Keqin Liu, Department of Mathematics, The University of British Columbia, Vancouver, BC V6T 1Z2, Canada. email: kliu@math.ubc.ca

A GENERALIZATION OF THE FUNDAMENTAL THEOREM OF CALCULUS

Abstract

After introducing the concepts of φ-derivatives and φ-integrals inside the dual real number algebra, we prove a new generalization of the fundamental theorem of calculus.

Except for the complex number field and the direct product of two real number fields, the only remaining 2-dimensional real associative algebra is the dual real number algebra $\mathcal{R}^{(2)}$ which has zero divisors. It turns out that the well-known theory of Riemann integrals can be rewritten by replacing the real number field \mathcal{R} with the dual real number algebra $\mathcal{R}^{(2)}$. The purpose of this paper is to present a new way of rewriting the fundamental theorem of calculus inside the dual real number algebra $\mathcal{R}^{(2)}$.

Using Fréchet derivatives is a well-known way of introducing differentiability of functions with values in real associative algebras which have zerodivisors. Fréchet's way of introducing differentiability avoids the problem produced from zero-divisors effectively, but it ignores the invertible elements of a real associative algebra even if the zero-divisors of the real associative algebra can be controlled easily. Being dissatisfied at this aspect of Fréchet derivatives, we give a new way of introducing differentiability inside real associative algebras which have zero-divisors. The key idea in this new way is to use the topology transferred from the topology on a field to introduce differentiability inside real associative algebras which have zero-divisors. Based on this idea, we get the concept of φ-derivatives inside the real associative algebra $\mathcal{R}^{(2)}$, which is defined by using both invertible elements of $\mathcal{R}^{(2)}$ and the

[^0]topology transferred from the topology on the real number field \mathcal{R}. Except for φ-derivatives, another fundamental concept introduced in this paper is the concept of φ-integrals. Unlike the counterparts of Riemann integrals in other generalizations of single variable calculus such as multivariable calculus, complex analysis and Lebesgue integration, the concept of φ-integrals is defined by generalizing the order relation on the real number field and replacing the length function on intervals with a function whose values are not always in the set of non-negative real numbers. This paper consists of five sections. In Section 1, we generalize the order relation on the real number field. In Section 2 and Section 3 we introduce the concepts of the φ-derivatives and φ-integrals. In Section 4, we give the basic properties of the φ-integrals. In Section 5 , we prove the new generalization of the Fundamental Theorem of Calculus.

1 Two generalized order relations on $\mathcal{R}^{(2)}$

The multiplication on the dual real number algebra $\mathcal{R}^{(2)}=\mathcal{R} \oplus \mathcal{R}$ (as real vector space) is defined by

$$
\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right):=\left(a_{1} b_{1}, a_{1} b_{2}+a_{2} b_{1}\right) \quad \text { for }\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right) \in \mathcal{R}^{(2)}
$$

We denote the element $(1,0)$ by 1 , and the element $(0,1)$ by ℓ. Then every element $a=\left(a_{1}, a_{2}\right)$ of $\mathcal{R}^{(2)}$ can be expressed in a unique way as a linear combination of 1 and ℓ :

$$
a=\left(a_{1}, a_{2}\right)=a_{1} 1+a_{2} \ell=a_{1}+a_{2} \ell \quad \text { for } a_{1}, a_{2} \in \mathcal{R}
$$

where Re $a:=a_{1}$ is called the real part of a, and $Z e a:=a_{2}$ is called the zero-divisor part of a. If S is a non-empty subset of $\mathcal{R}^{(2)}$, we defined the real part $\operatorname{Re} S$ and the zero-divisor part $Z e S$ of S by

$$
\operatorname{Re} S:=\{\operatorname{Re} x \mid x \in S\} \quad \text { and } \quad Z e S:=\{Z e x \mid x \in S\}
$$

One nice algebraic property of $\mathcal{R}^{(2)}$ is that the zero-divisors of $\mathcal{R}^{(2)}$ can be characterized in a convenient way.

Proposition 1. Let x be a non-zero element of $\mathcal{R}^{(2)}$. Then
(i) x is a zero-divisor if and only if Rex=0;
(ii) x is invertible if and only if Re $x \neq 0$, in which case, the inverse $x^{-1}=\frac{1}{x}$ is given by

$$
x^{-1}=\frac{1}{\operatorname{Re} x}-\frac{Z e x}{(\operatorname{Re} x)^{2}} \ell
$$

Proof. This proposition follows from the definition of the multiplication on $\mathcal{R}^{(2)}$.

Unlike the complex field, there are two generalized order relations on $\mathcal{R}^{(2)}$ which are compatible with the multiplication in $\mathcal{R}^{(2)}$.

Definition 1.1. Let x and y be two elements of $\mathcal{R}^{(2)}$.
(i) We say that x is type 1 greater than y (or y is type 1 less than x) and we write $x \stackrel{1}{>} y($ or $y \stackrel{1}{<} x)$ if

$$
\text { either } \quad\left\{\begin{array} { l }
{ R e x > R e y } \\
{ Z e x \geq Z e y }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
R e x=R e y \\
Z e x>Z e y
\end{array}\right.\right.
$$

(ii) We say that x is type 2 greater than y (or y is type 2 less than x) and we write $x \stackrel{2}{>} y($ or $y \stackrel{2}{<} x)$ if

$$
\text { either } \quad\left\{\begin{array} { l }
{ R e x > R e y } \\
{ Z e y \geq Z e x }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
R e x=R e y \\
Z e y>Z e x
\end{array}\right.\right.
$$

We use $x \stackrel{\theta}{\geq} y$ when $x \stackrel{\theta}{>} y$ or $x=y$ for $\theta=1,2$. By Definition 1.1, if $\operatorname{Re} x=\operatorname{Re} y$, then $x \stackrel{1}{>} y \Longleftrightarrow y \stackrel{2}{>} x$; if $Z e x=Z e y$, then $x \stackrel{1}{>} y \Longleftrightarrow x>^{2} y$. The following proposition gives the basic properties of the two generalized order relations.
Proposition 2. Let x, y and z be elements of $\mathcal{R}^{(2)}$ and $\theta=1,2$. Then
(i) one of the following holds:

$$
x \stackrel{1}{>} y, \quad y \stackrel{1}{>} x, \quad x=y, \quad x \stackrel{2}{>}_{>} y, \quad y>^{2} x
$$

(ii) if $x \stackrel{\theta}{>} y$ and $y \stackrel{\theta}{>} z$, then $x \stackrel{\theta}{>} z$;
(iii) if $x \stackrel{\theta}{>} y$, then $x+z \stackrel{\theta}{>} y+z$;
(iv) if $x \stackrel{\theta}{>} 0$ and $y \stackrel{\theta}{>} 0$, then $x y \stackrel{\theta}{\geq} 0$;
(v) if $x \stackrel{\theta}{>} y$, then $-x \stackrel{\theta}{<}-y$.

Proof. Clear.

2φ-Derivatives

In the remaining part of this paper, let φ be a real-valued function $\varphi: \mathcal{R} \rightarrow \mathcal{R}$.
A set $S \subseteq \mathcal{R}^{(2)}$ is called a φ-set if $Z e x=\varphi(\operatorname{Re} x)$ for all $x \in S$. Clearly,

$$
\mathcal{R}_{\varphi}:=\left\{x \mid x \in \mathcal{R}^{(2)} \quad \text { and } \quad Z e x=\varphi(\operatorname{Re} x)\right\}
$$

is the largest φ-set in $\mathcal{R}^{(2)}$. A φ-set S is called an open (or closed) φ-interval if $\operatorname{Re} S$ is an open (or closed) interval in the real number field \mathcal{R}. For $a, b \in \mathcal{R}^{(2)}$ with $\operatorname{Re} a<\operatorname{Re} b$, we use $(a, b)_{\varphi}$ (or $\left.[a, b]_{\varphi}\right)$ to denote the open (or closed) φ interval such that $\operatorname{Re}(a, b)_{\varphi}=(\operatorname{Re} a, \operatorname{Re} b)$ (or $\left.\operatorname{Re}[a, b]_{\varphi}=[\operatorname{Re} a, \operatorname{Re} b]\right)$. The topology of the real number field \mathcal{R} can be transferred to the largest φ-set \mathcal{R}_{φ} by employing open φ-intervals.

