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GENERALIZED KIESSWETTER’S
FUNCTIONS

Abstract
In 1966, Kiesswetter found an interesting example of continuous ev-

erywhere but differentiable nowhere functions using base-4 expansion of
real numbers. In this paper we show how Kiesswetter’s function can be
extended to general cases. We also provide an equivalent form for such
functions via a recurrence relation.

1 Introduction

Finding functions that are continuous everywhere but differentiable nowhere
is a classical problem in real analysis. While Weierstrass’s famous example
is the first such function in publication, the earliest example is believed to
be found by Bolzano around 1830 (although Bolzano’s example was published
much later, see [11]). There had been a great deal of research in this area in the
late 19th and early 20th centuries after Weierstrass’s example was published.
Several important examples including the well-known Takagi’s function [10]
and its generalizations were introduced. Many mathematicians have made
their contributions to this problem, and there is a rich literature on this subject
(see [1], [2], [6], [7] and [9]).

In 1966, Kiesswetter ([5], [8]) found a new example. His example is defined
as follows. For x ∈ [0, 1], let

x =

∞∑
k=1

xk
4k
,
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where xk = 0, 1, 2 or 3, be a base-4 expansion of x. Let

K(x) =

∞∑
k=1

(−1)αkX(xk)

2k
, (1)

where X(0) = 0, X(xk) = xk − 2 if xk > 0, α1 = 0, and αk is the number of
xi’s such that xi = 0 for i < k if k ≥ 2. Kiesswetter’s function is intriguing in
the way it is defined, and it has an interesting property: its graph is invariant
under a map consisting of four affine transformations in R2. This property
provides geometric insight into the understanding of the function. Edgar [3]
studied the Hausdorff dimension of Kiesswetter’s fractal.

It is natural to ask whether Kiesswetter’s function can be extended to
general cases. In his paper, Kiesswetter predicted that if x is given in a
base-a expansion (a ≥ 4), b = a − 2k ≥ 2 (k = 1, 2, . . .), and if f is given
as an infinite series similar to (1) by using b instead of 2, then f would be
continuous everywhere but differentiable nowhere on [0, 1] for appropriately
chosen X(xk)’s.

In this paper, we show that the construction of the generalized Kiesswet-
ter’s functions is only possible when b = a− 2.

2 The construction of generalized cases

Let x ∈ [0, 1] and let a ≥ 2 be an integer. Suppose x has the following base-a
expansion:

x =

∞∑
k=1

xk
ak

= 0.x1x2 · · ·xn · · · ,

where xk = 0, 1, 2, . . . , a− 1 for k = 1, 2, . . .. Let b > 1 be a real number that
is to be determined, and let

f(x) =

∞∑
k=1

(−1)αku(xk)

bk
, (2)

where αk is defined in the same way as for (1), and u(xk) is to be determined.
It is easy to see the series (2) converges. We first consider conditions under
which f is well defined, because some x ∈ [0, 1] can have two base-a expansions
as indicated in the following lemma.

Lemma 1. Let x ∈ [0, 1].
(a) If x is given by

x =
x1
a

+
x2
a2

+ · · ·+ xn
an
,
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where xn ≥ 1, then

x =
x1
a

+
x2
a2

+ · · ·+ xn − 1

an
+
a− 1

an+1
+
a− 1

an+2
+ · · · .

(b) Any x has either one or two base-a expansions.

Proof. It is easy to see that (a) follows from a simple computation, and (b)
follows from (a) and the fact that if a base-a expansion of x ∈ [0, 1] does
not end with all 0’s (or equivalently with all (a − 1)’s), then its expansion is
unique.

Now we give necessary and sufficient conditions for u(xk) such that the
function given by (2) is well defined.

