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STRONGLY SEPARATELY CONTINUOUS
AND SEPARATELY QUASICONTINUOUS

FUNCTIONS f : l2 → R

Abstract

In this paper we give a sufficient condition for the strongly sepa-
rately continuous functions to be continuous on l2. Further we shall
give notions of separately quasicontinuous function f : l2 → R and its
properties. At the end we will expecting to determining sets M ⊂ l2 for
the class of separately continuous functions on l2.

1 Introduction

The notion of the strongly separately continuity f : Rm → R, where m ≥ 1 is
introduced in paper [2]. It is proved, that the function f is continuous at the
point x0 =

(
x01, . . . , x

0
m

)
if and only if f is strongly separately continuous at

x0.
Functions f : l2 → R, where l2 is the space of real sequences such that∑∞
k=1 x

2
k < +∞ with the metric d(x, y) =

√∑∞
k=1 (xk − yk)

2
are investigated

in paper [1].
It is known, that

(
l2, d

)
is a separable and complete metric space. In [1],

it is shown that there is a strongly separately continuous function f defined
on l2, that is discontinuous everywhere on l2.

In the third part of this paper we shall deal with separately quasicontin-
uous functions on l2. We shall give a condition under which the separately
quasicontinuity implies quasicontinuity on l2. Further it will be shown, that
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there is a strongly separately continuous function f : l2 → R, that is not qua-
sicontinuous and it belongs to the Baire class three.

The forth part of the paper is devoted to the determining sets for the class
of separately continuous functions on l2. A sufficient condition will be given
for a set M ⊂ l2 to be determining set for the class of separately continuous
functions.

2 Strongly separately continuous functions f : l2 → R

In paper [1] we find the definition of separately and strongly separately con-
tinuous function f : l2 → R. If x0 ∈ l2 and δ > 0, then B

(
x0, δ

)
denotes the

set
{
x ∈ l2 : d

(
x, x0

)
< δ
}

.

Definition 1. A function f : l2 → R is said to be separately continuous at
the point x0 =

(
x0j
)
∈ l2 with respect to the variable xk under the assumption,

that the function ϕk : R → R defined by ϕk(t) = f
(
x01, . . . , x

0
k−1, t, x

0
k+1, . . .

)
is continuous at xk. If f is separately continuous at x0 with respect to xk for
all k ∈ N, then f is said to be separately continuous at x0. If f is separately
continuous at every point x0 ∈ l2, then f is said to be separately continuous
on l2.

Definition 2. A function f : l2 → R is said to be strongly separately contin-
uous at the point x0 =

(
x0j
)
∈ l2 with respect to the variable xk under the

assumption, that for each ε > 0 there exists δ > 0 such that |f(x)− f(x′)| < ε
holds for each x = (xj) ∈ B

(
x0, δ

)
and x′ =

(
x1, . . . , xk−1, x

0
k, xk+1, . . .

)
. If f

is strongly separately continuous at x0 with respect to xk for all k ∈ N, then f
is said to be strongly separately continuous at x0. The function f is said to be
strongly separately continuous on l2 under the assumption, that it is strongly
separately continuous at every point x0 ∈ l2.

It is known that if f : l2 → R is continuous at x0 ∈ l2, then f is strongly
separately continuous at x0. Also if f : l2 → R is strongly separately continu-
ous at x0 ∈ l2, then f is separately continuous at x0.

A subset S ⊆ l2 is said to be a set of type (P1) under the assumption,
that the following holds: if x = (xj) ∈ S, y = (yj) ∈ l2 and the set
{j ∈ N : xj 6= yj} contains at most one element, then y = (yj) ∈ S. In [1]
we find the following examples of such sets of type (P1).

Example 1. a) S =
{
x = (xj) ∈ l2 : {j ∈ N : xj is a rational (irrational,

algebraic, transcendent) number} is a finite set
}

,

b) S′ =
{
x = (xj) ∈ l2 :

∑∞
j=1 xk < +∞

}
.
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It is easy to see, that the sets S, l2 \ S, S′ and l2 \ S′ are dense in l2.

Theorem 1 (Theorem 1.4 in [1]). There exists a function g : l2 → R such that
g is strongly separately continuous on l2 and g is discontinuous at every point
of l2.