The usual matrix norm $\|x\|=\sqrt{(\operatorname{Re} x)^{2}+(Z e x)^{2}}$ with $x \in \mathcal{R}^{(2)}$ does not make $\mathcal{R}^{(2)}$ into a normed algebra, but there are many other norms on $\mathcal{R}^{(2)}$ which make $\mathcal{R}^{(2)}$ into a normed algebra. In this paper, we use the taxi norm $\|x\|_{1}$ to make $\mathcal{R}^{(2)}$ into a normed algebra, where the taxi norm is defined by

$$
\|x\|_{1}=|\operatorname{Re} x|+|Z e x| \quad \text { for } x \in \mathcal{R}^{(2)}
$$

If $f: S \rightarrow \mathcal{R}^{(2)}$ is a function with $S \subseteq \mathcal{R}^{(2)}$, then

$$
f(x)=f_{R e}(x)+\ell f_{Z e}(x) \quad \text { for } x \in S
$$

where $f_{R e}(x):=\operatorname{Re} f(x)$ and $f_{Z e}(x):=Z e f(x)$ are real-valued functions of x or, equivalently, of $\operatorname{Re} x$ and $Z e x$. Sometimes, $f_{\boldsymbol{\ell}}(x)$ is also denoted by $f_{\boldsymbol{\ell}}(\operatorname{Re} x, Z e x)$ to emphasize that $f_{\boldsymbol{\ell}}$ is regarded as a real-valued function of two real variables $R e x$ and $Z e x$ for $\boldsymbol{\infty} \in\{R e, Z e\}$. We say that a function $f: S \rightarrow \mathcal{R}^{(2)}$ with $S \subseteq \mathcal{R}^{(2)}$ is bounded if there exists a positive real number M such that $M \geq\left|f_{\boldsymbol{\wedge}}(x)\right|$ for all $x \in S$ and $\boldsymbol{\&} \in\{R e, Z e\}$.

Definition 2.1. Let I be an open φ-interval containing $c \in \mathcal{R}^{(2)}$, and let f be a function defined everywhere on I except possibly at c. We say that an element $L \in \mathcal{R}^{(2)}$ is the φ-limit of f at c, and we write $\lim _{\operatorname{Re} x \rightarrow \text { Rec }} f(x)=L$ if for every $\eta>0$ there exists a $\delta>0$ such that

$$
\begin{equation*}
0<|\operatorname{Re} x-\operatorname{Re} c|<\delta \Longrightarrow\|f(x)-L\|_{1}<\eta \tag{1}
\end{equation*}
$$

Since $f_{\boldsymbol{\ell}}(x)=f_{\boldsymbol{*}}(\operatorname{Re} x, \varphi(\operatorname{Re} x))$ is a function of the single variable $\operatorname{Re} x$ on a φ-interval, $\lim _{\operatorname{Re} x^{\varphi} \operatorname{Rec}} f(x)=L$ if and only if $\lim _{\operatorname{Re} x \rightarrow \operatorname{Rec}} f_{R e}(x)=\operatorname{Re}(L)$ and $\lim _{\operatorname{Re} x \rightarrow \operatorname{Rec}} f_{Z e}(x)=Z e(L)$.

Replacing $0<|\operatorname{Re} x-\operatorname{Re} c|<\delta$ by $0<\operatorname{Re} x-\operatorname{Re} c<\delta$ in (1), we get the concept of right-hand φ-limit $\quad \lim \quad f(x)=L$ of f at c. Replacing $0<|\operatorname{Re} x-\operatorname{Re} c|<\delta$ by $-\delta<\operatorname{Re} x-\operatorname{Re} c<0$ in (1), we get the concept of left-hand φ-limit $\lim _{\operatorname{Re} x \xrightarrow{\varphi} \text { Re } c^{-}} f(x)=L$ of f at c. Clearly, $\lim _{\operatorname{Re} x \xrightarrow{\varphi} \operatorname{Rec}} f(x)=L$ if and only if both one-sided φ-limits exist and are equal to L.

Definition 2.2. Let $f: S \rightarrow \mathcal{R}^{(2)}$ be a function defined on φ-set $S \subseteq \mathcal{R}^{(2)}$. $W e$ say that f is φ-continuous at $c \in S$ if for every $\eta>0$ there exists a $\delta>0$ such that

$$
|\operatorname{Re} x-\operatorname{Re} c|<\delta \quad \text { and } \quad x \in S \Longrightarrow\|f(x)-f(c)\|_{1}<\eta .
$$

If $f: S \rightarrow \mathcal{R}^{(2)}$ is φ-continuous at every point of S, then f is said to be φ-continuous on S.

Using Proposition 1, we now introduce the concept of φ-derivatives in the following

Definition 2.3. Let $f: I \rightarrow \mathcal{R}^{(2)}$ be a function defined on an open φ-interval I containing $c \in \mathcal{R}^{(2)}$. If the φ-limit

$$
f_{\varphi}^{\prime}(c):=\lim _{\operatorname{Re} x^{\varphi} \rightarrow \operatorname{Rec}} \frac{f(x)-f(c)}{x-c}
$$

exists as an element of $\mathcal{R}^{(2)}$, then we say that f has a φ-derivative $f_{\varphi}^{\prime}(c)$ at c (or is φ-differentiable at c). If f is φ-differentiable at each point of the open φ-interval I, then f is said to be φ-differentiable on I.

The next proposition gives one of the basic properties of φ-derivatives.
Proposition 3. Suppose that $f: I \rightarrow \mathcal{R}^{(2)}$ is a function defined on an open φ-interval I containing $c \in \mathcal{R}^{(2)}$, where $\varphi: \operatorname{Re} I \rightarrow \mathcal{R}$ is differentiable at Rec.
(i) If $f(x)=f_{R e}(x)+\ell f_{Z e}(x)$ is φ-differentiable at c, then both the function $f_{R e}$ and the function $f_{Z e}$ of the single variable Rex are differentiable at $R e c$, and their derivatives at Rec are given by

$$
\left.\frac{d f_{R e}}{d(\operatorname{Re} x)}\right|_{x=c}=\operatorname{Re}\left(f_{\varphi}^{\prime}(c)\right)
$$

and

$$
\left.\frac{d f_{Z e}}{d(\operatorname{Re} x)}\right|_{x=c}=\varphi^{\prime}(\operatorname{Re} c) \operatorname{Re}\left(f_{\varphi}^{\prime}(c)\right)+Z e\left(f_{\varphi}^{\prime}(c)\right)
$$

where $f_{\boldsymbol{\infty}}$ is regarded as the function of the single variable Rex defined by

$$
\operatorname{Re} x \mapsto f_{\boldsymbol{\kappa}}(\operatorname{Re} x, \varphi(\operatorname{Re} x)) \quad \text { for } x \in[a, b]_{\varphi} \text { and } \boldsymbol{\AA} \in\{R e, Z e\}
$$

(ii) If the first-order partial derivatives $\frac{\partial f_{R e}}{\partial(R e x)}, \frac{\partial f_{R e}}{\partial(Z e x)}, \frac{\partial f_{Z e}}{\partial(R e x)}$ and $\frac{\partial f_{Z e}}{\partial(Z e x)}$ exist in a neighborhood of $(R e c, Z e c)$ and are continuous at (Rec, Zec), then f is φ-differentiable at c and the φ-derivative $f_{\varphi}^{\prime}(c)$ is given by

$$
\begin{gathered}
f_{\varphi}^{\prime}(c)=\left.\left(\frac{\partial f_{R e}}{\partial(\operatorname{Re} x)}+\varphi^{\prime}(\operatorname{Re} x) \frac{\partial f_{R e}}{\partial(Z e x)}\right)\right|_{x=c}+ \\
+\left.\ell\left(\frac{\partial f_{Z e}}{\partial(\operatorname{Re} x)}+\varphi^{\prime}(\operatorname{Re} x)\left(\frac{\partial f_{Z e}}{\partial(Z e x)}-\frac{\partial f_{R e}}{\partial(\operatorname{Rex})}-\varphi^{\prime}(\operatorname{Re} x) \frac{\partial f_{R e}}{\partial(Z e x)}\right)\right)\right|_{x=c}
\end{gathered}
$$

Proof. This proposition follows from Proposition 1 and the Chain Rule in multivariable calculus.

3 Upper and Lower φ-Sums and φ-Integrals

A closed φ-interval $[a, b]_{\varphi}$ is called monotone if $\varphi:[\operatorname{Re} a, \operatorname{Re} b] \rightarrow \mathcal{R}$ is either nondecreasing or nonincreasing. For convenience, we also use $\varphi \nearrow$ and $\varphi \searrow$ to indicate that the function $\varphi:[\operatorname{Re} a, \operatorname{Re} b] \rightarrow \mathcal{R}$ is nondecreasing and nonincreasing, respectively.