Theorem 2. The function given by (2) is well defined if and only if
u(1) = −u(a− 1)

b− 1
+
b u(0)

b+ 1
,

u(xn) = u(xn − 1) +
u(a− 1)

b− 1
− u(0)

b+ 1
, if 2 ≤ xn ≤ a− 2

b− a+ 2

b− 1
u(a− 1) =

b− a+ 2

b+ 1
u(0).

(3)

Proof. By Lemma 1, if f is well defined, then two base-a expansions of
x ∈ [0, 1] produce the same function value. More specifically, if

x =
x1
a

+
x2
a2

+ · · ·+ xn
an
,

where xn ≥ 1, or equivalently

x =
x1
a

+
x2
a2

+ · · ·+ xn − 1

an
+
a− 1

an+1
+
a− 1

an+2
+ · · · , (4)

then we need to choose u(xk) such that

n−1∑
k=1

(−1)αku(xk)

bk
+

(−1)αnu(xn)

bn
+

∞∑
k=n+1

(−1)αku(0)

bk

=

n−1∑
k=1

(−1)αku(xk)

bk
+

(−1)αnu(xn − 1)

bn
+

∞∑
k=n+1

(−1)α
′
ku(a− 1)

bk
,

where α′k denotes the number of xi’s such that xi = 0 for i < k with respect
to (4). The equation above is equivalent to
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(−1)αnu(xn)

bn
+ u(0)

∞∑
k=n+1

(−1)αk

bk

=
(−1)αnu(xn − 1)

bn
+ u(a− 1)

∞∑
k=n+1

(−1)α
′
k

bk
.

(5)

Case 1. Suppose xn = 1. Then for k ≥ n + 1, αk = αn + k − n − 1,
α′k = αn + 1. Then (5) becomes

(−1)αnu(1)

bn
+ u(0)

∞∑
k=n+1

(−1)αn+k−n−1

bk

=
(−1)αnu(0)

bn
+ u(a− 1)

∞∑
k=n+1

(−1)αn+1

bk
,

which is equivalent to

(−1)αnu(1)

bn
+ u(0)(−1)αn−n−1

(
−1

b

)n+1
1

1 + 1
b

=
(−1)αnu(0)

bn
+ u(a− 1)(−1)αn+1 1

bn+1

1

1− 1
b

,

or

u(1) +
u(0)

b+ 1
= u(0)− u(a− 1)

b− 1
;

i.e.,

u(1) = −u(a− 1)

b− 1
+
b u(0)

b+ 1
.

Case 2. Suppose 2 ≤ xn ≤ a− 1. Then for k ≥ n+ 1, αk = αn + k−n− 1,
α′k = αn. It follows from (5) that

(−1)αnu(xn)

bn
+ u(0)

∞∑
k=n+1

(−1)αn+k−n−1

bk

=
(−1)αnu(xn − 1)

bn
+ u(a− 1)

∞∑
k=n+1

(−1)αn

bk
,
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which is equivalent to

(−1)αnu(xn)

bn
+ u(0)(−1)αn−n−1

(
−1

b

)n+1
1

1 + 1
b

=
(−1)αnu(xn − 1)

bn
+ u(a− 1)(−1)αn

1

bn+1

1

1− 1
b

,

or

u(xn) +
u(0)

b+ 1
= u(xn − 1) +

u(a− 1)

b− 1
;

i.e.,

u(xn) = u(xn − 1) +
u(a− 1)

b− 1
− u(0)

b+ 1
.

Then

u(2) = u(1) +
u(a− 1)

b− 1
− u(0)

b+ 1
,

and

u(3) = u(2) +
u(a− 1)

b− 1
− u(0)

b+ 1
= u(1) + 2

[
u(a− 1)

b− 1
− u(0)

b+ 1

]
.

Repeating this process, we obtain

u(a− 1) = u(1) + (a− 2)

[
u(a− 1)

b− 1
− u(0)

b+ 1

]
= −u(a− 1)

b− 1
+
b u(0)

b+ 1
+ (a− 2)

[
u(a− 1)

b− 1
− u(0)

b+ 1

]
.