Proof. Let S ⊆ l2 be a set of type (P1) such that S and l2 \ S are dense in
l2. Let c ∈ R, c 6= 0. Define a function g : l2 → R by g(x) = c for all x ∈ S
and g(x) = 0 otherwise. If x0 ∈ l2, then for every neighbourhood U of x0 we
have U ∩S 6= ∅, U ∩

(
l2 \ S

)
6= ∅ and this means, that g is discontinuous at x0.

On the other hand, let k ∈ N and x0 =
(
x0j
)
, x = (xj), x

′ =
(
x′j
)

be arbitrary

points of l2 such that for all j 6= k, xj = x′j and x0k = x′k. It is obvious that if
x ∈ S then also x′ ∈ S and if x /∈ S then also x′ /∈ S. Hence we always obtain
|g(x) − g(x′)| = 0 so that for each x0 ∈ l2 and each k ∈ N the function g is
strongly separately continuous at x0 with respect to xk.

It follows from Theorem 1 that the function g : l2 → R defined in the proof
of Theorem 1 does not belong to the first Baire class.

Now, we can formulate a sufficient condition for a strongly separately func-
tion to be continuous at the point x0 ∈ l2.

Theorem 2. Let f : l2 → R be a strongly separately continuous at the point
x0 =

(
x0j
)
∈ l2. Let for each ε > 0 there exists δ > 0 and N ∈ N, such that

for all y = (yj) ∈ l2 for which
√∑∞

j=N+1

(
x0j − yj

)2
< δ implies

|f (y1, y2, . . . )− f
(
y1, . . . , yN , x

0
N+1, x

0
N+2, . . .

)
| < ε.

Then f is continuous at x0 =
(
x0j
)
∈ l2.

Proof. Let ε > 0. According to the assumption there exists δ0 > 0 and

N ∈ N such that for each y = (yj) ∈ l2 for which
√∑∞

j=N+1

(
x0j − yj

)2
< δ0

we have

|f (y1, y2, . . . )− f
(
y1, . . . , yN , x

0
N+1, x

0
N+2, . . .

)
| < ε

2
.

Since f is strongly separately continuous at x0 =
(
x0j
)
∈ l2: for all ε′ > 0 and

for all k ∈ N there exists δ′k > 0 such that for all x = (xj) ∈ l2 for which√∑∞
j=1

(
xj − x0j

)2
< δ′k implies

|f (x1, . . . )− f
(
x1, . . . , xk−1, x

0
k, xk+1, . . .

)
| < ε′



502 T. Visnyai

holds. Let ε′ = ε
2N . Then for each k ∈ {1, 2, . . . , N} there exists δk > 0 such

that if x = (xj) ∈ B
(
x0, δk

)
then

|f (x1, . . . )− f
(
x1, . . . , xk−1, x

0
k, xk+1, . . .

)
| < ε

2N
.

Let δ = min {δ0, δ1, . . . , δk} and x = (xj) ∈ B
(
x0, δ

)
. Then also

(
x01, x2, . . .

)
,(

x01, x
0
2, x3, . . .

)
, . . . ,

(
x01, . . . , x

0
N−1, xN , xN+1, . . .

)
∈ B

(
x0, δ

)
which is the

subset of B
(
x0, δk

)
, k = 0, 1, 2, . . . , N and√√√√ ∞∑

j=N+1

(
xj − x′j

)2 ≤
√√√√ ∞∑

j=1

(
xj − x0j

)2
< δ ≤ δ0.

Then∣∣f (x1, x2, . . . )− f
(
x01, x

0
2, . . .

) ∣∣ ≤ ∣∣f (x1, x2, . . . )− f
(
x01, x2, . . .

) ∣∣
+
∣∣f (x01, x2, x3, . . . )− f (x01, x02, x3, . . . ) ∣∣

+ · · ·+
+
∣∣f (x01, . . . , x0N−1, xN , xN+1, . . .

)
− f

(
x01, . . . , x

0
N−1, x

0
N , xN+1, . . .

) ∣∣
+
∣∣f (x01, . . . , x0N−1, x0N , xN+1, . . .

)
− f

(
x01, . . . , x

0
N , x

0
N+1, x

0
N+2, . . .

) ∣∣
< N · ε

2N
+
ε

2
= ε.

Hence f is continuous at the point x0 =
(
x0j
)
∈ l2.