Let $[a, b]_{\varphi}$ be a monotone closed φ-interval in $\mathcal{R}^{(2)}$. A partition P of $[a, b]_{\varphi}$ is a finite set of points $\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ in $[a, b]_{\varphi}$ such that

$$
\operatorname{Re} a=\operatorname{Re} x_{0}<\operatorname{Re} x_{1}<\cdots<\operatorname{Re} x_{n-1}<\operatorname{Re} x_{n}=\operatorname{Re} b
$$

If P and P^{*} are two partitions of a monotone closed φ-interval $[a, b]_{\varphi}$ with $P \subseteq P^{*}$, then P^{*} is called a refinement of P.

In the following, we assume that $f:[a, b]_{\varphi} \rightarrow \mathcal{R}^{(2)}$ is a bounded function, $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ is a partition of $[a, b]_{\varphi}$, and $[a, b]_{\varphi}$ is a monotone closed φ-interval in $\mathcal{R}^{(2)}$. Let $\Delta x_{h}:=x_{h}-x_{h-1}$ for $h=1,2, \ldots, n$. Then

$$
x_{h} \stackrel{\theta_{\varphi}}{>} 0 \quad \text { for } h=1,2, \ldots, n
$$

where the notation θ_{φ} is defined by

$$
\theta_{\varphi}:= \begin{cases}1 & \text { for } \varphi \nearrow \\ 2 & \text { for } \varphi \searrow\end{cases}
$$

Δx_{h} is a generalization of the length function of an interval. Clearly, Δx_{h} is a positive real number if and only if $\varphi\left(\operatorname{Re} x_{h}\right)=\varphi\left(\operatorname{Re} x_{h-1}\right)$.

Since $f:\left[x_{h-1}, x_{h}\right]_{\varphi} \rightarrow \mathcal{R}^{(2)}$ is bounded, both

$$
\sup _{h} f_{\boldsymbol{\ell}}:=\sup \left\{f_{\boldsymbol{\ell}}(x) \mid x \in\left[x_{h-1}, x_{h}\right]_{\varphi}\right\}
$$

and

$$
\inf _{h} f_{\boldsymbol{\ell}}:=\inf \left\{f_{\boldsymbol{\ell}}(x) \mid x \in\left[x_{h-1}, x_{h}\right]_{\varphi}\right\}
$$

exist for $\boldsymbol{\&} \in\{R e, Z e\}$. We define the upper φ-sum $U_{\varphi}(P, f)$ of f with respect to the partition P to be

$$
U_{\varphi}(P, f):= \begin{cases}\sum_{h=1}^{n}\left(\sup _{h} f_{R e}+\ell \sup _{h} f_{Z e}\right) \Delta x_{h} & \text { for } \varphi \nearrow \\ \sum_{h=1}^{n}\left(\sup _{h} f_{R e}+\ell \inf _{h} f_{Z e}\right) \Delta x_{h} & \text { for } \varphi \searrow\end{cases}
$$

and the lower φ-sum $L_{\varphi}(P, f)$ of f with respect to the partition P to be

$$
L_{\varphi}(P, f):= \begin{cases}\sum_{h=1}^{n}\left(\inf _{h} f_{R e}+\ell \inf _{h} f_{Z e}\right) \Delta x_{h} & \text { for } \varphi \nearrow \\ \sum_{h=1}^{n}\left(\inf _{h} f_{R e}+\ell \sup _{h} f_{Z e}\right) \Delta x_{h} & \text { for } \varphi \searrow\end{cases}
$$

By the assumption that $f:[a, b]_{\varphi} \rightarrow \mathcal{R}^{(2)}$ is bounded, there exist real numbers m and M such that

$$
M \geq f_{\boldsymbol{*}}(x) \geq m \quad \text { for all } x \in[a, b]_{\varphi} \text { and } \boldsymbol{\varrho} \in\{R e, Z e\}
$$

Let \mathcal{P} be the set of all partitions of $[a, b]_{\varphi}$, i.e.,

$$
\mathcal{P}:=\left\{P \mid P \text { is a partition of }[a, b]_{\varphi}\right\} .
$$

It follows from Proposition 2 that if $P \in \mathcal{P}$, then

$$
(M+\ell M)(b-a) \stackrel{1}{\geq} U_{\varphi}(P, f) \stackrel{1}{\geq} L_{\varphi}(P, f) \stackrel{1}{\geq}(m+\ell m)(b-a) \quad \text { for } \varphi \nearrow
$$

and

$$
(M+\ell m)(b-a) \stackrel{2}{\geq} U_{\varphi}(P, f) \stackrel{2}{\geq} L_{\varphi}(P, f) \stackrel{2}{\geq}(m+\ell M)(b-a) \quad \text { for } \varphi \searrow
$$

which imply that the four sets $\left\{\operatorname{Re} U_{\varphi}(P, f) \mid P \in \mathcal{P}\right\},\left\{\operatorname{Re} L_{\varphi}(P, f) \mid P \in\right.$ $\mathcal{P}\},\left\{\operatorname{Ze} U_{\varphi}(P, f) \mid P \in \mathcal{P}\right\}$ and $\left\{Z e L_{\varphi}(P, f) \mid P \in \mathcal{P}\right\}$ are bounded subsets of the real number field \mathcal{R}. We now define the lower φ-integral $\underline{\int_{a}^{b} f(x) d_{\varphi} x}$ and upper φ-integral $\overline{\int_{a}^{b}} f(x) d_{\varphi} x$ of $f(x)$ on $[a, b]_{\varphi}$ by

$$
\begin{aligned}
& \int_{a}^{b} f(x) d_{\varphi} x \\
= & \begin{cases}\sup \left\{\operatorname{Re} L_{\varphi}(P, f) \mid P \in \mathcal{P}\right\}+\ell \sup \left\{Z e L_{\varphi}(P, f) \mid P \in \mathcal{P}\right\} & \text { for } \varphi \nearrow \\
\sup \left\{\operatorname{Re} L_{\varphi}(P, f) \mid P \in \mathcal{P}\right\}+\ell \inf \left\{Z e L_{\varphi}(P, f) \mid P \in \mathcal{P}\right\} & \text { for } \varphi \searrow\end{cases}
\end{aligned}
$$

and

$$
\begin{aligned}
& \overline{\int_{a}^{b}} f(x) d_{\varphi} x \\
= & \begin{cases}\inf \left\{\operatorname{Re} U_{\varphi}(P, f) \mid P \in \mathcal{P}\right\}+\ell \inf \left\{Z e U_{\varphi}(P, f) \mid P \in \mathcal{P}\right\} & \text { for } \varphi \\
\inf \left\{\operatorname{Re} U_{\varphi}(P, f) \mid P \in \mathcal{P}\right\}+\ell \sup \left\{Z e U_{\varphi}(P, f) \mid P \in \mathcal{P}\right\} & \text { for } \varphi \searrow\end{cases}
\end{aligned}
$$

If the lower φ-integral and the upper φ-integral of $f(x)$ on $[a, b]_{\varphi}$ are equal, i.e., if $\int_{a}^{b} f(x) d_{\varphi} x=\overline{\int_{a}^{b}} f(x) d_{\varphi} x$, then we say that f is φ-integrable on $[a, b]_{\varphi}$, and we denote their common value by $\int_{a}^{b} f(x) d_{\varphi} x$ which is called the φ-integral of f on $[a, b]_{\varphi}$.

Proposition 4. Let $f:[a, b]_{\varphi} \rightarrow \mathcal{R}^{(2)}$ be a bounded function on the monotone closed φ-interval $[a, b]_{\varphi}$.
(i) If P and P^{*} are partitions of $[a, b]_{\varphi}$ and P^{*} is a refinement of P, then

$$
\begin{equation*}
U_{\varphi}(P, f) \stackrel{\theta_{\varphi}}{\geq} U_{\varphi}\left(P^{*}, f\right) \stackrel{\theta_{\varphi}}{\geq} L_{\varphi}\left(P^{*}, f\right) \stackrel{\theta_{\varphi}}{\geq} L_{\varphi}(P, f) \tag{2}
\end{equation*}
$$

(ii) $\overline{\int_{a}^{b}} f(x) d_{\varphi} x \stackrel{\theta_{\varphi}}{\geq}{\underline{\int_{a}}}_{b}^{b}(x) d_{\varphi} x$.