Therefore,
b− a+ 2

b− 1
u(a− 1) =

b− a+ 2

b+ 1
u(0).

Combining the results above, we conclude that if f is well defined, then all
three conditions of (3) are satisfied.

Conversely, suppose all conditions of (3) are satisfied. Then the proof
above indicates that (5) is true, and therefore, f is well defined.

Next we take a further look at the functions satisfying (3).

Theorem 3. Let f be defined by (2) and satisfy all conditions of (3). Then
f is a constant if and only if

u(a− 1)

b− 1
=

u(0)

b+ 1
.
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Proof. Suppose f is a constant. Then f(0) = f(1). Write

1 =
a− 1

a
+
a− 1

a2
+
a− 1

a3
+ · · · .

Then

u(0)

b
− u(0)

b2
+
u(0)

b3
− · · · = u(a− 1)

b
+
u(a− 1)

b2
+
u(a− 1)

b3
+ · · · .

Hence
u(0)

b

1

1 + 1
b

=
u(a− 1)

b

1

1− 1
b

,

so that
u(0)

b+ 1
=
u(a− 1)

b− 1
.

Conversely, suppose
u(0)

b+ 1
=
u(a− 1)

b− 1
.

Substituting this equation into the equations of (3), we have

u(1) = u(2) = · · · = u(a− 1) =
b− 1

b+ 1
u(0).

For any x ∈ [0, 1], let x = 0.x1x2 · · ·xn · · · , and let

ck =
(−1)αku(xk)

bk
.

If xk = 0, then

ck =
(−1)αku(0)

bk
=

u(0)

b+ 1

(−1)αk(b+ 1)

bk
=

u(0)

b+ 1

[
(−1)αk

bk−1
− (−1)αk+1

bk

]
.

If xk 6= 0, then

ck =
u(0)

b+ 1

(−1)αk(b− 1)

bk
=

u(0)

b+ 1

[
(−1)αk

bk−1
− (−1)αk+1

bk

]
.

Therefore,

Sn(x) =

n∑
k=1

ck
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is a telescoping sum. Since

c1 =
u(0)

b+ 1

[
1− (−1)α2

b

]
,

Sn(x) =
u(0)

b+ 1

[
1− (−1)αn+1

bn

]
→ u(0)

b+ 1

as n→∞. This shows that

f(x) =
u(0)

b+ 1
;

i.e., f is a constant.

If a function f given by (2) is well defined, i.e., satisfies all conditions of
(3), then it is a constant if b 6= a−2 by the third equation of (3) and Theorem
3. So in order for a function given by (2) to be well defined and non-constant,
it is necessary that b = a − 2. If b = a − 2, then the third equation of (3)
is always true, hence for the function to be well defined, only the first two
equations of (3) need to hold. Since b ≥ 2 is an integer, a = b+ 2 needs to be
an integer greater than or equal to 4. Therefore, we have the following result
on the construction of the generalized Kiesswetter’s functions.

Theorem 4. If a ≥ 4 is an integer, b = a− 2 and

u(a− 1)

b− 1
6= u(0)

b+ 1
,

then the function given by (2) satisfying the first two conditions of (3) is well
defined and non-constant. If a = 4, b = 2, u(0) = 0 and u(3) = 1, then the
function becomes the original Kiesswetter’s function given by (1).

In the next two theorems, we show that the generalized Kiesswetter’s func-
tions are continuous everywhere but differentiable nowhere on [0, 1].

Theorem 5. Let f be a function defined in Theorem 4. Then

|f(x)− f(y)| ≤ C |x− y|ln b/ ln a (6)

for some positive constant C and all x, y ∈ [0, 1]. In particular, f is continuous
on [0, 1].
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Proof. We only need to prove the inequality for x 6= y. We may assume
y > x. Then there is some nonnegative integer n such that

1

an+1
≤ y − x ≤ 1

an
.