Corollary 3. Let f : l2 → R be strongly separately continuous on l2. Let
for each ε > 0 there exists δ > 0 and N ∈ N such that for all x, y ∈ l2 :√∑∞

j=N+1 (xj − yj)2 < δ implies

|f (y1, y2, . . . )− f (y1, . . . , yN , yN+1, yN+2, . . . )| < ε.

Then f is continuous on l2.

Let us recall the notion of quasicontinuity for a function defined on arbi-
trary metric space.

Definition 3. Let (X, d1), (Y, d2) be metric spaces. A function f : X → Y
is quasicontinuous at x0 ∈ X if for all ε > 0 and for all δ > 0 there exists
B (x1, δ1) ⊆ B (x0, δ) such that f (B (x1, δ1)) ⊆ B (f (x0) , ε).
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It is known, that each continuous function on X is quasicontinuous on X.
In general the converse is not true.

Further, the function f : R2 → R : f(x, y) = 1, (x, y) ∈ A and f(x, y) =
0, (x, y) /∈ A, where A = Q2 ∪{{0} × R}∪{R× {0}} is separately continuous
at (0, 0) and is not quasicontinuous at (0, 0).

Theorem 4. There exists a strongly separately continuous function on l2 be-
longing to the third Baire class which is not quasicontinuous at any point in
l2.

We shall use the following Lemma:

Lemma 5. Let D =
{
x = (xk) ∈ l2 :

∑∞
k=1 xk = +∞

}
. The set D is a dense

set in l2.

Proof. Let x = (xk) ∈ l2 be arbitrary and δ > 0. We show, that there exists
α = (αk) ∈ D, for which

d(x, α) =

√√√√ ∞∑
k=1

(αk − xk)
2
< δ.

We can find m ∈ N such that
∑∞
k=m+1 x

2
k <

δ2

4 and
∑∞
k=m+1

1
k2 <

δ2

4 . Put
yk = xk for k = 1, 2, . . . ,m and yk = 0 for k = m + 1,m + 2, . . . . Then
y = (yk) ∈ l2 and

d(x, y) =

√√√√ ∞∑
k=1

(xk − yk)
2

=

√√√√ ∞∑
k=m+1

x2k <
δ

2

holds. Further, we put αk = yk for k = 1, 2, . . . ,m, αk = 1
k for k = m+1,m+

2, . . . . Then α = (αk) ∈ D and

d(y, α) =

√√√√ ∞∑
k=1

(αk − yk)
2

=

√√√√ ∞∑
k=m+1

1

k2
<
δ

2
.

Then d(α, x) ≤ d(α, y) + d(y, x) < δ. Hence D is a dense set in l2.

Proof of Theorem 4. Denote H =
{
x = (xj) ∈ l2 :

∑∞
j=1 xj is conver-

gent
}

. Define the function h : l2 → R in the following way: h(x) =
∑∞
j=1 xj

for x ∈ H and h(x) = 0 for x ∈ l2 \H.
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First, we show that h is strongly separately continuous on l2. Let x0 =(
x0j
)
∈ l2, k ∈ N. We show that h is strongly separately continuous at x0

with respect to the variable xk. Let ε > 0. If x = (xj) ∈ B
(
x0, ε

)
, then also

x′ =
(
x1, . . . , xk−1, x

0
k, xk+1, . . .

)
∈ B

(
x0, ε

)
. If x ∈ H and h(x) =

∑∞
j=1 xj ,

then

|h(x)− h(x′)| = |xk − x0k| ≤ d
(
x, x0

)
< ε.

If x ∈ l2 \H, then h(x) = h(x′) = 0 and we have |h(x)− h(x′)| = 0. Hence h
is strongly separately continuous at x0 with respect to a variable xk.

Now we show indirectly that h is quasicontinuous at no point x0 =
(
x0j
)
∈

l2. Let h be quasicontinuous at x0 =
(
x0j
)
∈ l2, ε > 0, δ > 0. Then according

to Definition 3, there is a ball B (y, δ1) ⊆ B
(
x0, δ

)
such that h (B (y, δ1)) ⊂

B
(
h
(
x0
)
, ε
)
. Let α = (αj) ∈ D such that α ∈ B

(
y, δ12

)
. We can find

m ∈ N such that
∑∞
j=m+1 α

2
j <

δ21
4 and

∑m
j=1 αj > h

(
x0
)