Proof. The proof of this proposition is similar to the proof of the corresponding results in calculus.

The next proposition will play an important role in determining when a function is φ-integrable.

Proposition 5. Let $f:[a, b]_{\varphi} \rightarrow \mathcal{R}^{(2)}$ be a bounded function on the monotone closed φ-interval $[a, b]_{\varphi}$.
(i) Let $r \in \mathcal{R}$ be a fixed real number. If for each positive real number $\eta>0$ there exists a partitions P of $[a, b]_{\varphi}$ such that

$$
\begin{equation*}
U_{\varphi}(P, f)-L_{\varphi}(P, f)^{\theta_{\varphi}} \stackrel{<}{<} \eta+r \eta \ell, \tag{3}
\end{equation*}
$$

then f is φ-integrable on $[a, b]_{\varphi}$.
(ii) If f is φ-integrable on $[a, b]_{\varphi}$, then for each $\varepsilon{ }^{\theta_{\varphi}} 0$ with $(R e \varepsilon)(Z e \varepsilon) \neq 0$, there exists a partitions P of $[a, b]_{\varphi}$ such that $U_{\varphi}(P, f)-L_{\varphi}(P, f) \stackrel{\theta_{\varphi}}{<} \varepsilon$.

Proof. (i) By Proposition 4 (ii), we have

$$
\begin{equation*}
U_{\varphi}(P, f) \stackrel{\theta_{\varphi}}{\geq} \overline{\int_{a}^{b}} f(x) d_{\varphi} x \stackrel{\theta_{\varphi}}{\geq} \underline{\int_{a}^{b}} f(x) d_{\varphi} x \stackrel{\theta_{\varphi}}{\geq} L_{\varphi}(P, f), \tag{4}
\end{equation*}
$$

where P is any partition of $[a, b]_{\varphi}$. If P is a partition of $[a, b]_{\varphi}$ such that (3) holds, then (3) and (4) imply that

$$
\begin{equation*}
\eta+r \eta \ell \stackrel{\theta_{\varphi}}{>} U_{\varphi}(P, f)-L_{\varphi}(P, f) \stackrel{\theta_{\varphi}}{\geq} \int_{a}^{b} f(x) d_{\varphi} x-\underline{\int_{a}^{b}} f(x) d_{\varphi} x \tag{5}
\end{equation*}
$$

If φ is non-increasing, then $0 \geq r$ and $\overline{\int_{a}^{b}} f(x) d_{\varphi} x \geq \underline{\int}^{2} f(x) d_{\varphi} x$ in this case. It follows from this fact and (5) that
and

$$
-r \eta \geq Z e\left(\underline{\int_{a}^{b}} f d_{\varphi} x-\overline{\int_{a}^{b}} f d_{\varphi} x\right)=Z e\left(\underline{\int_{a}^{b}} f d_{\varphi} x\right)-Z e\left(\overline{\int_{a}^{b}} f d_{\varphi} x\right) \geq 0
$$

for any $\eta>0$. Hence, we have

$$
\operatorname{Re}\left(\underline{\int_{a}^{b}} f d_{\varphi} x\right) \geq \operatorname{Re}\left(\overline{\int_{a}^{b}} f d_{\varphi} x\right) \quad \text { and } \quad Z e\left(\overline{\int_{a}^{b}} f d_{\varphi} x\right) \geq Z e\left(\underline{\int_{a}^{b}} f d_{\varphi} x\right)
$$

or

$$
\begin{equation*}
\underline{\int_{a}^{b}} f(x) d_{\varphi} x \stackrel{2}{\geq} \int_{a}^{b} f(x) d_{\varphi} x \tag{6}
\end{equation*}
$$

Similarly, if φ is non-decreasing, then (5) implies that

$$
\begin{equation*}
\underline{\int_{a}^{b}} f(x) d_{\varphi} x \geq{ }^{1} \geq \int_{a}^{b} f(x) d_{\varphi} x \tag{7}
\end{equation*}
$$

By (6) and (7), we get $\overline{\int_{a}^{b}} f(x) d_{\varphi} x=\underline{\int_{a}^{b}} f(x) d_{\varphi} x$, i.e., f is φ-integrable .
(ii) The proofs of (ii) are similar for $\frac{\lambda_{a}}{\varphi \nearrow}$ and $\varphi \searrow$ are similar. Here, we prove (ii) for $\varphi \nearrow$. Since f is φ-integrable and φ is non-decreasing, we have

$$
\begin{equation*}
\sup \left\{\boldsymbol{\&} L_{\varphi}(P, f) \mid P \in \mathcal{P}\right\}=\inf \left\{\boldsymbol{Q}_{\varphi}(P, f) \mid P \in \mathcal{P}\right\} \quad \text { for } \boldsymbol{\&} \in\{R e, Z e\} \tag{8}
\end{equation*}
$$

Note that $\varepsilon \gg 0$ in this case. Hence, it follows from $(R e \varepsilon)(Z e \varepsilon) \neq 0$ that $R e \varepsilon>0$ and $Z e \varepsilon>0$. By these facts and (8), there exist four partitions $P_{R e}$, $P_{Z e}, Q_{R e}$ and $Q_{Z e}$ of $[a, b]_{\varphi}$ such that

$$
\begin{equation*}
\inf \left\{\boldsymbol{\&} U_{\varphi}(P, f) \mid P \in \mathcal{P}\right\}+\frac{\boldsymbol{\&}(\varepsilon)}{2}>\boldsymbol{\&} U_{\varphi}\left(P_{\boldsymbol{\kappa}}, f\right) \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup \left\{\boldsymbol{\AA} L_{\varphi}(P, f) \mid P \in \mathcal{P}\right\}-\frac{\boldsymbol{\AA}(\varepsilon)}{2}<\boldsymbol{\AA} L_{\varphi}\left(Q_{\boldsymbol{\&}}, f\right) \tag{10}
\end{equation*}
$$

for each $\boldsymbol{\&} \in\{R e, Z e\}$. Let $T=P_{R e} \cup P_{Z e} \cup Q_{R e} \cup Q_{Z e}$. Using (8), (9), (10) and Proposition 4 (i), we get

$$
\begin{aligned}
& >\sup \left\{\boldsymbol{\&} L_{\varphi}(P, f) \mid P \in \mathcal{P}\right\}+\frac{\boldsymbol{\&}(\varepsilon)}{2} \\
& =\inf \left\{\boldsymbol{\ell} U_{\varphi}(P, f) \mid P \in \mathcal{P}\right\}+\frac{\boldsymbol{\AA}(\varepsilon)}{2}>\boldsymbol{\ell} U_{\varphi}\left(P_{\boldsymbol{\kappa}}, f\right) \\
& \geq \boldsymbol{q} U_{\varphi}(T, f) \text {. }
\end{aligned}
$$

That is,

$$
\boldsymbol{\AA}\left(U_{\varphi}(T, f)-L_{\varphi}(T, f)\right)<\boldsymbol{\varrho}(\varepsilon) \quad \text { for } \boldsymbol{\AA} \in\{R e, Z e\},
$$

which proves that $U_{\varphi}(T, f)-L_{\varphi}(T, f) \stackrel{1}{<} \varepsilon$ for the partition T of $[a, b]_{\varphi}$.

4 Basic Properties of φ-Integrals

We beginning this section by proving the linearity property of φ-integrals.
Proposition 6. If f and g are φ-integrable on a monotone closed φ-interval $[a, b]_{\varphi}$ and $k \in \mathcal{R}^{(2)}$, then both $k f$ and $f+g$ are φ-integrable on $[a, b]_{\varphi}$, and following two equations hold

$$
\begin{gather*}
\int_{a}^{b} k f(x) d_{\varphi} x=k \int_{a}^{b} f(x) d_{\varphi} x \tag{11}\\
\int_{a}^{b}(f(x)+g(x)) d_{\varphi} x=\int_{a}^{b} f(x) d_{\varphi} x+\int_{a}^{b} g(x) d_{\varphi} x . \tag{12}
\end{gather*}
$$

Proof. Clearly, Proposition 6 holds if we can prove that (11) holds for $k \in$ $\mathcal{R}^{(2)}$ with either $Z e k=0$ or $R e k=0$ and (12) holds. Since (11) clearly holds for $k=0$, we assume that $k \neq 0$.