Hence,

|x− y|ln b/ ln a ≥ 1

(an+1)ln b/ ln a
=

1

e(n+1)(ln a)(ln b/ ln a)
=

1

e(n+1) ln b
=

1

bn+1
.

Let [0, 1] be partitioned into an subintervals of equal length of 1/an, and let
t0, t1, . . ., and tan be the endpoints of these subintervals. Then both x and y
either lie in the same subinterval or in adjacent subintervals.

Suppose x and y lie in the same subinterval. There exists tm for some
m = 0, 1, . . . , an − 1 such that

tm ≤ x < y ≤ tm +
1

an
.

Thus,

x = tm +

∞∑
k=n+1

xk
ak

and y = tm +

∞∑
k=n+1

yk
ak
,

which leads to

f(x)− f(y) =

∞∑
k=n+1

(−1)αku(xk)

bk
−

∞∑
k=n+1

(−1)α
′
ku(yk)

bk
.

Let M = max{|u(0)|, |u(1)|, . . . , |u(a− 1)|}. Then

|f(x)− f(y)| ≤ 2M

∞∑
k=n+1

1

bk
=

2M

bn(b− 1)
≤ 2Mb

b− 1
|x− y|ln b/ ln a.

If x and y lie in the adjacent subintervals, then the argument above and
the triangle inequality easily imply that

|f(x)− f(y)| ≤ 4Mb

b− 1
|x− y|ln b/ ln a.

This completes the proof of the theorem.

Theorem 6. Let f be a function defined in Theorem 4. Then f is differen-
tiable nowhere on [0, 1].
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Proof. Suppose a base-a expansion of x does not end with all 0’s (or equiv-
alently with all (a− 1)’s). Let

x =

∞∑
k=1

xk
ak

= 0.x1x2 · · · .

We construct two sequences {an} and {bn} as follows:

an =

n∑
k=1

xk
ak

= 0.x1x2 · · ·xn,

bn =

n∑
k=1

xk
ak

+

∞∑
k=n+1

a− 1

ak
= 0.x1x2 · · ·xn(a− 1)(a− 1) · · · .

Then an < x < bn, an → x, bn → x and

0 < bn − an =

∞∑
k=n+1

a− 1

ak
=

1

an
.

From

f(an) =

n∑
k=1

(−1)αku(xk)

bk
+

∞∑
k=n+1

(−1)αn+1+k−n−1u(0)

bk
,

f(bn) =

n∑
k=1

(−1)αku(xk)

bk
+

∞∑
k=n+1

(−1)αn+1u(a− 1)

bk
,

we have

|f(bn)− f(an)| =

∣∣∣∣∣u(a− 1)

∞∑
k=n+1

1

bk
− u(0)

∞∑
k=n+1

(−1)k−n−1

bk

∣∣∣∣∣ .
A simple computation gives

|f(bn)− f(an)| =
∣∣∣∣u(a− 1)

1

bn(b− 1)
− u(0)

1

bn(b+ 1)

∣∣∣∣ =
C

bn
,

where by the hypothesis of Theorem 4,

C =

∣∣∣∣u(a− 1)

b− 1
− u(0)

b+ 1

∣∣∣∣ > 0.
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Thus, ∣∣∣∣f(bn)− f(an)

bn − an

∣∣∣∣ = C
(a
b

)n
= C

(
b+ 2

b

)n
→∞ (7)

as n→∞. It easily follows that either

f(bn)− f(x)

bn − x
or

f(an)− f(x)

an − x

is unbounded as n→∞. Therefore, f is not differentiable at x.
A similar argument shows that f is not differentiable at x if a base-a

expansion of x ends with all 0’s.

3 An equivalent form

In this section, we describe an equivalent form for the generalized Kiesswetter’s
functions using affine transformations. Let a ≥ 4 be an integer, and let u(i)
(i = 0, 1, . . . , a− 1) be real numbers that satisfy the conditions in Theorems 2
and 4.