+ ε. Put bj = αj ,

j = 1, 2, . . . ,m and bj = 0, j = m+1,m+2, . . . . Then
∑∞
j=1 bj converges and

b = (bj) ∈ H. According to the definition of the function h, h(b) =
∑∞
j=1 bj =∑m

j=1 αj . Hence h(b) > h
(
x0
)

+ ε. On the other hand

d(α, b) =

√√√√ ∞∑
j=1

(αj − bj)2 =

√√√√ ∞∑
j=m+1

α2
j <

δ1
2

and we have d(y, b) ≤ d(y, α) + d(α, b) < δ1. Hence b ∈ B (y, δ1) and therefore
h(b) < h

(
x0
)

+ ε, it is a contradiction. Therefore h is not quasicontinuous at

x0 =
(
x0j
)
∈ l2.

Further we show, that h belongs to the third Baire class. It is sufficient
the show that the sets

M t =
{
x = (xj) ∈ l2 : h(x) > t

}
and Mt =

{
x = (xj) ∈ l2 : h(x) < t

}
are of the type Fσδσ in l2 for each t ∈ R.

First we show that the set H =
{
x = (xj) ∈ l2 :

∑∞
j=1 xj is convergent

}
is of type Fσδ in l2. It obviously holds: x = (xj) ∈ H if and only if for all
j ≥ 1 there exists p ≥ 1 such that for all m,n ≥ p, |sm(x)− sn(x)| ≤ 1

j , where

sk(x) =
∑k
j=1 xj , k = 1, 2, . . . . It follows that

H =

∞⋂
j=1

∞⋃
p=1

∞⋂
m,n=p

{
x = (xj) ∈ l2 : |sm(x)− sn(x)| ≤ 1

j

}
.
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It is easy to see, that for a fixed k ≥ 1 the function sk is continuous on l2.
Hence H is an Fσδ set in l2. Let t ≤ 0. Then the set

M t = H ∩
∞⋃
j=1

∞⋃
p=1

∞⋂
n=p

{
x = (xj) ∈ l2 : sn(x) ≤ t− 1

j

}

is of the type Fσδ in l2.

Let t > 0. Then

M t =
(
l2 \H

)
∩
∞⋃
j=1

∞⋃
p=1

∞⋂
n=p

{
x = (xj) ∈ l2 : sn(x) ≤ t− 1

j

}
.

The set l2 \H is of the type Gδσ in l2 and from this it follows that M t is of
the type Gδσ too. We can see, that for arbitrary t ∈ R, M t is the set of the
type Fσδσ.

We have proved, that h : l2 → R is strongly separately continuous on l2

and it belongs to the third Baire class.

3 Separately quasicontinuous functions on l2

If follows from Definition 3 that the notion of quasicontinuity is a weaker form
of continuity. It is possible to formulate the notion of separately quasiconti-
nuity for f : l2 → R.

Definition 4. A function f : l2 → R is said to be separately quasicontinuous at
the point x0 =

(
x0j
)
∈ l2 with respect to the variable xk under the assumption,

that the function ϕk : R → R defined by ϕk(t) = f
(
x01, x

0
2, . . . , x

0
k−1, t, x

0
k+1,

. . . ) is quasicontinuous at x0k. If f is separately quasicontinuous at x0 with
respect to xk, for all k ∈ N, then f is said to be separately quasicontinuous at
x0 =

(
x0j
)
∈ l2. If f is separately quasicontinuous at every point x0 ∈ l2 then

f is said to be separately quasicontinuous on l2.

The following Theorem (see [3]) is published for all functions f : Rm → R,
where m ≥ 1.

Theorem 6. If f : Rm → R is separately quasicontinuous on Rm, then f is
quasicontinuous on Rm.

The next example shows, that for the functions f : l2 → R the situation is
different.
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Example 2. Let

g (x1, x2, . . . ) =

{
c, x ∈ S,
0, x ∈ l2 \ S,

where c ∈ R, c 6= 0 and the set S is defined by Example 1a). We show, that g
is separately quasicontinuous on l2 but it is not quasicontinuous at any point
of l2. It was shown in the proof of Theorem 1, that g is strongly separately
continuous on l2. According to Proposition 1.2 from [1] it follows that g is
separately continuous on l2 and obviously every separately continuous function
on l2 is also separately quasicontinuous on l2.