First, we prove (11) for $k \in \mathcal{R}^{(2)}$ with $Z e k=0$. In this case, $k=r \in \mathcal{R}$. Then there are four subcases:

Subcase 1: $r<0$ and φ is non-decreasing;
Subcase 2: $r>0$ and φ is non-decreasing;
Subcase 3: $r<0$ and φ is non-increasing;
Subcase 4: $r>0$ and φ is non-increasing.
The proofs of (11) are similar for these four subcases. As an example, we give the proof for Subcase 1. Note that $(r f)_{\boldsymbol{\mu}}=r\left(f_{\boldsymbol{\xi}}\right)$ for $r \in \mathcal{R}$ and each
$\boldsymbol{\&} \in\{R e, Z e\}$. Let $P=\left\{x_{0}, x_{1}, \ldots x_{n}\right\}$ be a partition of $[a, b]_{\varphi}$. We have

$$
\begin{gathered}
U_{\varphi}(P, r f)=\sum_{h=1}^{n}\left(\sup _{h}(r f)_{R e}+\ell \sup _{h}(r f)_{Z e}\right) \Delta x_{h} \\
=\sum_{h=1}^{n}\left(\sup _{h}\left(r\left(f_{R e}\right)\right)+\ell \sup _{h}\left(r\left(f_{Z e}\right)\right)\right) \Delta x_{h} \\
=\sum_{h=1}^{n}\left(r \inf _{h} f_{R e}+\ell r \inf _{h} f_{Z e}\right) \Delta x_{h}=r \sum_{h=1}^{n}\left(\inf _{h} f_{R e}+\ell \inf _{h} f_{Z e}\right) \Delta x_{h} \\
=r L_{\varphi}(P, f)
\end{gathered}
$$

or

$$
\begin{equation*}
\boldsymbol{\&} U_{\varphi}(P, r f)=\boldsymbol{\&}\left(r L_{\varphi}(P, f)\right)=r L_{\varphi}(P, f) \tag{13}
\end{equation*}
$$

for $P \in \mathcal{P}$ and $\boldsymbol{Q} \in\{R e, Z e\}$. It follows from (13) that

$$
\begin{gather*}
\overline{\int_{a}^{b}}(r f)(x) d_{\varphi} x \\
=\inf \left\{\operatorname{Re} U_{\varphi}(P, r f) \mid P \in \mathcal{P}\right\}+\ell \inf \left\{Z e U_{\varphi}(P, r f) \mid P \in \mathcal{P}\right\} \\
=\inf \left\{r \operatorname{Re} L_{\varphi}(P, f) \mid P \in \mathcal{P}\right\}+\ell \inf \left\{r Z e L_{\varphi}(P, f) \mid P \in \mathcal{P}\right\} \\
=r \sup \left\{\operatorname{Re} L_{\varphi}(P, f) \mid P \in \mathcal{P}\right\}+\ell r \sup \left\{Z e L_{\varphi}(P, f) \mid P \in \mathcal{P}\right\} \\
=r \int_{a}^{b} f(x) d_{\varphi} x . \tag{14}
\end{gather*}
$$

Using the same method, we also have

$$
\begin{equation*}
\underline{\int_{a}^{b}}(r f)(x) d_{\varphi} x=\overline{\int_{a}^{b}} f(x) d_{\varphi} x . \tag{15}
\end{equation*}
$$

By the assumption that f is φ-integrable on $[a, b]_{\varphi}$, we get from (4) and (15) that

$$
\overline{\int_{a}^{b}}(r f)(x) d_{\varphi} x=r \underline{\int_{a}^{b}} f(x) d_{\varphi} x=\overline{\int_{a}^{b}} f(x) d_{\varphi} x=\underline{\int_{a}^{b}}(r f)(x) d_{\varphi} x
$$

which proves that (11) holds in Subcase 1.
Next, we prove (11) for $k \in \mathcal{R}^{(2)}$ with $R e k=0$. In this case, $k=r \ell$ with $r \in \mathcal{R}$, and

$$
\begin{equation*}
(k f)_{R e}=0 \quad \text { and } \quad(k f)_{Z e}=r f_{R e} \tag{16}
\end{equation*}
$$

We also have the four subcases. Let's prove (11) in Subcase 2: $r>0$ and φ is non-decreasing. By (16), we have

$$
\begin{gathered}
U_{\varphi}(P, k f)=\sum_{h=1}^{n}\left(\sup _{h}(k f)_{R e}+\ell \sup _{h}(k f)_{Z e}\right) \Delta x_{h} \\
=\sum_{h=1}^{n} \ell\left(\sup _{h}\left(r f_{R e}\right)\right) \Delta x_{h}=\sum_{h=1}^{n} \ell r\left(\sup _{h} f_{R e}\right) \Delta x_{h} \\
=\sum_{h=1}^{n} \ell r\left(\sup _{h} f_{R e}+\ell \sup _{h} f_{Z e}\right) \Delta x_{h}=\ell r \sum_{h=1}^{n}\left(\sup _{h} f_{R e}+\ell \sup _{h} f_{Z e}\right) \Delta x_{h} \\
=\ell r U_{\varphi}(P, f)=k U_{\varphi}(P, f),
\end{gathered}
$$

which implies

$$
\begin{equation*}
\operatorname{Re} U_{\varphi}(P, k f)=\operatorname{Re}\left(k U_{\varphi}(P, f)\right)=0 \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
Z e U_{\varphi}(P, k f)=\operatorname{Ze}\left(k U_{\varphi}(P, f)\right)=r \operatorname{Re} U_{\varphi}(P, f) . \tag{18}
\end{equation*}
$$

It follows from (17) and (18) that

$$
\begin{gather*}
\overline{\int_{a}^{b}}(k f) d_{\varphi} x \\
=\inf \left\{\operatorname{Re} U_{\varphi}(P, k f) \mid P \in \mathcal{P}\right\}+\ell \inf \left\{\operatorname{Ze}_{\varphi}(P, k f) \mid P \in \mathcal{P}\right\} \\
=\ell \inf \left\{r \operatorname{Re} U_{\varphi}(P, f) \mid P \in \mathcal{P}\right\}=\ell r \inf \left\{\operatorname{Re} U_{\varphi}(P, f) \mid P \in \mathcal{P}\right\} \\
=\ell r\left(\inf \left\{\operatorname{Re} U_{\varphi}(P, f) \mid P \in \mathcal{P}\right\}+\ell \inf \left\{Z e U_{\varphi}(P, f) \mid P \in \mathcal{P}\right\}\right) \\
=\ell r \overline{\int_{a}^{b}} f d_{\varphi} x=k \overline{\int_{a}^{b}} f d_{\varphi} x . \tag{19}
\end{gather*}
$$

Similarly, we have

$$
\begin{equation*}
\underline{\int_{a}^{b}}(k f) d_{\varphi} x=k \underline{\int_{a}^{b}} f d_{\varphi} x . \tag{20}
\end{equation*}
$$

By (4) and (20), we get that (11) with $R e k=0$ holds in Subcase 2.
Finally, (12) can be proved by using the following properties of real-valued functions:

$$
\sup f_{1}(D)+\sup f_{2}(D) \geq \sup \left(\left(f_{1}+f_{2}\right)(D)\right)
$$

and

$$
\inf \left(\left(f_{1}+f_{2}\right)(D)\right) \geq \inf f_{1}(D)+\inf f_{2}(D)
$$

where D is a subset of the real number field \mathcal{R} and $f_{i}: D \rightarrow \mathcal{R}$ is a real-valued function with the range $f_{i}(D)$ for $i=1,2$.

Next, we give other algebraic properties of φ-integrals.
Proposition 7. Let $[a, b]_{\varphi}$ be a monotone closed φ-interval.
(i) If f is φ-integrable on both $[a, c]_{\varphi}$ and $[c, b]_{\varphi}$ with $c \in[a, b]_{\varphi}$, then f is φ-integrable on $[a, b]_{\varphi}$ and $\int_{a}^{b} f d_{\varphi} x=\int_{a}^{c} f d_{\varphi} x+\int_{c}^{b} f d_{\varphi} x$.
(ii) If f and g are φ-integrable on both $[a, b]_{\varphi}$ and $f(x) \stackrel{\theta_{\varphi}}{\geq} g(x)$ for all $x \in$ $[a, b]_{\varphi}$, then $\int_{a}^{b} f d_{\varphi} x \geq \int_{a}^{\theta_{\varphi}} g d_{\varphi} x$.