Let

v(i) =

{
−1, i = 0,

1, i = 1, 2, . . . , a− 1.

Let Fi (i = 1, 2, . . . , a) be affine transformations in R2 defined by

Fi

[
x
y

]
=

[
1/a 0
0 v(i− 1)/(a− 2)

] [
x
y

]
+

[
(i− 1)/a

u(i− 1)/(a− 2)

]
.

It is easy to see that each transformation Fi maps the graph of a function on an
interval I onto the graph of another function on the interval (1/a)I+(i−1)/a.

Let G(g, I) denote the graph of a function g on I; i.e.,

G(g, I) = {(x, g(x)) : x ∈ I}.

Definition 1. Let g0 denote a bounded function on [0, 1]. For n = 1, 2, . . .,
let gn be a function on [0, 1] defined as follows. For i = 1, 2, 3, . . . , a− 1,

G

(
gn,

[
i− 1

a
,
i

a

))
= Fi(G(gn−1, [0, 1))),

and

G

(
gn,

[
a− 1

a
, 1

])
= Fn(G(gn−1, [0, 1])).
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The functions gn defined above may have discontinuities in [0, 1]. We have
the following recurrence relation for gn.

Lemma 7. Let gn(x) be given in the definition above. Then for any positive
integer n,

gn(x) =
v(i− 1)

a− 2
gn−1(ax− i+ 1) +

u(i− 1)

a− 2
,

i− 1

a
≤ x < i

a
,

for i = 1, 2, 3, . . . , a− 1, and

gn(x) =
1

a− 2
gn−1(ax− a+ 1) +

u(a− 1)

a− 2
,

a− 1

a
≤ x ≤ 1.

Proof. For i = 1, 2, . . . , a − 1, the transformation Fi shrinks the graph of
gn−1 over [0, 1) horizontally by a ratio of 1/a and vertically by a ratio of
v(i− 1)/(a− 2). Then it moves that graph to the right by (i− 1)/a and up by
u(i− 1)/(a− 2). The resulting graph is placed on the interval [(i− 1)/a, i/a).
Thus,

gn(x) =
v(i− 1)

a− 2
gn−1

(
a

(
x− i− 1

a

))
+
u(i− 1)

a− 2

=
v(i− 1)

a− 2
gn−1(ax− i+ 1) +

u(i− 1)

a− 2

for (i− 1)/a ≤ x < i/a. The same argument holds for the case i = a.

Now we establish the following equivalence result.

Theorem 8. Let f be a function defined in Theorem 4, let g0 be any bounded
function on [0, 1], and let gn be given in the definition above. Then f(x) =
lim
n→∞

gn(x) on [0, 1].

Proof. Let b = a− 2. If x = 1, then by Lemma 7,

gn(1) =
gn−1(1)

b
+
u(a− 1)

b
.

Since

gn−1(1) =
gn−2(1)

b
+
u(a− 1)

b
,

we have

gn(1) =
gn−2(1)

b2
+
u(a− 1)

b2
+
u(a− 1)

b
.
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Continuing this, we obtain

gn(1) =
g0(1)

bn
+
u(a− 1)

bn
+
u(a− 1)

bn−1
+ · · ·+ u(a− 1)

b
.

Since g0 is bounded and 1/bn → 0 as n→∞, we conclude

lim
n→∞

gn(1) =

∞∑
k=1

u(a− 1)

bk
= f(1).

We next consider 0 ≤ x < 1. Since x has possibly two expansions, we let
x = 0.x1x2 · · ·xn · · · denote the expansion that does not end with all (a−1)’s.
(If an expansion of x ends with all (a − 1)’s, then it has an expansion that
ends with all 0’s by Lemma 1.) From

x1 ≤ a · x = x1 + 0.x2x3 · · · < x1 + 1,

we get
x1
a
≤ x < x1 + 1

a
.