It is sufficient to show, that g is not quasicontinuous at any point of
l2. Each of the sets S, l2 \ S are dense in l2. Then every ball B

(
x0, δ

)(
x0 =

(
x0j
)
∈ l2, δ > 0

)
contains some elements y(1) ∈ S and y(2) ∈ l2 \ S. If

ε = |c|, then either g
(
y(1)

)
/∈ B

(
g
(
x0
)
, ε
)

or g
(
y(2)

)
/∈ B

(
g
(
x0
)
, ε
)
. Hence

g is not quasicontinuous at the point x0 =
(
x0j
)
∈ l2.

Furthermore we give a sufficient condition for the separately quasicontin-
uous function on l2 to be quasicontinuous.

Theorem 7. Let f : l2 → R be a separately quasicontinuous on l2. Let for
each ε > 0 there exists δ > 0 and N ∈ N such that for all x, y ∈ l2 :√∑∞

j=N+1 (xj − yj)2 < δ implies

|f (y1, y2, . . . )− f (y1, . . . , yN , xN+1, xN+2, . . . )| < ε. (1)

Then f is quasicontinuous on l2.

Proof. Let x0 =
(
x0j
)
∈ l2, ε > 0 and δ > 0. According to (1) for ε

2 > 0

there exists δ1 > 0, δ1 ≤ δ
2 and there exists N ∈ N such that for all x, y ∈ l2

for which
√∑∞

j=N+1 (xj − yj)2 < δ implies

|f (y1, y2, . . . )− f (y1, . . . , yN , xN+1, xN+2, . . . )| <
ε

2
. (2)

Let ϕ0 : Rm → R be a function defined by

ϕ0 (x1, . . . , xN ) = f
(
x1, x2, . . . , xN , x

0
N+1, x

0
N+2, . . .

)
.

Then ϕ0 is separately quasicontinuous and according to the Theorem 6 is
quasicontinuous on Rm.

Let j0 : Rm → l2 be a map defined by the following way: j0 (x1, . . . , xN ) =(
x1, x2, . . . , xN , x

0
N+1, x

0
N+2, . . .

)
. j0 is a continuous map on Rm and ϕ0 = f ◦

j0. From the quasicontinuity of ϕ0 it follows, that for ε
2 > 0 and for each δ2 >
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0, δ2 ≤ δ1 there exists a ball B ((x′1, . . . , x
′
N ) , δ3) ⊆ B

((
x01, . . . , x

0
N

)
, δ2
)

such

that ϕ0 (B ((x′1, . . . , x
′
N ) , δ3)) ⊆ B

(
ϕ0

(
x01, . . . , x

0
N

)
, ε2
)

= B
(
f
(
x01, . . . , x

0
N ,

x0N+1, . . .
)
, ε2
)
. Obviously δ3 ≤ δ2. Denote

ξ1 =
(
x11, . . . , x

1
N

)
, x1 = j0

(
ξ1
)

=
(
x11, . . . , x

1
N , x

0
N+1, . . .

)
,

ξ0 =
(
x01, . . . , x

0
N

)
, x0 = j0

(
ξ0
)

=
(
x01, . . . , x

0
N , x

0
N+1, . . .

)
.

Denote d as a metric on l2 and d′ as a metric on Rm. Obviously for all
ξ, η ∈ Rm : d′(ξ, η) = d (j0(ξ), j0(η)), d′

(
ξ1, ξ0

)
= d

(
j0
(
ξ1
)
, j0
(
ξ0
))

=

d
(
x1, x0

)
< δ2 therefore ξ1 ∈ B

(
ξ0, δ2

)
. Let us consider a ball B

(
x1, δ3

)
in

l2. If x ∈ B
(
x1, δ3

)
then d

(
x, x0

)
≤ d

(
x, x1

)
+d

(
x1, x0

)
< δ3 + δ2 ≤ 2δ2 < δ.

Hence B
(
x1, δ3

)
⊆ B

(
x0, δ

)
.

Let x ∈ B
(
x1, δ3

)
. Then d

(
x, x1

)
< δ3 and it holds

d′
(
(x1, . . . , xN ) ,

(
x11, . . . , x

1
N

))
≤ d

(
x, x1

)
< δ3.