Proof. The proof of this proposition is similar to the proof of the corresponding properties of Riemann integrals.

Finally, we prove that φ-continuous functions are φ-integrable.
Proposition 8. If $f:[a, b]_{\varphi} \rightarrow \mathcal{R}^{(2)}$ is φ-continuous on a monotone closed φ-interval $[a, b]_{\varphi}$, then f is φ-integrable on $[a, b]_{\varphi}$.

Proof. We prove this proposition by cases:
Case 1. φ is non-decreasing and $Z e(b-a)>0$;
Case 2. φ is non-decreasing and $Z e(b-a)=0$;
Case 3. φ is non-increasing and $Z e(b-a)<0$;
Case 4. φ is non-increasing and $Z e(b-a)=0$.
The proofs are similar in the four cases. We prove Proposition 8 in Case 1 to explain the way of doing the proof.

In Case $1, Z e(b-a)$ is a positive real number. Since f is φ-continuous on $[a, b]_{\varphi}$, the real-valued function $f_{\boldsymbol{\ell}}$ of the single variable $R e x$ is uniformly continuous on the closed interval $[\operatorname{Re} a, \operatorname{Re} b]$, where $\boldsymbol{\&} \in\{R e, Z e\}$. Hence, for any positive real number $\eta>0$, there exists a positive real number $\delta>0$ such that

$$
\begin{gather*}
x, y \in[a, b]_{\varphi} \text { and }|\operatorname{Re} x-\operatorname{Re} y|<\delta \\
\Longrightarrow \tag{21}\\
\left\{\begin{array}{c}
\left|f_{R e}(x)-f_{R e}(y)\right|<\frac{\eta}{\operatorname{Re}(b-a)} \\
\left|f_{Z e}(x)-f_{Z e}(y)\right|<\frac{\eta Z e(b-a)}{(\operatorname{Re}(b-a))^{2}}
\end{array}\right.
\end{gather*}
$$

Let $P=\left\{x_{0}, x_{1}, \ldots x_{n}\right\}$ be a partition of $[a, b]_{\varphi}$ with $\|P\|<\delta$, where

$$
\|P\|:=\max \left\{\operatorname{Re} x_{h}-\operatorname{Re} x_{h-1} \mid n \geq h \geq 1\right\} .
$$

By the properties of continuous functions, both $f_{R e}(x)$ and $f_{Z e}(x)$ assume their maximum and minimum on each subinterval $\left[\operatorname{Re} x_{h-1}, \operatorname{Re} x_{h}\right]$. Thus, there exist $s_{h}^{\boldsymbol{\iota}}, t_{h}^{\boldsymbol{\epsilon}} \in\left[x_{h-1}, x_{h}\right]_{\varphi}$ such that

Since $\delta>\|P\| \geq\left|\operatorname{Re} s_{h}^{\boldsymbol{\omega}}-\operatorname{Re} t_{h}^{\boldsymbol{\omega}}\right|$, we get from (21) that

$$
\begin{gathered}
U_{\varphi}(P, f)-L_{\varphi}(P, f) \\
=\sum_{h=1}^{n}\left(\sup _{h} f_{R e}+\ell \sup _{h} f_{Z e}\right) \Delta x_{h}-\sum_{h=1}^{n}\left(\inf _{h} f_{R e}+\ell \inf _{h} f_{Z e}\right) \Delta x_{h} \\
=\sum_{h=1}^{n}\left(f_{R e}\left(s_{h}^{R e}\right)+\ell f_{Z e}\left(s_{h}^{Z e}\right)\right) \Delta x_{h}-\sum_{h=1}^{n}\left(f_{R e}\left(t_{h}^{R e}\right)+\ell f_{Z e}\left(t_{h}^{Z e}\right)\right) \Delta x_{h} \\
=\sum_{h=1}^{n}\left(f_{R e}\left(s_{h}^{R e}\right)-f_{R e}\left(t_{h}^{R e}\right)\right) \Delta x_{h}+\ell \sum_{h=1}^{n}\left(f_{Z e}\left(s_{h}^{Z e}\right)-f_{Z e}\left(t_{h}^{Z e}\right)\right) \Delta x_{h} \\
=\sum_{h=1}^{n}\left|f_{R e}\left(s_{h}^{R e}\right)-f_{R e}\left(t_{h}^{R e}\right)\right| \Delta x_{h}+\ell \sum_{h=1}^{n}\left|f_{Z e}\left(s_{h}^{Z e}\right)-f_{Z e}\left(t_{h}^{Z e}\right)\right| \Delta x_{h} \\
=\sum_{h=1}^{n}\left(\left|f_{R e}\left(s_{h}^{R e}\right)-f_{R e}\left(t_{h}^{R e}\right)\right|+\ell\left|f_{Z e}\left(s_{h}^{Z e}\right)-f_{Z e}\left(t_{h}^{Z e}\right)\right|\right) \Delta x_{h} \\
\quad<\sum_{h=1}^{n}\left(\frac{\eta}{\operatorname{Re}(b-a)}+\ell \frac{\eta Z e(b-a)}{(R e(b-a))^{2}}\right) \Delta x_{h} \\
=\left(\frac{\eta}{\operatorname{Re}(b-a)}+\ell \frac{\eta Z e(b-a)}{(\operatorname{Re}(b-a))^{2}}\right)(b-a)=\eta+\left(\frac{2 Z e(b-a)}{\operatorname{Re}(b-a)}\right) \eta \ell,
\end{gathered}
$$

which proves that f is φ-integrable by Proposition 5 (i).

5 Fundamental Theorem of Calculus ${ }^{\varphi}$

Our way of rewriting the First Fundamental Theorem of Calculus is given in the following proposition.

Proposition 9. Let $f:[a, b]_{\varphi} \rightarrow \mathcal{R}^{(2)}$ be φ-integrable on a monotone closed φ-interval $[a, b]_{\varphi}$, and let $F:[a, b]_{\varphi} \rightarrow \mathcal{R}^{(2)}$ be defined by

$$
F(x):=\int_{a}^{x} f(t) d_{\varphi} t \quad \text { for } x \in[a, b]_{\varphi}
$$

If $\varphi:[\operatorname{Re} a, R e b] \rightarrow \mathcal{R}$ is Lipschitz continuous on the interval $[R e a, R e b]$, and if f is φ-continuous at $c \in[a, b]_{\varphi}$, then F is φ-differentiable at c and $F_{\varphi}^{\prime}(c)=f(c)$.

Proof. We prove this proposition for the case where φ is nondecreasing. The proof of this proposition for the case where φ is nonincreasing can be obtained in a similar way.

Since $\varphi:[\operatorname{Re} a, R e b] \rightarrow \mathcal{R}$ is Lipschitz continuous on the interval $[\operatorname{Re} a, \operatorname{Re} b]$, there exists a positive real number M such that

$$
\begin{equation*}
M|\operatorname{Re} x-\operatorname{Re} y| \geq|\varphi(\operatorname{Re} x)-\varphi(\operatorname{Re} y)|=|Z e x-Z e y| \quad \text { for } x, y \in[a, b]_{\varphi} \tag{22}
\end{equation*}
$$

If $\operatorname{Re} x>\operatorname{Re} c$, by Proposition 6 and Proposition 7 (i), we have

$$
\begin{aligned}
& \frac{F(x)-F(c)}{x-c}-f(c)=\frac{1}{x-c}\left(\int_{a}^{x} f(t) d_{\varphi} t-\int_{a}^{c} f(t) d_{\varphi} t\right)-f(c) \\
= & \frac{1}{x-c} \int_{c}^{x} f(t) d_{\varphi} t-\frac{1}{x-c} \int_{c}^{x} f(c) d_{\varphi} t=\frac{1}{x-c} \int_{c}^{x}(f(t)-f(c)) d_{\varphi} t
\end{aligned}
$$

which implies

$$
\begin{equation*}
\left|\frac{1}{x-c}\right|_{1}\left|\int_{c}^{x}(f(t)-f(c)) d_{\varphi} t\right|_{1} \geq\left|\frac{F(x)-F(c)}{x-c}-f(c)\right|_{1} \tag{23}
\end{equation*}
$$

By the assumption that f is φ-continuous at c, for any $\eta>0$ there exists $\delta>0$ such that

$$
\begin{equation*}
t \in[a, b]_{\varphi} \quad \text { and } \quad|\operatorname{Re} t-\operatorname{Re} c|<\delta \Longrightarrow|f(t)-f(c)|_{1}<\eta \tag{24}
\end{equation*}
$$