In the recursive formulas in Lemma 7, let i = x1 + 1, and we obtain

gn(x) =
v(x1)

b
gn−1(ax− x1) +

u(x1)

b
=
v(x1)

b
gn−1(0.x2x3 · · · ) +

u(x1)

b
.

Similarly,

gn(x) =
v(x1)

b

[
v(x2)

b
gn−2(0.x3x4 · · · ) +

u(x2)

b

]
+
u(x1)

b

=
v(x1)v(x2)

b2
gn−2(0.x3x4 · · · ) +

v(x1)u(x2)

b2
+
u(x1)

b
.

Repeating this process, we have

gn(x) =
v(x1)v(x2) · · · v(xn)

bn
g0(0.xn+1xn+2 · · · )

+
v(x1)v(x2) · · · v(xn−1)

bn
u(xn)

+
v(x1)v(x2) · · · v(xn−2)

bn−1
u(xn−1) + · · ·+ u(x1)

b
.

By the definition of v(i), we have

v(x1)v(x2) . . . v(xn) = (−1)αn+1 ,
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and thus,

gn(x) =
(−1)αn+1

bn
g0(0.xn+1xn+2 · · · ) +

(−1)αnu(xn)

bn

+
(−1)αn−1u(xn−1)

bn−1
+ · · ·+ u(x1)

b

=
(−1)αn+1

bn
g0(0.xn+1xn+2 · · · ) +

n∑
k=1

(−1)αku(xk)

bk
.

Therefore,

lim
n→∞

gn(x) =

∞∑
k=1

(−1)αku(xk)

bk
= f(x).

This completes the proof of the theorem.

We make a comment here. Let X denote the complete metric space con-
sisting of all bounded functions on [0, 1] with the metric

d(f, g) = sup
x∈[0,1]

|f(x)− g(x)|.

Let ϕ denote the map from X into X defined by

ϕ(g)(x) =
v(i− 1)

a− 2
g(ax− i+ 1) +

u(i− 1)

a− 2
,

i− 1

a
≤ x < i

a
,

for i = 1, 2, . . . , a− 1, and

ϕ(g)(x) =
1

a− 2
g(ax− a+ 1) +

u(a− 1)

a− 2
,

a− 1

a
≤ x ≤ 1.

Then it is easy to see

d(ϕ(f), ϕ(g)) ≤ 1

a− 2
d(f, g).

Thus, ϕ is a contraction. The Contraction Mapping Principle claims that
there is a unique f ∈ X such that ϕ(f) = f ; i.e., the graph of f is invariant
under ϕ. This function is one of the generalized Kiesswetter’s functions.

Theorem 8 provides a way of visualizing the graph of f from the graph of
gn for large n. We consider two special cases. For simplicity, we let g0(x) = x.

First we let a = 5, u(0) = 0 and u(4) = 2. Then by Theorem 2, u(1) = −1,
u(2) = 0, u(3) = 1. The recursive formulas for gn that are given in Lemma 7
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are

gn(x) =



−(1/3)gn−1(5x), 0 ≤ x < 1/5,

(1/3)gn−1(5x− 1)− 1/3, 1/5 ≤ x < 2/5,

(1/3)gn−1(5x− 2), 2/5 ≤ x < 3/5,

(1/3)gn−1(5x− 3) + 1/3, 3/5 ≤ x < 4/5,

(1/3)gn−1(5x− 4) + 2/3, 4/5 ≤ x ≤ 1.

We use the recursive formulas above and Mathematica to graph g100 (see
Figure 1).

Figure 1: The graph of g100 for case a = 5, u(0) = 0, and u(4) = 2
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Let us consider another case where a = 5, u(0) = 7, and u(4) = 3. By
Theorem 2, u(1) = 15/4, u(2) = 7/2, u(3) = 13/4. Using the recursive
formulas given in Lemma 7, we obtain the graph of g100 (see Figure 2).

Figure 2: The graph of g100 for case a = 5, u(0) = 7, and u(4) = 3
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