 − ε| =
d(0, p1) + |r1− ε|. Hence, we have d(p1,0) < r2−|r1− ε| for all ε ∈ (0, 2r1), so
d(p1,0) ≤ r2 − r1. Next, recall that d(0, p2) = π1(p2). Applying the triangle
inequality, we see that d(p1, p2) ≤ d(p1,0) + d(0, p2) ≤ r2 − r1 + π1(p2). This
is the upper bound we were seeking.
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So, from (3), we have

r1 ≤
λ(VL)

λ(U1) + λ(VL)
(r2 − r1 + π1(p2)) . (4)

After doing some easy manipulations, we arrive at the inequality

0 ≤ π1(p2)λ(VL) + (r2 − 2r1)λ(VL)− r1λ(U1) . (5)

Since

π1(p2)λ(VL) =

∫
VL

π1dλ

=

∫ r2

L

ΣN−1

[√
r22 − x2

]N−1
x dx

=
ΣN−1
N + 1

(r22 − L2)(N+1)/2 ,

and from [2] we know that

λ(U1) = rN1
2π

N
2

Γ(N/2) ·N

(where Γ is the usual gamma function), we can rewrite this inequality as

0 ≤ ΣN−1
N + 1

(r22 − L2)(N+1)/2 + (r2 − 2r1)λ(VL)− rN+1
1

2π
N
2

Γ(N/2) ·N
. (6)

Let the function F : [−r2, r2]→ R, a function of L, be defined by

F (L) =
ΣN−1
N + 1

(r22 − L2)(N+1)/2 + (r2 − 2r1)λ(VL)− rN+1
1

2π
N
2

Γ(N/2) ·N
. (7)

We would like to use our knowledge that F is nonnegative to show that
r2/r1 must be large. To do this, we first need to evaluate λ(VL) in terms of
L. This is certainly doable, since

λ(VL) =

∫ r2

L

ΣN−1

[√
r22 − x2

]N−1
dx

= ΣN−1 ·
∫ cos−1(L/r2)

0

rN2 sinN θ dθ
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and

∫
sinN θ dθ =



− cos θ
∑m−1
r=0

(2m)!(r!)2

22m−2r(2r+1)!(m!)2 sin2r+1 θ + (2m)!
22m(m!)2 θ

if N = 2m is even

− cos θ
∑m−1
r=0

22m−2r(m!)2(2r)!
(2m+1)!(r!)2 sin2r θ

if N = 2m+ 1 is odd .

See [3] for formulas of this type.

However, proceeding in the general case would get extremely tedious,
largely due to the cumbersome nature of this equation for

∫
sinN θ dθ. So,

we instead specialize down to dimensions N = 2 and N = 3, and trust that
the reader can extract the technique for approaching the problem when N is
an arbitrary fixed natural number.

4.1 The case N = 2

Let λ denote two-dimensional Lebesgue measure here. After some simplifica-
tion, we have

λ(VL) =
π

2
r22 − L

√
r22 − L2 − r22 sin−1

(
L

r2

)
.

Of course, we also know that

λ(U1) = πr21 .

Now let us expand F (L) so that it is written in terms of L:

F (L) =
2

3
(r22 − L2)

3
2

+ (r2 − 2r1)

(
π

2
r22 − L

√
r22 − L2 − r22 sin−1

L

r2

)
− πr31 .

We see that

F (2r1 − r2) =
2

3
(4r1(r2 − r1))

3
2 − πr31

− (2r1 − r2)

(
π

2
r22 − (2r1 − r2)

√
4r1(r2 − r1)− r22 sin−1(

2r1 − r2
r2

)

)
.
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Now write d = r2/r1. So

1

r31
F (2r1 − r2) =

2

3

(
1

r1

√
4r1(r2 − r1)

)3

− π

−(2− d)

(
π

2
d2 − (2− d)(

1

r1
)
√

4r1(r2 − r1)− d2 sin−1(
2

d
− 1)

)

=
2

3
(4(d− 1))

3
2 − π

−(2− d)

(
π

2
d2 − (2− d)

√
4(d− 1)− d2 sin−1(

2

d
− 1)

)
.