It follows from (24) and Proposition 6 that

$$
\begin{aligned}
& t \in[a, b]_{\varphi} \text { and }|\operatorname{Re} t-\operatorname{Re} c|<\delta \\
\Longrightarrow & -\eta-\eta \ell \stackrel{1}{<} f(t)-f(c) \stackrel{1}{<} \eta+\eta \ell \\
\Longrightarrow & \int_{c}^{x}(\eta+\eta \ell) d_{\varphi} t \geq \int_{c}^{1}(f(t)-f(c)) d_{\varphi} t \geq \int_{c}^{x}(-\eta-\eta \ell) d_{\varphi} t \\
\Longrightarrow & (\eta+\eta \ell)(x-c) \geq \int_{c}^{1}(f(t)-f(c)) d_{\varphi} t \geq(-\eta-\eta \ell)(x-c),
\end{aligned}
$$

which implies

$$
\begin{equation*}
\eta R e(x-c) \geq\left|\operatorname{Re}\left(\int_{c}^{x}(f(t)-f(c)) d_{\varphi} t\right)\right| \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
\eta R e(x-c)+\eta Z e(x-c) \geq\left|Z e\left(\int_{c}^{x}(f(t)-f(c)) d_{\varphi} t\right)\right| \tag{26}
\end{equation*}
$$

It follows from (22), (23), (25) and (26) that if $x \in[a, b]_{\varphi}$ and $0<\operatorname{Re} x-$ Rec< $<$, then

$$
\begin{aligned}
& x \in[a, b]_{\varphi} \text { and } 0<\operatorname{Re} x-\operatorname{Re} c<\delta \\
\Longrightarrow & |\operatorname{Ret}-\operatorname{Re} c|<\delta \text { for } t \in[c, x]_{\varphi} \\
\Longrightarrow & \eta\left(2+3 M+M^{2}\right)=2 \eta+3 \eta M+\eta M^{2} \\
\geq & 2 \eta+3 \eta\left|\frac{Z e(x-c)}{\operatorname{Re}(x-c)}\right|+\eta\left|\frac{Z e(x-c)}{\operatorname{Re}(x-c)}\right|^{2} \\
= & 2 \eta+3 \eta \frac{Z e(x-c)}{\operatorname{Re}(x-c)}+\eta\left(\frac{Z e(x-c)}{R e(x-c)}\right)^{2} \\
= & \left(\frac{1}{\operatorname{Re}(x-c)}+\frac{Z e(x-c)}{(\operatorname{Re}(x-c))^{2}}\right)(2 \eta R e(x-c)+\eta Z e(x-c)) \\
= & \left(\left|\frac{1}{\operatorname{Re}(x-c)}\right|+\left|\frac{Z e(x-c)}{(R e(x-c))^{2}}\right|\right)(2 \eta R e(x-c)+\eta Z e(x-c)) \\
\geq & \left|\frac{1}{x-c}\right|_{1}\left|\int_{c}^{x}(f(t)-f(c)) d_{\varphi} t\right|_{1} \geq\left|\frac{F(x)-F(c)}{x-c}-f(c)\right|_{1},
\end{aligned}
$$

which implies

$$
\begin{equation*}
\lim _{\operatorname{Re} x \rightarrow R e c^{+}} \frac{F(x)-F(c)}{x-c}=f(c) . \tag{27}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
\lim _{\operatorname{Re} x_{\rightarrow}^{\varphi} \text { Rec } c^{-}} \frac{F(x)-F(c)}{x-c}=f(c) \tag{28}
\end{equation*}
$$

By (27) and (28), we get $F_{\varphi}^{\prime}(c)=\lim _{\operatorname{Re} x \rightarrow \text { 出 } R e} \frac{F(x)-F(c)}{x-c}=f(c)$.

Our way of rewriting the Second Fundamental Theorem of Calculus is given in the following proposition.

Proposition 10. Suppose that $f:[a, b]_{\varphi} \rightarrow \mathcal{R}^{(2)}$ is φ-differentiable on a monotone closed φ-interval $[a, b]_{\varphi}$, and f_{φ}^{\prime} is φ-integrable on $[a, b]_{\varphi}$. Then

$$
\int_{a}^{b} f_{\varphi}^{\prime}(x) d_{\varphi} x=f(b)-f(a)
$$

if one of the following is true:
(i) $\varphi:[\operatorname{Re} a, \operatorname{Re} b] \rightarrow \mathcal{R}$ is constant;
(ii) Both φ and $f_{R e}$ are continuously differentiable on $[\operatorname{Re} a, \operatorname{Re} b]$.

Proof. The proof of this proposition consists of three parts:
Part 1: Prove that Proposition 10 holds if $\varphi:[\operatorname{Re} a, \operatorname{Re} b] \rightarrow \mathcal{R}$ is constant;
Part 2: Prove that Proposition 10 holds if both φ and $f_{R e}$ are continuously differentiable on $[\operatorname{Re} a, \operatorname{Re} b]$ and φ is non-increasing;

Part 3: Prove that Proposition 10 holds if both φ and $f_{R e}$ are continuously differentiable on $[R e a, R e b]$ and φ is non-decreasing.

The proofs in these three parts are similar. Here, we use Part 3 to give the way of doing the proofs. In the following, we assume that both φ and $f_{R e}$ are continuously differentiable on $[\operatorname{Re} a, \operatorname{Re} b]$ and φ is non-decreasing.

Since φ^{\prime} is continuous on the closed interval $[R e a, R e b]$, there exists a positive real number M such that

$$
M \geq\left|\varphi^{\prime}(\operatorname{Re} x)\right| \quad \text { for all } x \in[a, b]_{\varphi}
$$

Let $\eta>0$ be any fixed positive real number. By Proposition 3 (i), both $f_{R e}$ and $f_{Z e}$ are differentiable on $[\operatorname{Re} a, R e b]$. Since $\frac{d f_{R e}}{d(\operatorname{Re} x)}$ is continuous
on $[\operatorname{Re} a, \operatorname{Re} b], \frac{d f_{R e}}{d(\operatorname{Re} x)}$ is uniformly continuous on $[R e a, R e b]$. Hence, there exists $\delta>0$ such that

$$
\begin{align*}
& s, t \in[a, b]_{\varphi} \text { and }|\operatorname{Re} s-\operatorname{Re} t|<\delta \\
\Longrightarrow & \left.\left|\frac{d f_{R e}}{d(\operatorname{Re} x)}\right|_{x=s}-\left.\frac{d f_{R e}}{d(\operatorname{Re} x)}\right|_{x=t} \right\rvert\,<\frac{\eta}{M(\operatorname{Re} b-\operatorname{Re} a)} . \tag{29}
\end{align*}
$$

Let Q be any partition of $[a, b]_{\varphi}$, and let $P=\left\{x_{0}, x_{1}, \ldots x_{n}\right\}$ be a refinement of the partition Q such that $\|P\|<\delta$. After using Proposition 3 and applying the mean value theorem to each subinterval $\left[\operatorname{Re} x_{h-1}, \operatorname{Re} x_{h}\right]$ twice, we obtain points $t_{h}, s_{h} \in\left[x_{h-1}, x_{h}\right]_{\varphi}$ such that

$$
\begin{equation*}
f_{R e}\left(x_{h}\right)-f_{R e}\left(x_{h-1}\right)=\operatorname{Re}\left(\left(f_{\varphi}^{\prime}\left(t_{h}\right)\right) \operatorname{Re}\left(x_{h}-x_{h-1}\right)\right. \tag{30}
\end{equation*}
$$

and

$$
\begin{align*}
& f_{Z e}\left(x_{h}\right)-f_{Z e}\left(x_{h-1}\right) \\
= & \operatorname{Re}\left(\left(f_{\varphi}^{\prime}\left(t_{h}\right)\right) Z e\left(x_{h}-x_{h-1}\right)+Z e\left(f_{\varphi}^{\prime}\left(s_{h}\right)\right) \operatorname{Re}\left(x_{h}-x_{h-1}\right)+\right. \\
& +\left(\left.\frac{d f_{R e}}{d(\operatorname{Re} x)}\right|_{x=s_{h}}-\left.\frac{d f_{R e}}{d(\operatorname{Re} x)}\right|_{x=t_{h}}\right) \varphi^{\prime}\left(\operatorname{Re} s_{h}\right) \operatorname{Re}\left(x_{h}-x_{h-1}\right), \tag{31}
\end{align*}
$$