Then (x1, . . . , xN ) ∈ B
((
x11, . . . , x

1
N

)
, δ3
)

that implies that ϕ0 (x1, . . . , xN )=

f
(
x1, . . . , xN , x

0
N+1, . . .

)
∈ B

(
f
(
x0
)
, ε2
)

that means

|f
(
x1, . . . , xN , x

0
N+1, x

0
N+2, . . .

)
− f

(
x01, . . . , x

0
N , x

0
N+1, . . .

)
| < ε

2
. (3)

From the condition (2) we have

|f (x1, x2, . . . )− f
(
x1, . . . , xN , x

0
N+1, x

0
N+2, . . .

)
| < ε

2
,

since
√∑∞

j=N+1

(
xj − x0j

)2 ≤ d (x, x1) < δ3 ≤ δ2 ≤ δ1. Then

|f (x1, x2, . . . )− f
(
x01, x

0
2, . . .

)
| ≤ |f (x1, x2, . . . )− f

(
x1, . . . , xN , x

0
N+1, . . .

)
|

+ |f
(
x1 . . . , xN , x

0
N+1, . . .

)
− f

(
x01, x

0
2, . . .

)
|

<
ε

2
+
ε

2
= ε.

For x0 =
(
x0j
)
∈ l2, ε > 0, δ > 0 there exists B

(
x1, δ3

)
⊆ B

(
x0, δ

)
such that

f
(
B
(
x1, δ3

))
⊆ B

(
f
(
x0
)
, ε
)

=
(
f
(
x0
)
− ε, f

(
x0
)

+ ε
)

and it means that f

is quasicontinuous at x0 =
(
x0j
)
∈ l2.

An example of a function f : l2 → R that fulfils the assumption of Theorem
7 is f(x) =

∑∞
n=1 αn · gn(x), where g(t) = 1 for t ≥ 0, g(t) = 0 for t < 0 and

αn = 2−n, n = 1, 2, . . . . The function f is quasicontinuous on l2, but it is not
continuous there (see [8]).
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4 Determining sets for separately continuous functions

Let F be a class of functions defined on the set X. The set M ⊂ X is called
determining set for a class F if for any couple of function f, g ∈ F the equality
f(x) = g(x) for x ∈ M implies f(x) = g(x) for every x ∈ X. Let F0 be the
class of all separately continuous functions on Rm, m ≥ 2. It is known, that
M ⊂ Rm is a determining set for the class F0 if and only if M is dense in Rm
(see [6]).

It is shown in [1] that the analogous statement does not hold for the class
F1 of all separately continuous functions on l2. In [1] the following statement
is formulated:

Theorem 8. There exists a strongly separately continuous function h : l2 → R
and a residual (and, consequently, dense) set E in l2 such that h(x) = 0 for
all x ∈ E and h(y) 6= 0 for some y ∈ l2 \ E.

Proof. See [1] Theorem 3.1.

The function h and the set H introduced in the proof of Theorem 4 has
these properties.

Further in [1], there is a statement formulated that when M ⊂ l2 is not a
determining set for the class F1. In the following a sufficient condition will be
given under a subset of l2 is the determining set for F1.

First we define the property (P2): It is said that M ⊂ l2 has the property
(P2) if for all x = (xk) ∈ l2 there exists m(x) ∈ N such that for all δ > 0 there
exists y = (yk) ∈M : xk = yk for k 6= m and |xm − ym| < δ.

Theorem 9. If M ⊂ l2 has the property (P2), then M is a determining set
for the class F1 of all separately continuous functions on l2.

Proof. It is sufficient to show that if f ∈ F1 and f(x) = 0 for all x = (xj) ∈
M , then f(x) = 0 for all x = (xj) ∈ l2.

Let x0 =
(
x0j
)
∈ l2. It follows from the property (P2), that there exists

m = m
(
x0
)
∈ N such that for each k ∈ N there exists y(k) =

(
y
(k)
j

)
∈ M for

which y =
(
x01, . . . , x

0
m−1, y

(k)
m , x0m+1, . . .

)
and |y(k)m − x0m| < 1

k .

Since f is separately continuous at x0, the function ϕm : R→ R: ϕm(t) =

f
(
x01, . . . , x

0
m−1, t, x

0
m+1, . . .

)
is continuous. Obviously, limk→∞ y

(k)
m = x0m and

we have limk→∞ ϕm

(
y
(k)
m

)
= ϕm

(
x0m
)
. Since for all k ∈ N : ϕm

(
y
(k)
m

)
=

f
(
y(k)

)
= 0 we have ϕ

(
x0m
)

= f
(
x0
)

= 0. It means, that for all x ∈ l2 :
f(x) = 0.
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