We know that the lefthand side of the equation is nonnegative, so of course
the righthand side must be as well. It follows that d ≥ a2, where a2 is the
unique positive zero of the righthand side, taken as a function of d. Using a cal-
culator or computer algebra system, we can determine that a2 = 1.82001 . . . .

4.2 The case N = 3

We now let λ denote three-dimensional Lebesgue measure and set N = 3.
Here we have

λ(VL) =

∫ r2

L

Σ2

(√
r22 − x2

)2

dx = π

(
2r32
3
− Lr22 +

L3

3

)
,

and

λ(U1) =
4

3
πr31 .

Now, tedious calculation shows that

F (L) =
π

4
(r22 − L2)2+

(r1 − r2)
4π

3
r31 + (2r1 − r2)

[
4π

3
r31 + π

(
2r32
3
− Lr22 +

L3

3

)]
.

As a result,

1

r41
· F (2r1 − r2) =

4π

3

(
−2 + (r2/r1)4 − 2(r2/r1)3 + 2(r2/r1))

)
.

Setting d = r2/r1, we can rewrite this last line as

1

r41
· F (2r1 − r2) =

4π

3

[
d4 − 2d3 + 2d− 2

]
.
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Since the lefthand side is positive, the righthand side must be as well, and
hence d ≥ a3, where a3 is the unique positive real root of the polynomial
d4 − 2d3 + 2d− 2. We can use a calculator or computer algebra system to see
that a3 = 1.71667 . . . .

5 Sharpness

The following corollaries show that our result is sharp in both R2 and R3.

Corollary 11. There exists a bounded Lebesgue-measurable U ⊂ R2 such
that C(U) 6∈ U even though the ratio of the radii of the smallest closed ball
containing U and the largest open ball contained in U is equal to a2.

Proof. Let r1 = 1 and let r2 = a2. Let p1 = (r1 − r2, 0) and let p2 = (0, 0).
Let B1 = B(p1, r1) and let B2 = B(p2, r2). Let U1 = B1 and let V = {p ∈
B2 : π1(p) > 2r1 − r2}. Let U = U1 ∪ V . It is clear that B1 is the largest
open ball contained in U and that B2 is the smallest closed ball containing U .
Hence, the relevant ratio is indeed equal to a2.

Figure 2: The “critical shape” in R2.

Now we will show that U does not contain its centroid. Since r2
r1

= a2,
we know from the end of Section 3 that F (2r1 − r2) = 0, where the function
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F (L) is as defined in Section 3. Using the fact that V = V2r1−r2 and working
backward through the proof, we arrive at equation (7) where we see that

0 =
ΣN−1
N + 1

(r22 − (2r1 − r2)2)(N+1)/2 + (r2 − 2r1)λ(V2r1−r2)− rN+1
1

2π
N
2

Γ(N/2) ·N
.

Continuing backward, the inequalities in (6), (5), and (4) become equalities,
so that once we reach (4) we have

r1 =
λ(V )

λ(U1) + λ(V )
(r2 − r1 + π1(p2)).

A bit of manipulation yields

r1 +
λ(U1)

λ(U1) + λ(V )
(r1 − r2)− λ(V )

λ(U1) + λ(V )
(r2 − r1)

=
λ(V )

λ(U1) + λ(V )
π1(p2) +

λ(U1)

λ(U1) + λ(V )
(r1 − r2) ,

which we can simplify to

2r1 − r2 = π1(C(U)),

by Lemma 5.3 in [1]. It follows C(U) 6∈ U .

Corollary 12. There exists a bounded Lebesgue-measurable U ⊂ R3 such
that C(U) 6∈ U even though the ratio of the radii of the smallest closed ball
containing U and the largest open ball contained in U is equal to a3.

Proof. The proof is essentially identical to the above.

6 Concluding remarks

It is clear that our sufficient condition is not necessary. In the plane, a long,
thin rectangle certainly contains its centroid, yet the ratio of radii of minimal
outer disc with maximal inner disc can be arbitarily large.

The condition that we do present here has intuitive appeal, and we suspect
that an invariant version of this condition may be closer to necessary and
sufficient.

We hope to explore necessary conditions in future work.
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