where $n \geq h \geq 1$. It follows from (30) and (31) that

$$
\begin{align*}
& f\left(x_{h}\right)-f\left(x_{h-1}\right)=\left[f_{R e}\left(x_{h}\right)-f_{R e}\left(x_{h-1}\right)\right]+\ell\left[f_{Z e}\left(x_{h}\right)-f_{Z e}\left(x_{h-1}\right)\right] \\
= & \left\{\operatorname { R e } \left(\left(f_{\varphi}^{\prime}\left(t_{h}\right)\right) \operatorname{Re}\left(x_{h}-x_{h-1}\right)+\right.\right. \\
& +\ell\left[\operatorname{Re}\left(\left(f_{\varphi}^{\prime}\left(t_{h}\right)\right) Z e\left(x_{h}-x_{h-1}\right)+Z e\left(f_{\varphi}^{\prime}\left(s_{h}\right)\right) \operatorname{Re}\left(x_{h}-x_{h-1}\right)\right]\right\}+ \\
& +\ell\left(\left.\frac{d f_{R e}}{d(\operatorname{Re} x)}\right|_{x=s_{h}}-\left.\frac{d f_{R e}}{d(\operatorname{Re} x)}\right|_{x=t_{h}}\right) \varphi^{\prime}\left(\operatorname{Re} s_{h}\right) \operatorname{Re}\left(x_{h}-x_{h-1}\right) \\
= & {\left[\operatorname{Re}\left(\left(f_{\varphi}^{\prime}\left(t_{h}\right)\right)+\ell Z e\left(f_{\varphi}^{\prime}\left(s_{h}\right)\right)\right]\left[\operatorname{Re}\left(x_{h}-x_{h-1}\right)+\ell Z e\left(x_{h}-x_{h-1}\right)\right]+\right.} \\
= & {\left[\operatorname{Re}\left(\left(f_{\varphi}^{\prime}\left(t_{h}\right)\right)+\ell Z e\left(f_{\varphi}^{\prime}\left(s_{h}\right)\right)\right]\left(x_{h}-x_{h-1}\right)+\right.} \\
& +\ell\left(\left.\frac{d f_{R e}}{d(\operatorname{Re} x)}\right|_{x=s_{h}}-\left.\frac{d f_{R e}}{d(\operatorname{Re} x)}\right|_{x=t_{h}}\right) \varphi^{\prime}\left(\operatorname{Re} s_{h}\right) R e\left(x_{h}-x_{h-1}\right) .
\end{align*}
$$

By (30), we have

$$
\begin{gather*}
\eta=\sum_{h=1}^{n} \frac{\eta}{M(\operatorname{Re} b-\operatorname{Re} a)} \operatorname{MRe}\left(x_{h}-x_{h-1}\right) \\
\left.>\sum_{h=1}^{n}\left|\frac{d f_{R e}}{d(\operatorname{Re} x)}\right|_{x=s_{h}}-\left.\frac{d f_{R e}}{d(\operatorname{Re} x)}\right|_{x=t_{h}}| | \varphi^{\prime}\left(\operatorname{Re} s_{h}\right)| | \operatorname{Re}\left(x_{h}-x_{h-1}\right) \right\rvert\, \\
\geq\left|\sum_{h=1}^{n}\left(\left.\frac{d f_{R e}}{d(\operatorname{Re} x)}\right|_{x=s_{h}}-\left.\frac{d f_{R e}}{d(\operatorname{Re} x)}\right|_{x=t_{h}}\right) \varphi^{\prime}\left(\operatorname{Re} s_{h}\right) \operatorname{Re}\left(x_{h}-x_{h-1}\right)\right| . \tag{33}
\end{gather*}
$$

Note that

$$
\begin{equation*}
U_{\varphi}\left(P, f_{\varphi}^{\prime}\right) \stackrel{1}{\geq} \sum_{h=1}^{n}\left[\operatorname{Re}\left(\left(f_{\varphi}^{\prime}\left(t_{h}\right)\right)+\ell Z e\left(f_{\varphi}^{\prime}\left(s_{h}\right)\right)\right]\left(x_{h}-x_{h-1}\right) \stackrel{1}{\geq} L_{\varphi}\left(P, f_{\varphi}^{\prime}\right)\right. \tag{34}
\end{equation*}
$$

and

$$
\begin{gather*}
f(b)-f(a)=\sum_{h=1}^{n} f\left(x_{h}\right)-f\left(x_{h-1}\right) \\
=\sum_{h=1}^{n}\left[\operatorname{Re}\left(\left(f_{\varphi}^{\prime}\left(t_{h}\right)\right)+\ell Z e\left(f_{\varphi}^{\prime}\left(s_{h}\right)\right)\right]\left(x_{h}-x_{h-1}\right)+\right. \\
+\ell \sum_{h=1}^{n}\left(\left.\frac{d f_{R e}}{d(\operatorname{Re} x)}\right|_{x=s_{h}}-\left.\frac{d f_{R e}}{d(\operatorname{Re} x)}\right|_{x=t_{h}}\right) \varphi^{\prime}\left(\operatorname{Re} s_{h}\right) \operatorname{Re}\left(x_{h}-x_{h-1}\right) . \tag{35}
\end{gather*}
$$

It follows from (5), (34) and (5) that

$$
U_{\varphi}\left(P, f_{\varphi}^{\prime}\right)+\eta \ell \stackrel{1}{\geq} f(b)-f(a) \stackrel{1}{\geq} L_{\varphi}\left(P, f_{\varphi}^{\prime}\right)-\eta \ell \quad \text { for any } \eta>0
$$

which implies that

$$
\begin{equation*}
U_{\varphi}\left(P, f_{\varphi}^{\prime}\right) \stackrel{1}{\geq} f(b)-f(a) \stackrel{1}{\geq} L_{\varphi}\left(P, f_{\varphi}^{\prime}\right) \tag{36}
\end{equation*}
$$

Since P is a a refinement of the partition Q, we get from (5) and Proposition 4 that

$$
\begin{equation*}
U_{\varphi}\left(Q, f_{\varphi}^{\prime}\right) \stackrel{1}{\geq} f(b)-f(a) \stackrel{1}{\geq} L_{\varphi}\left(Q, f_{\varphi}^{\prime}\right) \quad \text { for any partition } Q \text { of }[a, b]_{\varphi} \tag{37}
\end{equation*}
$$

Using (37), for each $\boldsymbol{\&} \in\{R e, Z e\}$, we get

$$
\inf \left\{\boldsymbol{\omega} U_{\varphi}\left(T, f_{\varphi}^{\prime}\right) \mid T \in \mathcal{P}\right\} \geq \boldsymbol{\omega}(f(b)-f(a)) \geq \sup \left\{\boldsymbol{\omega} L_{\varphi}\left(T, f_{\varphi}^{\prime}\right) \mid T \in \mathcal{P}\right\}
$$

or

$$
\begin{equation*}
\overline{\int_{a}^{b}} f_{\varphi}^{\prime} d_{\varphi} x \stackrel{1}{\geq} f(b)-f(a) \stackrel{1}{\geq} \underline{\int_{a}^{b}} f_{\varphi}^{\prime} d_{\varphi} x . \tag{38}
\end{equation*}
$$

By the assumption that f_{φ}^{\prime} is φ-integrable on $[a, b]_{\varphi}$, we get from (38) that

$$
f(b)-f(a)=\overline{\int_{a}^{b}} f_{\varphi}^{\prime} d_{\varphi} x=\underline{\int_{a}} f_{\varphi}^{\prime} d_{\varphi} x=\int_{a}^{b} f_{\varphi}^{\prime} d_{\varphi} x .
$$

Since a closed φ-interval is the union of monotone closed φ-intervals, the concept of φ-integrals can be introduced on any closed φ-interval, and the results about φ-integrals in this paper are also true for the φ-integrals on any closed φ-interval.
Acknowledgments. I thank Professor Robert V. Moody for his help and support. I also thank the referee for his or her comments.

References

[1] Christopher Apelian \& Steve Surace, Real and Complex Analysis, Monographs and Textbooks in Pure and Applied Mathematics (294), CRC Press, 2010.
[2] Walter Rudin, Principles of Mathematical Analysis, McGraw-Hill, 1976.

[^0]: Mathematical Reviews subject classification: Primary: 26A99
 Key words: the dual real number algebra, φ-derivatives, φ-integrals
 Received by the editors March 21, 2013
 Communicated by: Emma D'Aniello

